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ABSTRACT

This is a comparison of two approaches to Clifford’s theorem where a representation of a

normal subgroup of a group is induced up to the group and then restricted down to the

normal subgroup. The first approach utilized was a character based approach and the

second was a vector space approach. Each approach will be followed by several results,

and a comparison between the two approaches will be made. Several examples of finite

groups will illustrate the character approach of Clifford’s theorem. Finally, a key result

of the character approach will be used to find irreducible representations of a subgroup of

GL2(Fq).
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1 Introduction

This paper contains an exploration of Clifford’s theorem and its results by using a vector

space approach and a character approach. It is common to see a character approach to

Clifford’s theorem, however, it is uncommon to see an approach using the vector space of

a representation and its decomposition. Clifford’s theorem involves taking a normal sub-

group of a finite group, G, and shows what happens when an irreducible representation of

the normal subgroup is induced up to G and then restricted to the normal subgroup.

In chapter 2 we will introduce necessary definitions, theorems, propositions, and lemmas,

that will aid us in many proofs in later sections. This section discusses what a representa-

tion and character are and how we can connect the two approaches.

Then, in chapter 3 we will explore the character approach to Clifford’s theorem, results that

follow this theorem, and examples. Clifford’s theorem, from this approach, shows what hap-

pens when taking an irreducible character of a group G and restricting that character to

a normal subgroup H, how the restricted character will break apart into the sum of irre-

ducible constituents of a character of H. A large result that follows from this theorem will

give the tools to find irreducible representations of a group from inducing representations

from, what will be later defined, the inertia group. We will illustrate the use of this result

later in chapter 5.

In chapter 4, we will take a different approach to Clifford’s theorem and instead of looking

at the characters themselves, we will look at the representations and the vector space of

the representation. This approach will discuss what happens when we take an irreducible

representation of a normal subgroup Nof a group G and then restrict the induced represen-

tation to N . Also in this section, we will make a connection between the two approaches.

Finally, chapter 5 explores what happens when we apply Clifford’s theorem to a specific

group. We will be taking a subgroup of GL2(Fq), which is made up of upper triangular ma-

trices, and a normal subgroup of this group and look at two specific cases. We will explore

the case where q = 3 and where q = 5, and then conclude what happens when q = p, for a

prime p.
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2 Background

In this chapter we will explore the necessary background information to compare Clifford’s

Theorem between a vector space approach and a character approach. This chapter will

include basic definitions, theorems, and several remarks. Some proofs will be included in

this chapter, while some proofs will be omitted. This chapter is primarily based on [4].

However, some theorems, remarks, and other necessary background are based on different

courses taken and helpful notes from advisors.

2.1 Representation Theory Background

This section will discuss the definition of a representation, Maschke’s Theorem followed by

a proof, Schur’s Lemma followed by a proof, and the discussion of Frobenius Reciprocity.

Definition 2.1. A representation of a group G is a homomorphism µ : G → GL(V ) for

some complex vector space V . The degree of µ is the dimension of V .

Note, since V is a complex vector space, V ∼= Cn.

Remark 2.2. The group GLn(C) is isomorphic to GL(Cn).

Definition 2.3. Let µ : G → GL(V ) and σ : G → GL(W ) be representations of G. The

two representations, µ and σ, are equivalent if there exists an isomorphism of vector spaces

T : V →W such that

σ(g) = Tµ(g)T−1

for all g ∈ G. We denote two equivalent representations by φ ∼= σ.

Definition 2.4. Let µ : G→ GL(V ) be a representation and W ≤ V . The W is G-invariant

if, for all g ∈ G and w ∈W , µ(g)(w) ∈W .

Definition 2.5. Let µ : G → GL(Cn) be a non-zero representation of G. Then, µ is

irreducible if the only G-invariant subspaces of Cn are Cn and {0}. If µ is not irreducible,

we say µ is reducible.

Lemma 2.6. Let µ : G → GL(V ) be a representation of G. If µ is equivalent to an

irreducible representation of G, then µ is irreducible.
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If µ : G → GL(V ) is a representation of G and W is a subspace of V where W is a

G-invariant subspace, we can restrict the representation µ to W to get µ |W : G→ GL(W )

by defining

µ |W (g)(w) = µ(g)(w)

Also, if µ : G→ GL(V ) is a representation of G and H is a subgroup of G, we can restrict

µ to H, by ResGH µ : H → GL(V ), by

ResGH µ(h)(v) = µ(h)

for h ∈ H. Note, ResGH µ is a representation of H.

Definition 2.7. Let µ : G → GL(V ) and σ : G → GL(W ) be representations of G. Then

the direct sum of µ and σ, µ⊕ σ : G→ GL(V ⊕W ), is given by,

(µ⊕ σ)(g)(v, w) = (µ(g)(v), σ(g)(w))

for v ∈ V and w ∈W .

Definition 2.8. Let µ : G → GL(Cn) be a representation for a group G. Then, µ is said

to be completely reducible if Cn = V1 ⊕ V2 ⊕ · · · ⊕ Vn where Vi is a G-invariant subspace

and µ |Vi is irreducible for all i = 1, . . . , n.

Similarly to the previous lemma, we also have a lemma regarding a representation

equivalent to a completely reducible representation.

Lemma 2.9. Let µ : G→ GL(V ) be a representation of G. If µ is equivalent to a completely

reducible representation of G, then µ is completely reducible.

Theorem 2.10. Every representation of a finite group is completely reducible.

Proof. Let µ : G→ GL(V ) be a representation and let G be a finite group. If dim(V ) = 1,

then µ has no non-zero proper subspaces, which impliesµ is irreducible. Assume true for

µ : G→ GL(V ) with dim(V ) = n. We will show the result is true for µ : G→ GL(V ) with

dim(V ) = n + 1. If µ is irreducible, then we are done. Otherwise, µ is decomposable by
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Corallary. So, let µ be decomposable. Then V = V1⊕V2, where V1, V2 6= 0. By definition, V1

and V2 are G-invariant subspaces and dim(V1), dim(V2) < dim(V ). So, µ ∼= (µ |V1 ⊕µ |V2).

Let V1 = U1 ⊕ · · · ⊕ Us and V2 = W1 ⊕ · · · ⊕Wr. Ui, Wj are G-invariant subspaces and the

subrepresentations µ |Ui , µ |Wj are irreducible representations. So

V = V1 ⊕ V2

= U1 ⊕ · · · ⊕ Us ⊕W1 ⊕ · · · ⊕Wr

Hense µ is completely reducible. So every representation of a finite group is completely

reducible.

Based on Maschke’s theorem, since all representations of finite groups are completely

reducible, we must find the irreducible representations of a group to understand all repre-

sentations of a group.

Definition 2.11. If µ ∼= m1σ1 ⊕ · · · ⊕mnσn, then mi is called the multiplicity of σi in µ.

If mi > 0, then σi is an irreducible constituent of µ.

Definition 2.12. Let µ : G → GL(V ) and σ : G → GL(W ) be representations of G. A

morphism from µ to σ is a linear map T : V →W such that

Tµ(g) = σ(g)T

for all g ∈ G. The set of all morphisms from µ to σ is denoted HomG(µ, σ).

In this next example we will determine all irreducible representations of Zn. Later on,

we will take these irreducible representation and induce them up to a subgroup of GL2(Fq).

Example 2.13. To determine all irreducible representations of Zn, we will first determine

all homomorphisms of Zn. Let µm : Zn → C∗. Note Zn is cyclic. So, once we know where

the generator is mapped to, we can find the rest of the map. Now, say 〈x〉 = Zn. Then,

xn = 1 so, zn = 1 =⇒ z = e2πi/n for
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m = 0, 1, . . . , n− 1 where z ∈ C∗. Consider, Zn → C∗ are

µm(xk) = e2πimk/n m = 0, 1, . . . , n− 1

This gives us n maps and permutes the generator of Zn around to each nth root of unity.

So, all homomorphisms µ : Zn → C∗ are of the form,

µm(xk) = e2πimk/n m = 0, 1, . . . n− 1

and therefore, all irreducible representations of Zn are of this form.

The next theorem we will look at, Schur’s Lemma, will make a connection between

equivalent representations and the hom space of the representations.

Theorem 2.14. Let µ, σ be irreducible representations and T ∈ HomG(µ, σ). Define µ :

G→ GL(V ), σ : G→ GL(W ). Let T : V → W be given by T (µ(g)v) = σ(g)T (v). Then T

is invertible or T = 0 if and only if

a.) If µ 6∼= σ, then HomG(µ, σ) = {0}

b.) If µ ∼= σ, then T is invertible. So T = λI for λ ∈ C.

Proof. Let µ : G → GL(V ), σ : G → GL(W ) and T : V → W . Let T ∈ HomG(µ, σ). If

T = 0 we are done. So, say T 6= 0. We want to show T is invertible. kerT = {v ∈ V |T (v) =

0} ⊆ V and kerT ⊆ V is G-invariant. Since V is irreducible that implies kerT = V or

kerT = 0. If kerT = V , then T = 0. This is a contradiction since we assumed T 6= 0. So,

kerT = 0, implying T is injective. The Im(T ) = {T (v)|v ∈ V } is a G-invariant subspace of

W and W is an irreducible representation. So, Im(T ) = W or Im(T ) = 0. If Im(T ) = 0,

then T = 0. Again, this is a contradiction. So, Im(T ) = W . So, T is surjetive. Hence, T

is invertible.

Now, assume T is invertible and dim(V ) = dim(W ). Let µ ∼= σ. Note HomG(µ, σ) =

HomG(V,W ). V ∼= W , so we will treat V = W and µ = σ. So, T ∈ HomG(µ, σ) =
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HomG(µ, µ). Now,

I ∈ HomG(µ, µ)

λT ∈ HomG(µ, µ)

λI − T ∈ HomG(µ, µ)

but λI − T is not invertible, implying

λI − T = 0

T = λI

Remark 2.15. Say µ and σ are irreducible representations. Then, µ ∼= σ if and only if

dim(HomG(µ, σ)) = 1.

Corollary 2.16. For any abelian group G, all irreducible representations of G have degree

one.

