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The Influence of Subgroup Structure on Finite Groups Which are the Product of Two Subgroups

Abstract

In group theory, it is often the case that a group can be written as the product of two of its

subgroups. Take for example S3, the symmetric group on a set of three elements, which can be

written as S3 = A3〈(12)〉 or alternatively D4, the group of symmetries of a square, which can be

written as D4 = 〈(1234)〉〈(13)〉. It is therefore natural to wonder what influence the structures of

these subgroups have on the structure of the group as a whole.

For example, if G is a group, H ≤ G and K ≤ G such that G = HK, where both H and K

are cyclic, one may ask if G is consequently cyclic as well. Moreover, if G is not cyclic, then what,

if anything, can be said about its structure? In actuality, it happens that G is, in fact, not cyclic,

but solvable. In this master’s thesis we establish several important classes of groups which will

be used to explore the influence of subgroup structure on groups which are the product of two

subgroups. Additionally, we will lead up to the strongest possible statement about the structure of

such groups, without placing additional constraints onH andK. This result was originally proved

by Helmut Wielandt in 1958 under the assumption that the orders ofH andK were coprime. These

assumptions were later dropped in an improved result by Otto Kegel in 1961.
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Preliminary Results

In order to explore the influence of subgroup structure as completely as possible, we will call on

the use of many definitions and theorems. While a majority of these will be provided in the coming

pages, some are so integral to any group theoretic argument that they are presumed to be known

by the reader. Thus, several well-known definitions and results will be stated in this section with

their proofs omitted. We will begin with the isomorphism theorems.

The isomorphism theorems, which have variations for groups, rings, vector spaces, etc. are some

of the most widely used results in algebra, which detail the relationships between groups, images

under homomorphisms, normal subgroups and quotient groups. The results of the First, Second,

and Third Isomorphism Theorems, along with related results, are given here.

Theorem 1.1.1 (First Isomorphism Theorem).

Let G1 and G2 be groups and φ : G1 −→ G2 be a homomorphism.

Then
G1

Kern(φ)
∼= φ(G1).

Theorem 1.1.2 (Second Isomorphism Theorem).

Let G be a group, H ≤ G and N E G.

Then
HN

N
∼=

H

H ∩N.
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Theorem 1.1.3 (Third Isomorphism Theorem).

Let G be a group, H E G, and N E G such that N ≤ H .

Then
G/N

H/N
∼=
G

H
.

The following lemma, while not an isomorphism theorem, identifies two characteristics of what

will be referred to as the natural map, so named for the natural way in which it is defined by the rela-

tionship between a group and one of its normal subgroups. This map will be used at several points

throughout the coming arguments, including in the statement of Theorem 1.1.5. This theorem is

occasionally referred to as the Fourth Isomorphism Theorem or the Correspondence Theorem.

Lemma 1.1.4.

Let G be a group and N E G. Define φ : G −→ G/N by φ(g) = gN, ∀ g ∈ G.

Then:

1. The natural map is a homomorphism;

2. Kern(φ) = N .

Proof. For 1, let g1, g2 ∈ G. Then φ(g1g2) = g1g2N = g1Ng2N = φ(g1)φ(g2) and so the natural map

is a homomorphism.

For 2, let g ∈ Kern(φ). Then φ(g) = gN = 1N if and only if 1−1g ∈ N . But this occurs if and

only if g ∈ N. Thus Kern(φ) = N .

Using the results established in Lemma 1.1.4, we can now state the correspondence theorem.
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Theorem 1.1.5 (Correspondence Theorem).

Let G be a group, N E G and H ≤ G. Let φ denote the natural map from Lemma 1.1.4.

Then:

1. φ(H) = HN/N ;

2. φ−1(HN/N) = HN ;

3. If L ≤ G/N , then there exists N ≤ K ≤ G such that L = K/N .

Remark. Note that the Correspondence Theorem provides two useful results regarding images and preimages

under the natural map. Additionally, the third statement gives insight into the structure of quotient groups.