Proof. Say µ : G→ GL(V ) is irreducible. For h ∈ G, let T = µ(h). Then,

Tµ(g) = µ(h)µ(g)

= µ(hg)

= µ(gh)

= µ(g)µ(h)

= µ(g)T

for all g ∈ G. So, by Schur’s lemma, µ(h) = λhI for some λh ∈ C. Now, for v ∈ V and

k ∈ C,

µ(h)(kv) = λhI(kv) = λhkv
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Note, λhkv ∈ Cv. So, Cv is a G-invariant subspace. Now µ is an irreducible representation,

thus V = Cv, and so dim(V ) = 1.

Definition 2.17. Let H be a subgroup of G and µ : H → GL(V ) be a representation of

H. Then, µG : G→ GL(V G) defined by,

(
µG(g)f

)
(g′) = f(g′g)

is the induced representation from H to G, where

V G = {f : G→ V | f(hg) = µ(h)f(g) ∀h ∈ H, g ∈ G}

We will now show that µG is a representation. First we will show µG(g)f ∈ V G. Let

g, g′ ∈ G and h ∈ H. Then,

(
µG(g)f

)
(hg′) = f(hg′g)

= µ(h)f(g′g)

= µ(h)
(
µG(g)f

)
(g′)

So, µG(g)f ∈ V G. Now show
(
µG, V

)
is a representation. Let g, g′, g′′ ∈ G. Then,

(
µG(gg′)f

)
(g′′) = f(g′′gg′)

=
(
µG(g′)f

)
(g′′g)

=
(
µG(g)

(
µG(g′)f

))
(g′′)

Thus, µG is a homomorphism. We now need to show that µG(g) : V G → V G is a linear
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map. Let f1, f2 ∈ V G and c ∈ C. Then,

µG(g)(cf1 + f2)(g
′) = (cf1 + f2)(g

′g)

= c(f1(g
′g)) + f2(g

′g)

= cµG(g)(f1)(g
′) + µG(g)(f2)(g

′)

So, µG(g) is a linear map. Lastly, we need to show µG(g) is an invertible map. We will do

so by showing the ker(µG(g)) = {0}. Now, ker(µG(g)) = {f ∈ V G | µG(g)(f) = 0}. So let

f ∈ ker(µG(g)). Then,

µG(g)(f)(g′) = f(g′g)

= 0

Now, µG(g) is a linear transformation which maps the identity to the identity. Thus, f = 0.

So, µG(g) ∈ GL(V G). Therefore, µG is a representation. Note, we also denote the induced

representation by IndGH µ.

Theorem 2.18. Say N ≤ H ≤ G and σ : N → GL(V ) is representation of N , we have the

following property of the induced representation,

IndGH IndHN (σ) ∼= IndGN (σ)

This is called the transitivity of induction.

The next theorem, Frobenius Reciprocity, will describe the relationship between induced

representations and restricted representations of a group and its subgroup.

Theorem 2.19. Let H be a subgroup of G, µ : H → GL(V ) be a representation of H, and

σ : G→ GL(V ) be a representation of G. Then,

HomG

(
σ, IndGH µ

) ∼= HomH

(
ResGH σ, µ

)
8



2.2 Character Theory Background

This section will discuss basic definitions, theorems, and lemmas that we will use to describe

the character theory approach to Clifford’s Theorem. This section will include the definition

of a character and Frobenius Reciprocity with a proof.

Definition 2.20. For µ : G → GLn(C) a representation, we define the character of µ by

ϕµ : G→ C where,

ϕµ(g) = Tr (µ(g))

When the representation is understood, we will drop the subscript and denote the char-

acter of the representation by just ϕ. The character function is a well defined function. To

see ϕµ is well defined, for g, g′ ∈ G, say g = g′. Then,

g = g′

=⇒ µ(g) = µ(g′)

=⇒ Tr(µ(g)) = Tr(µ(g′))

=⇒ ϕµ(g) = ϕµ(g′)

Thus, the character function is a well defined function.

Definition 2.21. Let (µ, V ), (σ,W ) be representations with characters ϕµ, ϕσ. Then, the

inner product of the characters is

〈ϕµ, ϕσ〉 =
1

|G|
∑
g∈G

ϕµ(g)ϕσ(g)

The following proposition says the character of a representation depends on the equiv-

alence class of the representation.

Proposition 2.22. Let µ, σ : G→ GL(Cn) be equivalent representations. Then ϕµ = ϕσ.

Proof. Let µ, σ : G → GL(Cn) be equivalent representations. Then, ∃ T : Cn → Cn such
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that for all g ∈ G

µ(g)T = T (σ(g))

=⇒ µ(g) = Tσ(g)T−1

So,

ϕµ(g) = Tr(µ(g)) = Tr(TσT−1)

= Tr(T−1Tσ(g))

= Tr(σ(g))

= ϕσ(g)

A similar proof results in characters being constant on conjugacy classes. This leads to

our next proposition.

Proposition 2.23. Let µ : G→ GLn(C) be a representation. Then for all g, h ∈ G

ϕµ(g) = ϕµ(hgh−1)

Proof. Let µ : G→ GLn(C) be a representation. Let g, h ∈ G. Then,

ϕµ(hgh−1) = Tr(µhgh−1)

= Tr(µhµgµh−1)

= Tr(µh−1µhµg)

= Tr(µg) = ϕµ(g)

Definition 2.24. A function f : G→ C is a class function if f(g) = f
(
hgh−1

)
∀ g, h ∈ G.

Equivalently f is constant on conjugacy classes.

10



By Maschke’s Theorem, we know all representations of finite groups are completely

reducible and therefore, isomorphic to the direct sum of irreducible representations. So we

need to know how to find the characters of a direct sum of representations.

Proposition 2.25. Let µ be a representation of a group G, and µ ∼= σ1 ⊕ σ2. Then

ϕµ = ϕσ1 + ϕσ2 .

Proof. Let µ be a representation of a group G, and µ ∼= σ1 ⊕ σ2. Then, for g ∈ G,

ϕµ(g) = Tr(µ(g))

= Tr(σ1(g) + σ2(g))

= Tr(σ1(g)) + Tr(σ2(g))

= ϕσ1 + ϕσ2

Thus, ϕµ = ϕσ1 + ϕσ2 .

Note, if µ ∼= m1σ1 ⊕ · · · ⊕mnσn is the complete set of irreducible representations of µ,

ϕµ = m1ϕσ1 + · · ·+mnϕσn

where mi is the multiplicity of σi in µ.

Definition 2.26. If ϕ =
∑k

i=1 niϕi is a character, where ni is the multiplicity of ϕi, then

those ϕi with ni > 0 are called the irreducible constituents of ϕ.

Theorem 2.27. Let µ and σ be irreducible representations of G. Then

〈ϕµ, ϕσ〉 =


1 if µ ∼= σ

0 if µ 6∼= σ

Hence, the irredicible characters of G form an orthonormal set of class functions.

Proposition 2.28. Let µ be a representation. µ is irreducible if and only if 〈ϕµ, ϕµ〉 = 1.

11



Proof. Let µ : G → GL(V ) be a representation. Let µ1, µ2, . . . , µ(i) be a complete set of

irreducible representations of G. Let ϕi = ϕµi . So, there exists a unique mi ∈ Z,mi ≥ 0

such that

µ = m1µ1 ⊕m2µ2 ⊕ · · · ⊕msµs

ϕµ = m1ϕ1 +m2ϕ2 + · · ·+msϕs

µ is irreducible if and only if µ ∼= µi for some i by the previous theorem. So,

〈ϕµ, ϕµ〉 = 〈m1ϕ1 +m2ϕ2 + · · ·+msϕs, m1ϕ1 +m2ϕ2 + · · ·+msϕs〉

= m2
1〈ϕ1, ϕ1〉+m1m2〈ϕ1, ϕ2〉+ · · ·+m2

s〈ϕs, ϕs〉

= m2
1 + · · ·+m2

s

If µ is irreducible, ϕµ = ϕµi for some i. So µ ∼= µi implying m1 = 0, . . . ,mi = 1, . . .ms =

0. So 〈ϕµ, ϕµ〉 = 1. If 〈ϕµ, ϕµ〉 = 1, then there exists some i such that mi = 1 and mj = 0

∀j 6= i. So, ϕµ = ϕµi implying µ ∼= µi. Hence, µ is irreducible if and only if 〈ϕµ, ϕµ〉 = 1.

If ϕ is a character of a representation of G and H is a subgroup of G. We denote the

restriction of ϕ to a character of H by, ϕH .

Theorem 2.29. Let H be a subgroup of G and ϕ be a character of a representation of H.

Then, ϕG given by,

ϕG(g) =
1

|H|
∑
x∈G

ϕ◦(xgx−1)

where

ϕ◦(h) =


ϕ(h) h ∈ H

0 h 6∈ H

is the induced character from H to G.

The following theorem, Frobenius Reciprocity, will discuss the relationship between the
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induced character and the restricted character of a group and its subgroup. This theorem

is the character version as the Frobenius Reciprocity stated earlier.

Lemma 2.30. Let H ≤ G and suppose ϕ is a character of H and that ρ is a character of

G. Then,

〈ϕ, ρH〉 = 〈ϕG, ρ〉

Proof. Let H ≤ G and suppose ϕ is a character of H and that ρ is a character of G. Then,

〈ϕG, ρ〉 =
1

G

∑
g∈G

ϕG(g)ρ(g)

=
1

G

1

H

∑
g∈G

∑
x∈G

ϕ◦(xgx−1)ρ(g)

Now, let y = xgx−1 and note ρ(g) = ρ(y). So,

1

G

1

H

∑
g∈G

∑
x∈G

ϕ◦(xgx−1)ρ(g) =
1

G

1

H

∑
y∈G

∑
x∈G

ϕ◦(y)ρ(y)

=
1

H

∑
y∈H

ϕ(y)ρ(y)

= 〈ϕ, ρH〉

Thus, 〈ϕG, ρ〉 = 〈ϕ, ρH〉.