Namely that any subgroup of a quotient group is itself a quotient group, formed from a subgroup of G con-

taining the normal subgroup N . We will utilize the result regarding preimages many times and will refer to

Theorem 1.1.5 simply by saying ”taking preimages”.

Another class of theorems which are of vital importance to group theory are the Sylow The-

orems, named after Norwegian mathematician Peter Ludwig Sylow. These theorems explore the

existence and number of “Sylow p-subgroups” of a group G, so named for their specific order in

relation to the order of G. The first of the three Sylow theorems will now be stated.

Theorem 1.1.6 (Sylow’s First Theorem).

Let G be a group and p be a prime. Then Sylp(G) is non-empty.

We will now establish a notation for conjugation which will prove useful for both a consequence

of Sylow’s Second Theorem, and throughout the upcoming sections.

Definition 1.1.7 (Exponential Notation for Conjugation).

Let G be a group, a, b ∈ G, and H ≤ G.

Then:

1. ba = a−1ba;

2. Ha = a−1Ha = {a−1ha | h ∈ H}.

3



Remark. Under this notation, for a group G with a, b, g ∈ G, it follows that (ab)g = agbg . This ability to

write the conjugate of a product as the product of conjugates will prove useful in a variety of arguments.

Theorem 1.1.8 (Sylow’s Second Theorem).

Let G be a group, p be a prime, and H ≤ G be a p-subgroup. Then there exists P ∈ Sylp(G) such that

H ≤ P .

Remark. Note that as a consequence of Sylow’s second theorem, if H is, in fact, a Sylow p-subgroup of G,

then H = P g for some g ∈ G, thus making all Sylow p-subgroups conjugates of one another.

This fact proves vital in another important result known as the Frattini argument, which was

named for Italian mathematician Giovanni Frattini, and whose proof is included at the end of this

section.

Theorem 1.1.9 (Sylow’s Third Theorem).

Let G be a group, p be a prime, P ∈ Sylp(G), and np = |Sylp(G)|.

Then:

1. np =
|G|

|NG(P )|
;

2. np | |G|;

3. np ≡ 1(mod p).

Remark. The combination of these three statements proves vital in determining the structure of many finite

groups and the Sylow p-subgroups they contain.

For example, we include the following useful corollary.

Corollary 1.1.10 (Unique Sylow p-subgroups are Normal).

Let G be a group, p be a prime, and P ∈ Sylp(G) such that P is the only Sylow p-subgroup. Then P E G.

Proof. Since P is unique, it follows that np = |Sylp(G)| = 1. Thus, by Sylow’s third theorem, we

have 1 =
|G|

|NG(P )|
or |NG(P )| = |G|. As previously noted, NG(P ) ≤ G and so it must be that

NG(P ) = G. Thus, P g = P for every g ∈ G, implying P E G.
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The Frattini argument can now be stated and proved.

Theorem 1.1.11 (Frattini Argument).

Let G be a group, N E G, and P ∈ Sylp(N). Then G = NG(P )N .

Proof. Now P ≤ N since P ∈ Sylp(N). Also, since N E G, we have that Ng = N . Thus P ≤ N

implies that P g ⊆ N for all g ∈ G.

Since G is a group, G is non-empty and so there exists g, g−1 ∈ G. Similarly, since P ≤ N , P is

non-empty since 1 ∈ P . Thus 1 = 1g ∈ P g and so P g is non-empty.

Let pg1, p
g
2 ∈ P g . Then

pg1(p
g
2)
−1 = pg1p

g−1

2

= g−1p11p2g

= (p1p2)
g

= pg (where p1p2 = p ∈ P , by closure of P ).

Thus pg ∈ P g and so P g ≤ N . Additionally, note that |P g| = |P | = |N |p, yielding P g ∈ Sylp(N).