13



3 Character Approach

In this section we will explore the first approach to Clifford’s theorem using a character

based approach [2]. This chapter will discuss taking a character of a representation of a

group and restricting the character to a normal subgroup. We will show how this character

breaks apart into characters of the normal subgroup. Then several results of Clifford’s

theorem will be discuss. Lastly, we will take the groups S3 and S5 and show what Clifford’s

theorem will look like.

3.1 Clifford’s Theorem

Let H be a normal subgroup of G and let χ ∈ Irr(G), where Irr(G) is the set of irreducible

characters of G. If ϕ is a class function of H and g ∈ G, the conjugate of ϕ in G, denoted

ϕg, is defined by the map ϕg : H 7→ C given by,

ϕg(h) = ϕ(ghg−1)

Note, the congujate of ϕ in G is well-defined.

Theorem 3.1. Let H E G, and let ϕ, ρ be class functions of H. For x, y ∈ G

(a) ϕx is a class function.

(b) (ϕx)y = ϕxy.

(c) 〈ϕx, ρx〉 = 〈ϕ, ρ〉.

(d) 〈χH , ϕx〉 = 〈χH , ϕ〉 for a class function χ of G.

(e) ϕx is a character if ϕ is.

Proof. (a) Let H E G, ϕ, ρ be class functions of H, and let x, y ∈ G. To show ϕx is a class

function, we want to show ϕx(h) = ϕx(aha−1) for all a, h ∈ H. Note, for a ∈ H and x ∈ G,
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xa = a′x for some a′ ∈ H. So,

ϕx(aha−1) = ϕ(xaha−1x−1)

= ϕ((xa)h(xa)−1)

= ϕ(a′xhx−1(a′)−1)

= ϕ(xhx−1)

= ϕx(h)

Note, ϕ(a′xhx−1(a′)−1) = ϕ(xhx−1) since ϕ is a class function and xhx−1 ∈ H. Therefore,

ϕx is a class function and (a) is proved. (b) Next, we want to show (ϕx)y = ϕxy. Let h ∈ H.

Then,

ϕxy(h) = ϕ((xy)h(xy)−1)

= ϕ(xyhy−1x−1)

= ϕx(yhy−1)

= (ϕx)y(h)

Thus, ϕxy = (ϕx)y and (b) is proved. (c) To show 〈ϕx, ρx〉 = 〈ϕ, ρ〉, we will compute the

inner product.

〈ϕx, ρx〉 =
1

|H|
∑
h∈H

ϕx(h)ρx(h)

=
1

|H|
∑

xhx−1∈H

ϕ(xh−1)ρ(xhx−1)

=
1

|H|
∑
h∈H

ϕ(h)ρ(h)

= 〈ϕ, ρ〉

Hence, 〈ϕx, ρx〉 = 〈ϕ, ρ〉 and (c) is proved. (d) Similarly, we can show (d), 〈χH , ϕx〉 =
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〈χH , ϕ〉 for a class function χ of G. Let h ∈ H. Then,

〈χH , ϕ〉 =
1

|H|
∑
h∈H

χH(h)ϕ(h)

=
1

|H|
∑

xhx−1∈H

χH(xhx−1)ϕ(xhx−1)

=
1

|H|
∑
h∈H

χH(h)ϕx(h)

= 〈χH , ϕx〉

(e) Finally, we will show ϕx is a character if ϕ is. Assume ϕ is a character. Then,

ϕg(h) = ϕ
(
ghg−1

)
= Tr

(
ϕ
(
ghg−1

))
= Tr(ϕg(h))

Thus, by definition, ϕg is a character.

Theorem 3.2. Let H E G and let χ be an irreducible character of G. Let ϕ be an irreducible

constituent of χH and suppose ϕ = ϕ1, ϕ2, . . . , ϕt are the distinct conjugates of ϕ in G.

Then,

χH = e
t∑
i=1

ϕi

where e = 〈χH , ϕ〉

Proof. Let ϕG be the induced character of H to G. Then for h ∈ H,

ϕG(h) =
1

|H|
∑
x∈G

ϕ◦(xhx−1)

=
1

|H|
∑
x∈G

ϕ(xhx−1)

=
1

|H|
∑
x∈G

ϕx(h)
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Now we will restrict ϕG to H,

(
ϕG
)
H

=
1

|H|
∑
x∈G

ϕx =⇒ |H|
(
ϕG
)
H

=
∑
x∈G

ϕx

If ρ ∈ Irr(H) and ρ is not a conjugate of ϕ, then 〈
(
ϕG
)
H

=
∑
ϕx, ρ〉 = 0. Note χ is

a constituent of ϕG, since 〈ϕ, χH〉 = 〈ϕG, χ〉 by Frobenius Reciprocity. It follows that

〈χH , ρ〉 = 0. Since any irreducible character of H that is not conjugate to ϕ is not an

irreducible constituent of χH , all irreducible constituents of χH are among the ϕi. So,

χH =
t∑
i=1

〈χH , ϕi〉ϕi

By 3.1, 〈χH , ϕi〉 = 〈χH , ϕ〉. Hence,

χH =
t∑
i=1

〈χH , ϕi〉ϕi

=
t∑
i=1

〈χH , ϕ〉ϕi

= 〈χH , ϕ〉
t∑
i=1

ϕi

= e
t∑
i=1

ϕi where e = 〈χH , ϕ〉

3.2 Results

In this section, several results that follow from Clifford’s theorem are presented. In partic-

ular 3.6 will be used frequently in section 5 to find irreducible representations of a group

from inducing specific representations of a subgroup.

Corollary 3.3. Let H E G and suppose that χ ∈ Irr(G) and 〈χH , 1H〉 6= 0. Then H ⊆

ker(χ).

Lemma 3.4. Let H E G and suppose χ ∈ Irr(G) and ϕ ∈ Irr(H) with 〈χH , ϕ〉 6= 0. Then
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ϕ(1) | χ(1).

Definition 3.5. Let ϕ ∈ Irr(H). Then the inertia group, IG(ϕ), is defined by,

IG(ϕ) = {g ∈ G | ϕg(h) = ϕ(h) ∀h ∈ H}

Theorem 3.6. Let H E G, ϕ ∈ Irr(H), and T = IG(ϕ). Let

A = {ψ ∈ Irr(T ) | 〈ψH , ϕ〉 6= 0}, B = {χ ∈ Irr(G) | 〈χH , ϕ〉 6= 0}

Then,

(a) If ψ ∈ A, then ψG is irreducible.

(b) The map ψ 7→ ψG is a bijecion of A onto B.

(c) If ψG = χ, with ψ ∈ A, then ψ is the unique irreducible constituent of χT which lies in

A.

(d) If ψG = χ, with ψ ∈ A, then 〈ψH , ϕ〉 = 〈χH , ϕ〉.

Proof. Let ψ ∈ A and say χ is an irreducible constituent of ψG. By Frobenius Reciprocity,

〈χ, ψG〉 = 〈χT , ψ〉

Thus, ψ is a constituent of χT . So, χT =
∑
niψi for ni > 0, and note, ϕ is a constituent of

ψH . So ψH =
∑
miϕi for mi > 0. Therefore,

χH = (χT )H =
∑

ni(ψi)H =
∑

ni
∑

miϕi =
∑

nimiϕi

Therefore, ϕ is a constituent of χH and 〈χH , ϕ〉 6= 0. So, χ ∈ B. Let ϕ = ϕ1, ϕ2, . . . , ϕt be

the distinct conjugates of ϕ in G. Now T is the stabilizer of ϕ in the action of G on Irr(H).

By the orbit-stabilizer theorem, we have t = |G : T |. By Clifford’s Theorem,

χH = e
t∑
i=1

ϕi e = 〈χH , ϕ〉
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Note, for g ∈ T , ϕg(h) = ϕ(h), ∀h ∈ H. So, ϕ is T -invariant. By Clifford’s Theorem,

ψH = f
t∑
i=1

ϕi f = 〈ψH , ϕ〉

Since ϕ is T-invariant, ψH = f
∑t

i=1 ϕi = fϕ. Now, f ≤ e (not sure of reasoning). So, we

have

etϕ(1) = χ(1) ≤ ψG(1) = tψ(1) = tfϕ(1) ≤ etϕ(1)

Since χ(1) = ψG(1) and χ is an irreducible constituent of ψG, we can conclude χ = ψG.

Now χ is an irreducible constituent of G, so ψG is irreduicble and (a) is proved. Also

following from the equality from above,

e = 〈χH , ϕ〉 =〉ψH , ϕ〉 = f

Thus, (d) is proven. Now, we want to show that ψ is the unique irreduicble constituent of

χT , which lies in A. Say ψ1 inA where ψ 6= ψ1. Note, ψ1 is a constituent of χT by Frobenius

Reciprocity. Then,

〈χH , ϕ〉 ≥ 〈(ψ + ψ1)H , ϕ〉 = 〈ψH , ϕ〉+ 〈(ψ1)H , ϕ〉

Note, ψ1 ∈ A, so 〈(ψ1)H , ϕ〉 6= 0. So,

〈ψH , ϕ〉+ 〈(ψ1)H , ϕ〉 > 〈ψH , ϕ〉

However, this is a contradiction. Thus, ψ is unique and (c) is proven. Finally, we want to

show the map ψ 7→ ψG is a bijection of A onto B. By (a), the map is well defined and

by part (d) the image of the map lies in B. By part (c), ψ is unique, and thus the map

is injective. Let χ ∈ B. Now ϕ is a constituent of χH , so there must be some irreducible

constituent ψ of χT such that 〈χH , ϕ〉 6= 0. Therefore, ψ ∈ A and χ is a constituent of ψG

since,

〈χT , ψ〉 = 〈χ, ψG〉
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Thus, χ = ψG and the map is onto. Hence, the map ψ 7→ ψG is bijective.

3.3 Examples

In this section we will explore several examples explicitly demonstrating what Clifford’s

theorem looks like. The first example we will take the symmetric group of order 6 and its

normal subgroup, the alternating group of order 3, and show how characters of S3 break

apart into characters of A3 when restricted to A3. Then, we will look at the case where our

group is S5. In this example we will see how characters of S5 break apart into irreducible

characters of A5 when restricted to A5.