As noted earlier, all Sylow p-subgroups are conjugate to one another, so there exists n ∈ N such

that P g = Pn or P gn−1

= P . Thus, gn−1 ∈ NG(P ), and so g ∈ NG(P )N . Since g ∈ G was chosen

arbitrarily, we have thatG ≤ NG(P )N . ButNG(P ) ≤ G andN E G, so it follows thatNG(P )N ≤ G,

yielding that G = NG(P )N .

To conclude the section, a few additional results in basic group theory will be stated.

Theorem 1.1.12.

Let G be a group and p be a prime such that |G| = p2. Then G is abelian.

Theorem 1.1.13.

Let G be a p-group for some prime p and S be a set such that G acts on S. If p does not divide |S|, then there

exists x ∈ S such that Gx = G.

5



Theorem 1.1.14 (Quotients of Cyclic Groups are Cyclic).

Let G be a cyclic group and H ≤ G. Then G/H is cyclic.

Theorem 1.1.15.

Let G = 〈a〉 be a cyclic group and d ∈ Z+ such that d | |G|. Then there exists a unique H ≤ G such that

|H| = d.

Theorem 1.1.16 (Lagrange’s Theorem).

Let G be a group and H ≤ G. Then |H| | |G| and |G|/|H| is the number of distinct left cosets of H in G.

With these results established, the class of solvable groups can now be defined and explored.

6



Solvable Groups

The first class of groups we will examine is that of solvable groups, which are so named for their

relationship to Galois theory and, more specifically, the proof that a general fifth degree polynomial

equation is not solvable by radicals. We will first explore some conditions for the solvability of a

group, and then establish a canonical series of subgroups which can be used to determine whether

or not any group is solvable.

2.1 Solvability

Definition 2.1.1 (Solvable Group).

Let G be a group. G is said to be solvable if there exists a subnormal series:

G = G0 D G1 D G2 D · · · D Gn = 1

where n ∈ Z+ ∪ {0} and each factor, Gi/Gi+1, is abelian, for all 0 ≤ i ≤ n− 1.

Example (S3 is solvable).

Note that S3 D A3 D 1 is a subnormal series where S3/A3
∼= Z2 and A3/{1} ∼= Z3, both of which are

abelian. Therefore S3 is a solvable group.

We will now examine several conditions under which G and related groups are solvable.

7



Theorem 2.1.2 (Abelian Groups are Solvable).

Let G be an abelian group. Then G is solvable.

Proof. Let G be an abelian group. Then G D 1 is a subnormal series and G/{1} ∼= G, which is

abelian. Thus G is solvable.

Theorem 2.1.3 (p-groups are Solvable).

Let G be a p-group for some prime p. Then G is solvable.

Proof. We will proceed by induction on |G|. If |G| = 1, then G is abelian and therefore solvable by

Theorem 2.1.2. Suppose now that the theorem holds for all p-groups of order less than |G|.

Since G is a p-group, Z(G) 6= 1. Also, Z(G) E G and so G/Z(G) is a group. Moreover, since

G is a p-group, it follows that |G/Z(G)| = |G|
|Z(G)| is a power of p and so G/Z(G) is also a p-group.

Additionally, since |G/Z(G)| = |G|
|Z(G)| < |G|, by assumptionG/Z(G) is solvable. Thus, there exists

a subnormal series:

G

Z(G)
= G0 D

G1

Z(G)
D

G2

Z(G)
D · · · D Gn

Z(G)
= 1,

where n ∈ Z+ ∪ {0} and
Gi/Z(G)

Gi+1/Z(G)

is abelian for all 0 ≤ i ≤ n− 1.

Taking preimages of each factor yields

G D G1 D G2 · · · D Z(G)

which is a subnormal series in G which terminates at the center. But then

G = G0 D G1 D G2 · · · D Z(G) D 1

8



is also a subnormal series in G. By the Third Isomorphism Theorem we have

Gi/Gi+1
∼=

Gi/Z(G)

Gi+1/Z(G)

which is abelian for each 0 ≤ i ≤ n − 2. Also note that Z(G)/{1} ∼= Z(G) which is abelian as well.