Example 3.7. Consider G = S3 = {(1), (12), (13), (23), (123), (132)}. Now, A3 =

{(1), (123), (132)} is a normal subgroup of S3. The character tables for S3 and A3 are

the following,

Table 1: S3 Character Table
S3 (1) (12) (123)

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Table 2: A3 Character Table
A3 (1) (123) (132)

ϕ1 1 1 1
ϕ2 1 ω ω2

ϕ3 1 ω2 ω

In the character table of A3, ω = e2πi/3. Now, ϕ2 is an irreducible constituent of χ3 |A3 .
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The conjugates of ϕ2 in A3 are ϕ2 and ϕ3, and so, by Clifford’s Theorem,

χ3 |A3 = 〈χ3 |A3 , ϕ2〉
3∑
i=2

ϕi

=
1

3

∑
σ∈A3

χ3 |A3 (σ)ϕ2(σ)[ϕ2 + ϕ3]

=
1

3
(2 + (−1)ω + (−1)ω2)[ϕ2 + ϕ3]

=
3

3
[ϕ2 + ϕ3]

= ϕ2 + ϕ3

So, χ3 |A3= ϕ2 + ϕ3. This shows us how χ3 restricted to A3 breaks apart as irreducible

characters of A3.

Example 3.8. Consider G = S5, and A5 a normal subgroup of S5. To use Clifford’s

theorem, we need to find the character tables for S5 and A5.

Table 3: S5 Character Table
S5 (1) (12) (123) (1234) (12345) (12)(34) (12)(345)

χ1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 −1
χ3 4 2 1 0 −1 0 −1
χ4 4 −2 1 0 −1 0 1
χ5 5 1 −1 −1 0 1 1
χ6 5 −1 −1 1 0 1 −1
χ7 6 0 0 0 1 −2 0

Table 4: A5 Character Table
A5 (1) (123) (12345) (12354) (12)(34)

ϕ1 1 1 1 1 1
ϕ2 4 1 −1 −1 0
ϕ3 5 −1 0 0 1

ϕ4 3 0 1+
√
5

2
1−
√
5

2 −1

ϕ5 3 0 1−
√
5

2
1+
√
5

2 −1

Now, ϕ2 is an irreducible constituent of χ3 |A5 . The conjugate of ϕ2 in A5 is ϕ2, and
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so, by Clifford’s theorem,

χ3 |A5 = 〈χ3 |A5 , ϕ2〉
∑

ϕ2

=
1

(4(4) + 20(1) + 12(1) + 12(1))ϕ2

= ϕ2

Now ϕ4 is an irreducible constituent of χ5 |A5 . The conjugates of ϕ4 are ϕ4 and ϕ5. So, by

Clifford’s theorem,

χ5 |A5 = 〈χ5 |A5 , ϕ4〉
∑

ϕ2

=
1
(

6(3) + 12

(
1 +
√

5

2

)
(1) + 12

(
1−
√

5

2

)
(1) + 15(2)

)
(ϕ4 + ϕ5)

= ϕ4 + ϕ5

So, χ5 |A5= ϕ4 + ϕ5. This shows us how χ5 restricted to A5 breaks apart as irreducible

characters of A5.
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4 Vector Space Approach

This chapter will discuss the second approach we will take to Clifford’s theorem, which will

use a vector space approach [1]. We will explore how representations decompose into direct

sums of irreducible constituents when we induce irreducible representations of a normal

subgroup up to a group and then restrict back down to the normal subgroup. In this

chapter we will also compare the two approaches by making several connections between

Clifford’s theorem using the character approach and Clifford’s theorem using the vector

space approach. A comparison of a key result between the two approaches will also be

made.

4.1 Clifford’s Theorem

Let G be a group and N be a normal subgroup of G. We will denote the set of all irreducible

representations of G by Ĝ. Likewise, we will denote the set of all irreducible representations

of N by N̂ .

Definition 4.1. Let σ ∈ N̂ and g ∈ G. Then,

Ĝ(σ) = {θ ∈ Ĝ | σ ≤ ResGN (θ)}

Definition 4.2. Let σ ∈ N̂ . For a g ∈ G, the g-conjugate of σ is the representation gσ ∈ N̂

defined by

gσ(n) = σ(g−1ng)

for all n ∈ N .

Proposition 4.3. If σ, σ′ ∈ N̂ , then, for g ∈ G, g(σ ⊕ σ′) ∼= gσ ⊕ gσ′.
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Proof. Let σ, σ′ ∈ N̂ , g ∈ G and n ∈ N . Then,

g(σ ⊕ σ′)(n) = (σ ⊕ σ′)(g−1ng)

= (σ(g−1ng), σ′(g−1ng))

= σ(g−1ng)⊕ σ′(g−1ng)

= gσ(n)⊕ gσ′(n)

Thus, g(σ ⊕ σ′) ∼= gσ ⊕ gσ′.

Definition 4.4. For σ, gσ ∈ N̂ , the subgroup,

IG(σ) = {g ∈ G | gσ ∼= σ}

is called the inertia subgroup of G.

The g-conjugate defines an action of G on N̂ . We can see this by, for g1, g2 ∈ G,

g1g2σ(n) = σ((g1g2)
−1n(g1g2))

= σ(g−12 g−11 ng1g2)

= g2σ(g−11 ng1)

= g1(g2σ(n))

So, g-conjugate defines an action of G on the irreducible representations of N . Now, IG(σ)

is the stabilizer of σ in the action of G on N̂ . To see this, say g ∈ IG(σ). Then,

gσ(n) = σ(gng−1)

= σ(n)
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Thus, IG(σ) is the stabilizer of σ in the action of G on N̂ .

Let R be a set of representatives for the right IG(σ)-coset in G. That is,

G =
⋃
r∈R

rIG(σ)

Let H = K = N E G and set IG(σ) =
⋃
q∈Q qN , where Q is a set of representatives for the

right N -cosets in IG(σ). If T = RQ, by Mackey’s theorem,

G =
⋃
r∈R

rIG(σ)

=
⋃
r∈R

⋃
q∈Q

rqN

=
⋃
t∈T

tN

which is the coset decomposition of G over N .

Theorem 4.5. Suppose that N is a normal subgroup of G and let σ ∈ N̂ and θ ∈ Ĝ(σ). If

R,Q and T are as above, then setting d = [IG(σ) : N ] = |Q| and denoting the multiplicity

of σ in ResGN θ l, we have

1.

ResGN (IndGN σ) =
⊕
t∈T

tσ = d
⊕
r∈R

rσ

is the decomposition of ResGN (IndGN σ) into irreducible inequivalent subrepresentations.

2.

HomG

(
IndGN σ, IndGN σ

) ∼= Cd

3.

ResGN θ
∼= l
⊕
r∈R

rσ

Proof. Let Vσ denote the representation space of σ. That is Vσ is the vector space of
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σ : N → GL(V ). For all t ∈ T , set

Zt = {f : G→ Vσ | f(t′n) = δt,t′σ(n−1)f(t) ∀n ∈ N t′ ∈ T}

where

δt,t′ =


0 if t′ 6= t

1 if t = t′

First we prove, Zt is a subspace of the induced space IndGN Vσ. Let f1, f2 ∈ Zt. Then,

(f1 + f2)(t
′n) = f1(t

′n) + f2(t
′n)

= δt,t′σ(n−1)f1(t) + δt,t′σ(n−1)f2(t)

= δt,t′σ(n−1)(f1(t) + f2(t)) ∈ Zt

So, f1 + f2 ∈ Zt. Let λ ∈ C and f ∈ Zt. Then,

(λf(t′n)) = f(λt′n)

= δt,t′σ(n−1)f(λt)

= λδt,t′σ(n−1)f(t)

So, λf ∈ Zt. Thus, Zt is a subspace of the induced space IndGN Vσ. Now we will show

IndGN V σ =
⊕
t∈T

Zt

is a direct sum. Let f ∈ IndGN Vσ, and ft ∈ Zt. Now, for n ∈ N and g ∈ G, ng = n(t′n′) =
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t′n∗ for some n∗ ∈ N and t′ ∈ T . So,

f(ng) = f(t′n∗)

= σ((n∗)−1)f(t′)

= ft1(t′n∗) + ft2(t′n∗) + · · ·+ ftm(t′n∗)

where fti(t
′n∗) = 0 for all ti 6= t′ and there is a tj = t′ such that f(t′n∗) = ftj (t

′n∗).

Therefore, we can write elements of IndGN Vσ as the sum of elements of Zt. So,

IndGN Vσ =
∑
t∈T

Zt

Hence, IndGN Vσ =
⊕

t∈T Zt. Let L̃t : Vσ → Zt be given by,

[L̃tv](t′n) = δt,t′σ(n−1)v

for any v ∈ Vσ. The claim is L̃t is a linear isomorphism. We will show L̃t is a linear

transformation. Let v1, v2 ∈ Vσ. Then,

L̃t(v1 + v2)(t
′n) = δt,t′σ(n−1)(v1 + v2)

= δt,t′ [σ(n−1)(v1) + σ(n−1)(v2)]

= δt,t′σ(n−1)(v1) + δt,t′σ(n−1)(v2)]

= L̃t(v1)(t
′n) + L̃t(v2)(t

′n)
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Let λ ∈ C and v ∈ Vσ. Then,

L̃t(λv)(t′n) = δt,t′σ(n−1)(λv)

= λδt,t′σ(n−1)(v)

= λL̃t(v)(t′n)

So, L̃t is a linear mapping. Now, we will show L̃t is a bijection. First, we will show L̃t is

injective. Let v1, v2 ∈ Vσ and say L̃t(v1) = L̃t(v2). Then,

L̃t(v1)(t
′n) = L̃t(v2)(t

′n)

=⇒ δ − t, t′σ(n−1)(v1) = δ − t, t′σ(n−1)(v2)

=⇒ v1 = v2

Now we will show L̃t is surjective. Note, for f ∈ Zt there exists a v ∈ Vσ such that f(t) = v.

So,

L̃t(v)(t′n) = δt,t′σ(n−1)v

= δt,t′σ(n−1)f(t) ∈ Zt
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Therefore, L̃t is a linear isomorphism and Vσ ∼= Zt. If we let λ = IndGNσ, then

[λ(n)L̃tv](t1n1) = L̃t(v)(n−1t1n1)

= L̃t(v)(t1t
−1
1 n−1t1n1)

= δt,t1σ((t1t
−1
1 n−1n1)

−1)v

= δt,t1σ(n−11 t−11 nt1)v

= δt,t1σ(n−11 (t−11 nt1))v

= δt,t1σ(n−1)σ(t−11 nt1)v

= δt,t1σ(n−1)t1σ(n)v

= L̃t(
t1σ(n)v)(t1n1)

for all v ∈ Vσ, t1 ∈ T , n, n1 ∈ N . Since λ(n)L̃t = L̃t
tσ(n), L̃t is an intertwining operator

and therefore,

IndGN σ
∼= tσ

Now since this is true for all n ∈ N , we have

(
ResGN IndGN σ, Zt

) ∼= (tσ, Vσ)
Hence, ResGN (IndGN σ) is equivalent to

⊕
t∈T

tσ. Now,

⊕
t∈T

tσ =
⊕
r∈R

⊕
q∈Q

rqσ = |Q|
⊕
r∈R

rσ

So, ResGN (IndGN σ) = |Q|
⊕

r∈R
rσ = d

⊕
r∈R

rσ and (1) is proved. Now σ ∈ N̂ and the

multiplicity of σ in ResGN (IndGN σ) is equal to d. Then,

HomN

(
σ,ResGN (IndGN σ)

) ∼= Cd

29



Note, by Frobenius reciprocity,

HomN

(
σ,ResGN (IndGN σ)

) ∼= HomG

(
IndGN σ, IndGN σ

)
Therefore, HomG

(
IndGN σ, IndGN σ

) ∼= Cd and we have shown (2). Consider the map

ϕ : HomN (σ,ResGN θ)→ HomN (gσ,ResGN θ) given by,

ϕ(T )(v) = θ(g)T (v)

We can show that ϕ is a linear transformation. Let T1, T2 ∈ HomN (σ,ResGN θ). Then

ϕ(T1 + T2)(v) = θ(g)(T1 + T2)(v)

= θ(g)(T1(v) + T2(v))

= θ(g)T1(v) + θ(g)T2(v)

= ϕ(T1)(v) + ϕ(T2)(v)

Let λ ∈ C and T ∈ HomN (σ,ResGN θ). Then,

ϕ(λT )(v) = θ(g)(λT )(v)

= λθ(g)T (v)

= λϕ(T )(v)

So, ϕ is a linear map. Now, ϕ is a bijective map, and first we will show ϕ is injective. Let
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T1, T2 ∈ HomN (σ,ResGN θ) and assume ϕ(T1) = ϕ(T2). So,

ϕ(T1)(v) = ϕ(T2)(v)

=⇒ θ(g)T1(v) = θ(g)T2(v)

=⇒ T1(v) = T2(v)

=⇒ T1 = T2

One can check that ϕ is surjective. Thus, ϕ is a linear isomorphism and

HomN (σ,ResGN θ)
∼= HomN (gσ,ResGN θ). Since the multiplicity of σ in ResGN θ is l, then gσ

has multiplicity l in ResGN θ. By Frobenius reciprocity,

HomN (σ,ResGN θ)
∼= HomG(IndGN σ, θ)

Thus, IndGN σ has exactly l copies of θ. So, every irreducible subrepresentation of ResGN θ is

also a subrepresentation of ResGN (IndGN σ). Recall, ResGN (IndGN σ) has subrepresentations of

the form
⊕

r∈R
rσ. Hence,

ResGN θ
∼= l
⊕
r∈R

rσ

So, (3) is proved and the proof is complete.

From this theorem, we now know if we induce an irreducible representation, σ, up to a

group from a normal subgroup and and then restrict back to the normal subgroup, we get

a direct sum of conjugates of σ, where the multiplicity is the index of the inertia subgroup

over the normal subgroup. We also know the dimension of HomG(IndGN , IndGN ). Since we

know the dimension of this space we can then determine if the induced representation is

irreducible.

4.2 Results

This section will discuss key results from Clifford’s theorem.

Corollary 4.6. Let σ, σ1 ∈ N̂ . Then IndGN σ is irreducible if and only if IG(σ) = N . Also,
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if IG(σ) = IG(σ1) = N , then IndGN (σ) ∼= IndGN (σ1) if and only if σ is conjugate to σ1.

Proof. Say IndGN (σ) is irreducible. Then, by Schur’s Lemma,

dim HomG

(
IndGN σ, IndGN σ

)
= 1

By the previous theorem, HomG

(
IndGN σ, IndGN σ

) ∼= Cd, where d = [IG(σ) : N ]. So, [IG(σ) :

N ] = 1, which implies that IG(σ) = N . Now, say IG(σ) = N . Then, [IG(σ) : N ] = 1. So,

by the previous theorem,

HomG

(
IndGN σ, IndGN σ

) ∼= C

By Schur’s Lemma, since dim HomG

(
IndGN σ, IndGN σ

)
= 1, then IndGN is irreducible. Hence,

IndGN σ is irreducible if and only if IG(σ) = N . Now, for σ, σ1 ∈ N̂ , assume IndGN σ
∼=

IndGN σ1. Since IG(σ) = N = IG(σ1), IndGN σ and IndNG σ1 are irreducible. By the previous

theorem, ResGN IndGN σ =
⊕

t∈T
tσ. Now by Frobenius Reciprocity,

dim HomG

(
IndGN σ1, IndGN σ

)
= dim HomN

(
σ1,ResGN IndGN σ

)
= dim HomN

(
σ1,
⊕
t∈T

tσ

)
= 1

Since dim HomN

(
σ1,
⊕

t∈T
tσ
)

= 1, σ1 must be equivalent to tσ for some t ∈ T . Now,

assume σ is conjugate to σ1. That is, there is some t ∈ T such that σ1 ∼= tσ. So,

dim HomN

(
σ1,
⊕

t∈T
tσ
)

= 1. By Frobenius Reciprocity,

dim HomN

(
σ1,
⊕
t∈T

tσ

)
= dim HomN

(
σ1,ResGN IndGN σ

)
= dim HomG

(
IndGN σ1, IndGN σ

)
= 1

Since, dim HomG

(
IndGN σ1, IndGN σ

)
= 1 by Schur’s Lemma, IndGN σ

∼= IndGN σ1. Hence,

IndGN (σ) ∼= IndGN (σ1) if and only if σ is conjugate to σ1.

Lemma 4.7. Let N be a normal subgroup of G and set I to be the inertia group of σ ∈ N̂ .

Then the set Î(σ) = {µ ∈ Î | µ ≤ IndGN σ}. Let

IndIN σ =
⊕
µ∈Î(σ)

mµµ
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be the decomposition of IndIN σ into I-irreducible representations, where mµ is the multi-

plicity of µ in IndIN σ. Then,

1.

IndGN σ =
⊕
µ∈Î(σ)

mµ IndGI µ

is the decomposition of IndGN σ into G-irreducible components.

2. If θ ∈ Ĝ(σ), then

θ = IndGI µ

for some unique µ ∈ Î(σ).

Proof. (1) Let µ′ = IndINσ =
⊕

µ∈Î(σ)mµµ, where σ ∈ N̂ and µ ∈ Î. Then, by 4.5,

ResGI IndGI µ = ResGI IndGI

 ⊕
µ∈Î(σ)

mµµ


=

⊕
µ∈Î(σ)

mµd
⊕
r∈R

rµ

where d = [IG(σ) : IG(σ] = 1 and R is a set of representatives of the right IG(σ)-cosets in

G. So, ⊕
µ∈Î(σ)

mµd
⊕
r∈R

rµ =
⊕
r∈R

⊕
µ∈̂I(σ)

mµµ =
⊕
r∈R

µ′

By the transitivity of induction,

HomG(IndGN σ, IndGN σ) ∼= HomG(IndGI IndIN σ, IndGI IndIN σ) = HomG(IndGI µ
′, IndGI µ

′)
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So, by Frobenius reciprocity,

HomG(IndGN σ, IndGN σ) ∼= HomG(IndGI µ
′, IndGI µ

′)

∼= HomI(ResGI IndGI µ
′, µ′)

∼= Hom

(⊕
r∈R

rµ′, µ′

)

By 4.5, we know rµ′ are not equivalent, and so,

Hom

(⊕
r∈R

rµ′, µ′

)
∼= HomI(µ

′, µ′) = HomI(IndIN σ, IndIN σ)

Therefore,

HomG

 ⊕
µ∈Î(σ)

mµ IndGI µ,
⊕
µ∈Î(σ)

mµ IndGI µ

 ∼= HomI(IndIN σ, IndIN σ) ∼= Cd = C

Since dim HomG

(⊕
µ∈Î(σ)mµ IndGI ψ,

⊕
µ∈Î(σ)mµ IndGI µ

)
= 1, IndGI µ is irreducible and

inequivalent for each µ ∈ Î(σ). So we have,

IndGN σ
∼= IndGI

 ⊕
µ∈Î(σ)

mµψ

 =
⊕
µ∈Î(σ)

mµ IndGI µ

where each IndGI µ is G-irreducible and inequivalent. Hence, (1) is proved. Note, since

θ ∈ Ĝ(σ), σ ≤ ResGN (θ). By Frobenius Reciprocity,

HomN

(
σ,ResGN θ

)
= HomG

(
IndGN σ, θ

)
So, θ ≤ IndGN σ. By the first part of this lemma, we have that IndGN σ =

⊕
µ∈Î(σ)mµ IndGI µ.

Now θ is an irreducible representation of G, so θ must be equivalent to one of the IndGI µ

for some unique µ ∈ Î(σ). So, (2) is now proved and the proof is complete.
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Definition 4.8. The number l = dim HomN

(
σ,ResGN θ

)
is called the inertia index of

θ ∈ Ĝ(σ) with respect to N .

Theorem 4.9. Let N be a normal subgroup of G. Let σ ∈ N̂ , I = IG(σ) and

Î(σ) = {µ ∈ Î | µ ≤ IndIN σ}. Say ϕ : Î(σ) → Ĝ(σ) is defined by mapping µ 7→ IndGI µ.