Thus G is solvable.

Theorem 2.1.4 (Quotients of Solvable Groups are Solvable).

Let G be a solvable group and N E G. Then G/N is solvable.

Proof. Since G is solvable, there exists a subnormal series:

G = G0 D G1 D · · · D Gn = 1

such that n ∈ Z+ ∪ {0} and Gi/Gi+1 is abelian for all 0 ≤ i ≤ n− 1.

Let G = G/N . Then

G = G0 D G1 D · · · D Gn = 1

is a subnormal series as well.

Also

Gi

Gi+1

=
GiN/N

Gi+1N/N

∼=
GiN

Gi+1N
, by the Third Isomorphism Theorem

=
GiGi+1N

Gi+1N
, since Gi+1 ≤ Gi

∼=
Gi

Gi ∩Gi+1N
, by the Second Isomorphism Theorem.

Note also that for any x ∈ Gi+1 and any y ∈ Gi ∩ Gi+1N , then xy ∈ Gi+1 and so Gi+1 E

Gi ∩Gi+1N . Thus by the Third Isomorphism Theorem:

Gi
Gi ∩Gi+1N

∼=
Gi/Gi+1

Gi ∩Gi+1N/Gi+1

9



which is abelian sinceGi/Gi+1 is abelian andGi∩Gi+1N/Gi+1 E Gi/Gi+1. Therefore eachGi/Gi+1

is abelian and so G = G/N is solvable.

Theorem 2.1.5 (Solvable Quotients and Normal Subgroups Yield Solvable Groups).

Let G be a group and N E G such that G/N and N are solvable. Then G is solvable.

Proof. Let G = G/N . Since G and N are solvable, there exist the following subnormal series:

G = G0 D G1 D · · · D Gn = 1

and

N = N0 D N1 D · · · D Nm = 1

such that Gi/Gi+1 and Nj/Nj+1 are abelian for all 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1, where

m,n ∈ Z+ ∪ {0}.

Note now that by part two of the Correspondence Theorem (Theorem 1.1.5), the preimage of

Gn is N . Thus, taking preimages of the first subnormal series yields

G = G0 D G1 D · · ·Gn−1 D N

which can be combined with the second subnormal series to create the following subnormal series:

G = G0 D G1 D · · ·Gn−1 D N D N1 D · · · D Nm = 1.

Now by the Third Isomorphism Theorem, Gi/Gi+1
∼= Gi/N

Gi+1/N
= Gi/Gi+1, which is abelian for

each 0 ≤ i ≤ n− 1. Thus G is solvable.

Lastly, we will identify two cases in which a group is solvable based on the prime factorization

of its order.

10



Theorem 2.1.6.

Let G be a group such that |G| = pq, where p, q are both prime and p < q. Then G is solvable.

Proof. Consider Sylq(G), where nq = |Sylq(G)|. By Sylow’s Third Theorem, nq||G|. Thus since both

p and q are prime, we have that nq = 1, p, q, or pq.

Also by Sylow’s Third Theorem, nq ≡ 1(mod q). Note that q ≡ 0(mod q), pq ≡ 0(mod q), and

p ≡ p(mod q) since p < q. Thus, it must be that nq = 1. Let Q ∈ Sylq(G) be the unique Sylow

q-subgroup of G. Then by Corollary 1.1.10, Q E G.

Since 1 is normal in all groups, we have that 1 E Q E G. Then, since q is prime, Q/{1} ∼= Zq ,

which is abelian. Additionally, |G/Q| = |G|/|Q| = pq/q = p. Thus, since p is also prime, G/Q ∼= Zp,

which is abelian as well.

Hence G D Q D 1 is a subnormal series with abelian factors, and so G is solvable.

Theorem 2.1.7.

Let G be a group such that |G| = p2q, where p and q are distinct primes. Then G is solvable.