Then, ϕ is a bijection. Moreover, the inertia index of µ ∈ Î(σ) with respect to N coincides

with the inertia index of IndGI µ with respect to N and is equal to mµ, where mµ is the

multiplicity of µ in IndIN σ. Also, ResIn µ = mµ
⊕
σ.

Proof. Let ϕ : Î(σ)→ Ĝ(σ) be defined by mapping µ 7→ IndGI µ. To see that ϕ is injective,

the previous lemma says that for µ ∈ Î(σ) and θ ∈ Ĝ(σ), θ = IndGI µ for some unique

µ. So, ϕ is injective. To see that ϕ is surjective, take a θ ∈ Ĝ(σ) and µ ∈ Î(σ). Then,

ϕ(µ) = IndGI µ = θ, by the previous lemma. Therefore, ϕ is a bijection. Now mµ is the

multiplicity of µ in IndIN σ. So, dim Hom
(
IndIN σ, µ

)
= mµ. By Frobenius Reciprocity,

dim Hom
(
σ,ResIN µ

)
= dim Hom

(
IndIN σ, µ

)
= mµ

Now, by the previous lemma, mµ is the multiplicity of IndGI µ in IndGN σ. So,

dim Hom
(
IndGN σ, IndGI ψ

)
= mµ

By Frobenius Reciprocity,

dim Hom
(
σ,ResGN IndGI µ

)
= dim Hom

(
IndGN σ, IndGI µ

)
= mµ

Thus, the inertia index of µ ∈ Î(σ) with respect to N coincides with the inertia index of

IndGI µ with respect to N . Lastly, by the previous theorem, we have

ResIN µ
∼= mµ

⊕
σ

That is, ResIN µ
∼= σ ⊕ σ ⊕ · · · ⊕ σ, mµ times.
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4.3 Connecting the Two Approaches

In this section, we will relate the character approach to the vector space approach. The

main theorems and lemmas we will compare are 3.2 to 4.5, and 4.7 with 4.9 to 3.6.

First we will compare 3.2 to 4.5. From (3) of 4.5, we see how a representation of a group

when restricted down to a normal subgroup breaks apart into a direct sum of irreducible

constituents. To see how this is connected to the character approach from 3.2, recall the

character of a representation that is isomorphic to the direct sum of irreducible constituents

is the sum of the characters of the irreducible constituents, and the multiplicity of an

irreducible constituent can be found by taking the inner product of the character of the

representation and the character of the irreducible constituent. So, from 4.5, we have

ResGN θ
∼= l
⊕
r∈R

rσ

and from 3.2, we have

χN = 〈χN , ϕ〉
t∑
i=1

ϕi

Let χ be the character of θ and ϕi be the character of riσ for ri ∈ R. Then, 〈χN , ϕi〉 is the

multiplicity of σ in ResGN θ, which is l.

Now, we will compare 4.7 with 4.9 to 3.6. From 3.6, the set A = {ψ ∈ Irr(T ) | 〈ψH , ϕ〉 6= 0}

is equivalent to the set Î(σ) = {µ ∈ Î | ψ ≤ IndIN (σ)} from 4.7. Similarly from 3.6, the set

B = {χ ∈ Irr(G) | 〈χH , ϕ〉 6= 0} is equivalent to the set Ĝ(σ) = {θ ∈ Ĝ | σ ≤ ResGN (θ)} from

4.9. Note in 3.6 the normal subgroup is H, but in 4.7 and 4.9 the normal subgroup is N .

Since H and N are arbitrary groups, we will refer to the normal subgroup as N . Let ψG

be the induced character of µ from I to G, then we have the irreducible character of IndGI µ

and can make that connection between (a) of 3.6 and (1) of 4.7. We can also connect (2)

of 4.7 to (c) of 3.6. Since ψG is the irreducible character of IndGI µ, and we know from 3.6

IndGI µ is unique, then ψG is unique. Now, 4.9 defines a bijection from Î(σ) to Ĝ(σ). Since

we have made the connection between the sets of A to Î(σ) and B to Ĝ(σ), the bijection

between A and B defined in 3.6 is a bijection mapping characters of representations in Î(σ)

to characters of representations in Ĝ(σ).
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5 GL2(Fq) Example

In this chapter we will explore Clifford’s theorem with the subgroup of Gl2(Fq), B =
a b

0 c

 | a, b, c ∈ Fq a, c 6= 0),

 and the normal subgroup of B, N =


1 x

0 1

 | x ∈ Fq


[3]. In this example we will demonstrate that N is a normal subgroup, find the inertia sub-

group of B, and show how we can induce characters of the inertia group up to B and when

those induced characters will be irreducible. First, we will look at the case where Fq ∼= Z3

and then explore when Fq ∼= Z5.

Consider two subgroups ofGL2(Fq), where q is a power of a prime, B =


a b

0 c

 | a, b, c ∈ Fq a, c 6= 0),


and N =


1 x

0 1

 | x ∈ Fq

. If we let b =

a b

0 c

 ∈ B and n =

1 x

0 1

 ∈ N . Then,

bnb−1 =

a b

0 c


1 x

0 1


1/a −b/ac

0 1/c


=

a ax+ b

0 c


1/a −b/ac

0 1/c


=

1 ax/c

0 1



So, bnb−1 ∈ N and therefore, N is a normal subgroup of B. The orders of each subgroup

are the following, |B| = q(q− 1)2 and |N | = q. Since we want to find irreducible characters

of B using Clifford’s Theorem and results, we need to know the conjugacy classes of B.

Now one type of element that is in B looks like,

x 0

0 x

. So, if we conjugate this matrix

by any element in B, we get the following,
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a c

0 b


x 0

0 x


1/a −c/ab

0 1/b

 =

ax cx

0 bc


1/a −c/ab

0 1/b


=

x ax(−c/ab) + cx/b

0 x


=

x 0

0 x



So, a representative of this conjugacy class is

a 0

0 a

 and there are q − 1 conjugacy

classes represented this way of size 1. Another type of element that is in B can look like,x y

0 x

. When we conjugate this element by any element in B, we get the following,

a c

0 b


x y

0 x


1/a −c/ab

0 1/b

 =

ax ay + bx

0 bx


1/a −c/ab

0 1/b


=

x ax(−c/ab) + ay/b+ x

0 x


=

x −cx/b+ ay/b+ x

0 x



So, a representative of this conjugacy class is

a b

0 a

 and there are q − 1 conjugacy

classes represented this way of size q − 1. The final type of element that appears in B

will look like,

x d

0 y

. When we conjugate this element by any element in B, we get the

following,
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a c

0 b


x d

0 y


1/a −c/ab

0 1/b

 =

ax ad+ cy

0 by


1/a −c/ab

0 1/b


=

x −cx/b+ ad/b+ cy/b

0 y



So, a representative of this conjugacy class is

a x

0 b

 and there are (q − 1)(q − 2)

conjugacy classes represented this way of size q. We know we have found all conjugacy

classes of B since,

(q − 1) + (q − 1)(q − 1) + q(q − 1)(q − 2) = (q − 1) + q2 − 2q + 1 + q3 − 3q + 2

= q3 − 2q2 + q

= q(q2 − 2q + 1)

= q(q − 1)2

= |B|

The following table describes all conjugacy classes of B.

Table 5: Conjugacy Classes of B
Representative Size of Class Number of Classes(

±a 0
0 ±a

)
1 q − 1(

±a b
0 ±a

)
q − 1 q − 1(

±a x
0 ±b

)
(q − 1)(q − 2) q

Now, the inertia group, IB(ϕ), where ϕ ∈ Irr(N) will have the form

IB(ϕ) = {b ∈ B | ϕb = ϕ} = {b ∈ B | ϕ(bnb−1) = ϕ(n)}
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Now, depending on ϕ, we want bnb−1 = n. So,

bnb−1 =

a b

0 c


1 x

0 1


1/a −b/ac

0 1/c


=

a ax+ b

0 c


1/a −b/ac

0 1/c


=

1 ax/c

0 1


=⇒ ax

c
= x

=⇒ a = c

Therefore, the inertia group of B is,

IB(ϕ) =


a b

0 a

 | a, b ∈ Fq a 6= 0


Now, |IB(ϕ)| = q(q − 1) and IB(ϕ) is abelian. Since the inertia group is abelian, we

will want to determine whether IB(ϕ) is cyclic or not. For ψ ∈ Irr(IB(ϕ)) such that

〈ψN , ϕ〉 6= 0, Then, we have ψB is irreducible by Theorem 4.01. Using 3.6 we can find

irreducible characters of B. We need to determine how many irreducible characters we can

find using this Theorem. Note, N ∼= Fq is an abelian group, and thus has q conjugacy

classes and therefore, q irreducible characters. Also, N is a normal subgroup of IB(ϕ),

so ψN = 〈ψN , ϕ〉
∑t

i=1 ϕi where ϕi are the conjugates of ϕ for i = 1, . . . , t, by Clifford’s

Theorem.

5.1 Case: Fq ∼= Z3

We can explore a specific case, where q = 3, so F3
∼= Z3. Our goal is to produce irreducible

characters of B from inducing irreducible characters of the inertia group to B. First, note
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if q = 3,

B =

{1 0

0 1

 ,

1 1

0 1

 ,

1 2

0 1

 ,

2 0

0 2

 ,

2 1

0 2

 ,

2 2

0 2

 ,

1 0

0 2

 ,

1 1

0 2

 ,

1 2

0 2

 ,

2 1

0 1

 ,

2 2

0 1

 ,

2 0

0 1

}

So, we can find the conjugacy classes of B, which are the following,

cl

1 0

0 1

 =


1 0

0 1




cl

1 0

0 2

 =


1 0

0 2

 ,

1 1

0 2

 ,

1 2

0 2




cl

1 1

0 1

 =


1 1

0 1

 ,

1 2

0 1




cl

2 1

0 1

 =


2 1

0 1

 ,

2 2

0 1

 ,

2 0

0 1




cl

2 1

0 2

 =


2 1

0 2

 ,

2 2

0 2




cl

2 0

0 2

 =


2 0

0 2




Since B has six conjugacy classes, B has six irreducible characters. Now q = 3 implies

N ∼= Z3. So, we know all irreducible characters of N . N will have the following character

table.
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Table 6: N Character Table

N

(
1 0
0 1

) (
1 1
0 1

) (
1 2
0 1

)
ϕ1 1 1 1

ϕ2 1 e2πi/3 e4πi/3

ϕ3 1 e4πi/3 e2πi/3

The inertia group with respect to ϕ2 ∈ Irr(N) is,

IB(ϕ2) =


1 0

0 1

 ,

1 1

0 1

 ,

1 2

0 1

 ,

2 0

0 2

 ,

2 1

0 2

 ,

2 2

0 2


 .

Note, that IB(ϕ2) = IB(ϕ3) and note that IB(ϕ2) =

〈2 2

0 2

〉. To see this,

2 2

0 2


2 2

0 2

 =

1 2

0 1


1 2

0 1


2 2

0 2

 =

2 0

0 2


2 0

0 2


2 2

0 2

 =

1 1

0 1


1 1

0 1


2 2

0 2

 =

2 1

0 2


2 1

0 2


2 2

0 2

 =

1 0

0 1



So,

∣∣∣∣∣∣∣
2 2

0 2


∣∣∣∣∣∣∣ = 6, and so IB(ϕ2) ∼= Z6. Note, the inertia group, IB(ϕ2) = IB(ϕ3). So the

character table for the inertia group is the following,

where ω = eπi/3. From 3.6, we can find the set A = {ψ ∈ Irr(IB(ϕ2)) | 〈ψN , ϕ2〉 6= 0}.
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Table 7: IB(ϕ2) Character Table

IB(ϕ2)

(
1 0
0 1

) (
1 1
0 1

) (
1 2
0 1

) (
2 2
0 2

) (
2 0
0 2

) (
2 1
0 2

)
ψ1 1 1 1 1 1 1
ψ2 1 ω2 ω4 ω −1 ω5

ψ3 1 ω4 ω2 ω2 1 ω4

ψ4 1 1 1 −1 −1 −1
ψ5 1 ω2 ω4 ω4 1 ω2

ψ6 1 ω4 ω2 ω5 −1 ω

Now, IB(ϕ2) = IB(ϕ3) restricted to N has the following character table,

Table 8: IB(ϕ2)N Character Table

IB(ϕ2)N

(
1 0
0 1

) (
1 1
0 1

) (
1 2
0 1

)
ψ1 1 1 1
ψ2 1 ω2 ω4

ψ3 1 ω4 ω2

ψ4 1 1 1
ψ5 1 ω2 ω4

ψ6 1 ω4 ω2

To be in A, 〈ψN , ϕ2〉 6= 0. So, for IB(ϕ2),

〈ψ2, ϕ2〉 =
1

3
(1 + e2πi/3 ∗ e−2πi/3 + e4πi/3 ∗ e−4πi/3)

=
1

3
(1 + 1 + 1)

= 1

〈ψ5, ϕ2〉 =
1

3
(1 + e2πi/3 ∗ e−2πi/3 + e4πi/3 ∗ e−4πi/3)

=
1

3
(1 + 1 + 1)

= 1

So, for ϕ2, A = {ψ ∈ Irr(IB(ϕ2)) | 〈ψN , ϕ2〉 6= 0} = {ψ2, ψ5}. To be in A, 〈ψN , ϕ3〉 6= 0. So,
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for IB(ϕ3),

〈ψ3, ϕ3〉 =
1

3
(1 + e4πi/3 ∗ e−4πi/3 + e2πi/3 ∗ e−2πi/3)

=
1

3
(1 + 1 + 1)

= 1

〈ψ6, ϕ3〉 =
1

3
(1 + e4πi/3 ∗ e−4πi/3 + e2πi/3 ∗ e−2πi/3)

=
1

3
(1 + 1 + 1)

= 1

So, for ϕ3, A = {ψ ∈ Irr(IB(ϕ3)) | 〈ψN , ϕ3〉 6= 0} = {ψ3, ψ6}. By the theorem, for ψ ∈ A,

then ψB is irreducible. Thus,

ψB2

1 1

0 1

 =
1

6
(6(ω2) + 6(ω4))

= −1

ψB2

1 0

0 1

 =
1

6
(12(1))

= 2

ψB2

2 2

0 2

 =
1

6
(6(ω4) + 6( ω2)

= −1

ψB2

2 0

0 2

 =
1

6
(12(−1))

= −2

Therefore, ψB2 is a character of B, To see ψB2 is irreducible, we will check the inner product
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Table 9: B Character Table

B

(
1 0
0 1

) (
1 1
0 1

) (
2 0
0 2

) (
2 2
0 2

) (
1 0
0 2

) (
2 1
0 1

)
ψB2 2 −1 −2 −1 0 0

of ψB2 with itself.

〈ψB2 , ψB2 〉 =
1

12
(4 + 2(1) +−2(−2) + 2(1))

=
1

12
(4 + 2 + 4 + 2)

= 1

Therefore, ψB2 is an irreducible character of B. Now, ψ5 ∈ A. So, ψB5 produces another

irreducible character of B.

ψB5

1 1

0 1

 =
1

6
(6(ω2) + 6(ω4))

= −1

ψB5

1 0

0 1

 =
1

6
(12(1))

= 2

ψB5

2 2

0 2

 =
1

6
(6(ω4) + 6( ω2)

= −1

ψB5

2 0

0 2

 =
1

6
(12(1))

= 2

So the we can build on the character table of B, To see that ψB5 is an irreducible character
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Table 10: B Character Table

B

(
1 0
0 1

) (
1 1
0 1

) (
2 0
0 2

) (
2 2
0 2

) (
1 0
0 2

) (
2 1
0 1

)
ψB2 2 −1 −2 −1 0 0
ψB5 2 −1 2 −1 0 0

of B, we will take the inner product of ψB5 with itself.

〈ψB5 , ψB5 〉 =
1

12
(4 + 2(1) + 2(2) + 2(1))

=
1

12
(4 + 2 + 4 + 2)

= 1

Therefore, ψB5 is an irreducible character of B.

5.2 Case: Fq ∼= Z5

Now we explore the case where q = 5, so F5
∼= Z5. Our goal is to produce irreducible

characters of B from inducing irreducible characters of the inertia group to B. Now,

B =


a b

0 c

 | a, b, c ∈ Z5, a, c 6= 0


and |B| = q(q− 1)2 = 80. Since N ∼= Z5, we know all irreducible representations of N . The

following table is the character table of N , where ω = e2πi/5. To use Clifford’s Theorem,

Table 11: N Character Table

N

(
1 0
0 1

) (
1 1
0 1

) (
1 2
0 1

) (
1 3
0 1

) (
1 4
0 1

)
ϕ1 1 1 1 1 1
ϕ2 1 ω ω2 ω3 ω4

ϕ3 1 ω2 ω4 ω ω3

ϕ4 1 ω3 ω ω4 ω2

ϕ5 1 ω4 ω3 ω2 ω

we need to determine the inertia subgroup of B, and we need to determine the irreducible
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characters of the inertia subgroup. Previously, we determined that,

IB(ϕ) =


a b

0 a

 | a, b ∈ Fq a 6= 0


for ϕ ∈ Irr(N), and that ||B(ϕ)| = q(q − 1). So, for q = 5, |IB(ϕ)| = 20. Now, the inertia

subgroup is an abelian group and therefore is either isomorphic to Z20, or is isomorphic to

the direct sum of cyclic groups. We can find a generator for IB(ϕ), which is the element2 1

0 2

, and so, IB(ϕ) ∼= Z20. Now,

2 1

0 2

 is a generator for IB(ϕ), so the irreducible

representations of IB(ϕ) will be of the form,

ρj


2 1

0 2


k = e2πijk/20 = eπijk/10

for j = 1, . . . , 20. Since each ψj is a degree one representation, ψj ∈ Irr(IB(ϕ)) will be of

the form,

ψj(D) =
(
eπij/10

)k
for D ∈ IB(ϕ) and k = 0, . . . , 19. Note, for ϕi ∈ Irr(N), i = 2, . . . , 5, IB(ϕ2) = IB(ϕ3) =

IB(ϕ4) = IB(ϕ5). Now, IB(ϕi) restricted to N has the following partial character table,

Table 12: IB(ϕi)N Character Table

IB(ϕ2)N

(
1 0
0 1

) (
1 1
0 1

) (
1 2
0 1

) (
1 3
0 1

) (
1 4
0 1

)
ψ1 1 1 1 1 1

ψ2 1 e6πi/5 e2πi/5 e8πi/5 e4πi/5

ψ3 1 e2πi/5 e4πi/5 e6πi/5 e8πi/5

ψ4 1 e8πi/5 e6πi/5 e4πi/5 e2πi/5

ψ5 1 e4πi/5 e8πi/5 e2πi/5 e6πi/5

ψ6 1 1 1 1 1

ψ7 1 e6πi/5 e2πi/5 e8πi/5 e4πi/5

Note, ψ6 is where the characters of IB(ϕ) will start to repeat. To use 3.6, we must

47



restrict IB(ϕ) to N and determine for which µj , j = 1, . . . 20, 〈µj , ϕi〉 6= 0. So, for ϕ2,

〈ψ3, ϕ2〉 =
1

5

(
1 + e2πi/5e−2πi/5 + e4πi/5e−4πi/5 + e6πi/5e−6πi/5 + e8πi/5e−8πi/5

)
=

1

5
(5)

= 1

6= 0

So, ψ3 ∈ A. Along with ψ3, 〈ψ8, ϕ2〉, 〈ψ13, ϕ2〉, 〈ψ18, ϕ2〉 are not equal to zero, and so,

ψ8, ψ13, ψ18 ∈ A. For ϕ3,

〈ψ5, ϕ3〉 =
1

5

(
1 + e4πi/5e−4πi/5 + e8πi/5e−8πi/5 + e2πi/5e−2πi/5 + e6πi/5e−6πi/5

)
=

1

5
(5)

= 1

6= 0

So, ψ5 ∈ A. Along with ψ5, 〈ψ10, ϕ3〉, 〈ψ15, ϕ3〉, 〈ψ20, ϕ3〉 are not equal to zero, and so,

ψ10, ψ15, ψ20 ∈ A. For ϕ4,

〈ψ2, ϕ4〉 =
1

5

(
1 + e6πi/5e−6πi/5 + e2πi/5e−2πi/5 + e8πi/5e−8πi/5 + e4πi/5e−4πi/5

)
=

1

5
(5)

= 1

6= 0

So, ψ2 ∈ A. Along with ψ2, 〈ψ7, ϕ4〉, 〈ψ12, ϕ4〉, 〈ψ17, ϕ4〉 are not equal to zero, and so,
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ψ7, ψ12, ψ17 ∈ A. For ϕ5,

〈ψ4, ϕ5〉 =
1

5

(
1 + e8πi/5e−8πi/5 + e6πi/5e−6πi/5 + e4πi/5e−4πi/5 + e2πi/5e−2πi/5

)
=

1

5
(5)

= 1

6= 0

So, ψ4 ∈ A. Along with ψ4, 〈ψ9, ϕ5〉, 〈ψ14, ϕ5〉, 〈ψ19, ϕ5〉 are not equal to zero, and so,

ψ9, ψ14, ψ19 ∈ A. By 3.6, ψB2 will be an irreducible character of B. First, we will find ψB2 .
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ψB2

1 0

0 1

 =
1

20
(80(1))

= 4

ψB2

2 0

0 2

 =
1

20
(80(i))

= 4i

ψB2

3 0

0 3

 =
1

20
(80(i))

= 4i

ψB2

4 0

0 4

 =
1

20
(80(−1))

= −4

ψB2

1 1

0 1

 =
1

20
(20(1))

= 1

ψB2

2 1

0 2

 =
1

20
(20(1))

= 1

ψB2

3 1

0 3

 =
1

20
(20(1))

= 1

ψB2

4 1

0 4

 =
1

20
(20(1))

= 1

Now, we must check that ψB2 is irreducible. Note, by the definition of the induced character,

all elements of B that are in conjugacy classes that do not contain elements from IB(ϕ4),
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ψB2 (C) = 0 for all C ∈ B such that C 6∈ IB(ϕ4).

〈
ψB2 , ψ

B
2

〉
=

1

80

(
4(4) + 4i(4i) + 4i(4i+−4(−4) + 4(1) + 4(1) + 4(1) + 4(1)

)
=

1

80
(80)

= 1

Thus, ψB2 is an irreducible character of B. Since 〈ψ2, ϕ4〉 6= 0 and 〈ψ7, ϕ4〉, 〈ψ12, ϕ4〉, 〈ψ17, ϕ4〉

are not equal to zero, ψB2 = ψB7 = ψB12 = ψB17. Similarly ψB3 will also be an irreducible char-

acter of B. We will now find ψB3 .
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ψB3

1 0

0 1

 =
1

20
(80(1))

= 4

ψB3

2 0

0 2

 =
1

20
(80(i))

= 4i

ψB3

3 0

0 3

 =
1

20
(80(i))

= −4

ψB3

4 0

0 4

 =
1

20
(80(−1))

= 4

ψB3

1 1

0 1

 =
1

20
(20(1))

= 1

ψB3

2 1

0 2

 =
1

20
(20(1))

= 1

ψB3

3 1

0 3

 =
1

20
(20(1))

= 1

ψB3

4 1

0 4

 =
1

20
(20(1))

= 1

Now, we must check that ψB3 is irreducible. Note, by the definition of the induced character,

all elements of B that are in conjugacy classes that do not contain elements from IB(ϕ4),

52



ψB2 (C) = 0 for all C ∈ B such that C 6∈ IB(ϕ2).

〈
ψB3 , ψ

B
3

〉
=

1

80

(
4(4) + 4i(4i) +−4(−4) + 4(4) + 4(1) + 4(1) + 4(1) + 4(1)

)
=

1

80
(80)

= 1

So, ψB3 is an irreducible character of B. Since 〈ψ3, ϕ2〉 6= 0 and 〈ψ8, ϕ2〉, 〈ψ13, ϕ2〉, 〈ψ18, ϕ2〉

are not equal to zero, ψB3 = ψB8 = ψB13 = ψB18. Next, we will find and show ψB4 is an

irreducible character of B.
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ψB4

1 0

0 1

 =
1

20
(80(1))

= 4

ψB4

2 0

0 2

 =
1

20
(80(i))

= 4

ψB4

3 0

0 3

 =
1

20
(80(i))

= 4i

ψB4

4 0

0 4

 =
1

20
(80(−1))

= −4

ψB4

1 1

0 1

 =
1

20
(20(1))

= 1

ψB4

2 1

0 2

 =
1

20
(20(1))

= 1

ψB4

3 1

0 3

 =
1

20
(20(1))

= 1

ψB4

4 1

0 4

 =
1

20
(20(1))

= 1

Now, we will show ψB4 is irreducible. Note, by the definition of the induced character,

all elements of B that are in conjugacy classes that do not contain elements from IB(ϕ5),
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ψB4 (C) = 0 for all C ∈ B such that C 6∈ IB(ϕ5).

〈
ψB4 , ψ

B
4

〉
=

1

80

(
4(4) + 4(4) + 4(4i) +−4(−4) + 4(1) + 4(1) + 4(1) + 4(1)

)
=

1

80
(80)

= 1

Hence, ψB4 is an irreducible character of B. Since 〈ψ4, ϕ5〉 6= 0 and 〈ψ9, ϕ5〉, 〈ψ14, ϕ5〉, 〈ψ19, ϕ5〉

are not equal to zero ψB4 = ψB9 = ψB14 = ψB19. Lastly, we will find and show ψB5 is an irre-

ducible character of B. To find ψB5 ,
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ψB5

1 0

0 1

 =
1

20
(80(1))

= 4

ψB5

2 0

0 2

 =
1

20
(80(i))

= 4i

ψB5

3 0

0 3

 =
1

20
(80(i))

= 4

ψB5

4 0

0 4

 =
1

20
(80(−1))

= 4

ψB5

1 1

0 1

 =
1

20
(20(1))

= 1

ψB5

2 1

0 2

 =
1

20
(20(1))

= 1

ψB5

3 1

0 3

 =
1

20
(20(1))

= 1

ψB5

4 1

0 4

 =
1

20
(20(1))

= 1

Now, we will show ψB5 is irreducible. Note, by the definition of the induced character,

all elements of B that are in conjugacy classes that do not contain elements from IB(ϕ3),
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ψB5 (C) = 0 for all C ∈ B such that C 6∈ IB(ϕ3).

〈
ψB5 , ψ

B
5

〉
=

1

80

(
4(4) + 4(4i) + 4(4) + 4(4) + 4(1) + 4(1) + 4(1) + 4(1)

)
=

1

80
(80)

= 1

So, ψB5 is an irreducible character of B. Since 〈ψ5, ϕ3〉 6= 0 and ψ5, 〈ψ10, ϕ3〉, 〈ψ15, ϕ3〉, 〈ψ20, ϕ3〉

are not equal to zero, ψB5 = ψB10 = ψB15 = ψB20. Therefore, we have found the irreducible char-

acters of B by using Clifford’s Theorem. The following table summarizes the irreducible

characters of B found by this method. Note, we will exclude the conjugacy classes not

contained in IB(ϕi), i = 2, 3, 4, 5, as the character value at those conjugacy classes are zero.

Table 13: Character Table of B

B

(
1 0
0 1

) (
2 0
0 2

) (
3 0
0 3

) (
4 0
0 4

) (
1 1
0 1

) (
2 1
0 2

) (
3 1
0 3

) (
4 1
0 4

)
ψB2 4 4i 4i −4 1 1 1 1
ψB3 4 4i −4 4 1 1 1 1
ψB4 4 4 4i −4 1 1 1 1
ψB5 4 4i 4 4 1 1 1 1

5.3 Case: Fq ∼= Zp

The previous two examples explored specific cases of when Fq ∼= Zp. We saw when p = 3,

the inertia subgroup of B was isomorphic to the group Z6, and when p = 5, the inertia

subgroup was isomorphic to the group Z20. In this section we will show the inertia subgroup,

when Fq ∼= Zp, is isomorphic to Zp(p−1). Consider the case when q = 3, the generators of
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IB(ϕ) are,

〈2 1

0 2

〉 = IB(ϕ)

〈2 2

0 2

〉 = IB(ϕ)

Note, 〈2〉 = Z×3 . Now, consider the case when q = 5, the generators of IB(ϕ) are,

2 1

0 2

 ,

2 2

0 2

 ,

2 3

0 2

 ,

2 4

0 2

 ,

3 1

0 3

 ,

3 2

0 3

 ,

3 3

0 3

 ,

3 4

0 3



Note, 〈2〉 = Z×5 and 〈3〉 = Z×5 . In both cases, generators had the form

a b

0 a

, where a is

a generator of Z×p . Now, a b

0 a


m

=

am m(am−1b)

0 am


So, if a b

0 a


m

=

1 0

0 1


then am = 1 and m(am−1b) = 0. Since am = 1, this implies that p − 1 | m and since

m(am−1b) = 0, this implies p | m. Now p is a prime so, gcd(p, p − 1) = 1. Therefore,

p(p− 1) | m and |IB(ϕ)| = p(p− 1), so m = |IB(ϕ)|. Thus,

a b

0 a


where a is a generator of Z×p , is a generator of IB(ϕ). We can conclude that IB(ϕ) ∼= Zp(p−1).

Since we determined the inertia subgroup is isomorphic to Zp(p−1), we know all irreducible

representations of the inertia subgroup. From 4.5, we know d = [IB(ϕ) : N ] = p − 1 and
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HomB

(
IndBN (σ), IndBN (σ)

) ∼= Cd. By 4.7, IndBN (σ) =
⊕

µ∈Irr(IB(σ))mµ IndBI (µ), and so,

HomB

(
IndBN (σ), IndBN (σ)

) ∼= HomB

(
IndBI (µ), IndBI (µ)

) ∼= Cd

Thus, there are p− 1 irreducible representations of B found from using 3.6.
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