Proof. Note that since p and q are distinct primes, either p < q or q < p.

Case 1: (q < p)

Assume q < p and consider the possible values for np. By Sylow’s Third Theorem np| |G| and so

np = 1, p, p2, q, pq, or p2q. Additionally, np ≡ 1( mod p) which reduces the possible values to 1 or q,

since all others are equivalent to 0 modulo p.

First, suppose np = 1 and let P ∈ Sylp(G) be the unique Sylow p-subgroup of G. By Corollary

1.1.10, we have that P E G. Also, |G/P | = |G|/|P | = p2q/p2 = q. Thus, since q is prime, G/P ∼= Zq

which is abelian.

Note that |P | = |G|p = p2, meaning P is a p-group and therefore solvable by Theorem 2.1.3.

Thus, there exists a subnormal series

P = P0 D P1 D · · · D Pn−1 D Pn = 1

11



such that Pi/Pi+1 is abelian for all 0 ≤ i ≤ n− 1.

Then

G D P D P1 D · · · D Pn−1 D 1

is the desired subnormal series, and so G is solvable.

Suppose now that np = q. Then q ≡ 1( mod p) by Sylow’s Third Theorem, and so q − 1 ≡ 0(

mod p), meaning p|q − 1. But q < p, so q − 1 < p. Thus, it must be that q − 1 = 0, since q = np ≥ 1.

But then q = 1, which is a contradiction since q is prime. Thus np 6= q and the case is complete.

Case 2: (p < q)

Assume now that p < q and consider the possible values of nq . By Sylow’s Third Theorem and the

fact that p < q, either nq = 1 or nq = p2.

Suppose that nq = 1 and letQ ∈ Sylq(G) be the unique Sylow q-subgroup ofG. Again, by Corol-

lary 1.1.10, Q E G. Also, 1 E Q and, since q is prime, Q/{1} ∼= Zq , which is abelian. Additionally,

G/Q is a group and |G/Q| = |G|/|Q| = p2q/q = p2. Thus since G/Q is a group of order p2, G/Q is

abelian by Theorem 1.1.12, which implies that G D Q D 1 is the desired subnormal series and so G

is solvable.

Finally, suppose nq = p2. Recall that each Sylow q-subgroup has order |G|q = q. Thus, since each

distinct Sylow q-subgroup intersects the others trivially, there are p2(q − 1) = p2q − p2 = |G| − p2

non-identity elements contained in some Sylow q-subgroup of G.

Now by Sylow’s First Theorem, there exists P ∈ Sylp(G) with |P | = |G|p = p2. Let Q ∈ Sylq(G)

and consider P ∩ Q. Since P ∩ Q ≤ P and P ∩ Q ≤ Q, it follows from Lagrange’s Theorem that

|P ∩ Q| | |P | and |P ∩ Q| | |Q|. Thus, P ∩ Q = {1} since p and q are coprime. Hence all Sylow

p-subgroups and Sylow q-subgroups intersect trivially. It follows necessarily that np = 1 and so

P E G by Corollary 1.1.10.

Since P is a p-group, it is solvable by Theorem 2.1.3. Thus, there exists a subnormal series

P = P0 D P1 D · · · D Pn−1 D Pn = 1

such that Pi/Pi+1 is abelian for all 0 ≤ i ≤ n − 1, where n ∈ Z+ ∪ {0}. Additionally, |G/P | =

12



|G|/|P | = p2q/p2 = q. Thus G/P ∼= Zq , which is abelian. Hence

G D P D P1 D · · · D Pn−1 D Pn = 1

is the desired subnormal series, and so G is solvable.

2.2 Commutators and the Derived Series

While solvable groups are an important class of groups which are used in a wide variety of argu-

ments, it can often be tedious to construct the necessary subnormal series. This is especially true if

little is known about the group’s structure. Thus, it is desirable to identify a canonical series which

characterizes the solvability of a given group.

In this section, such a series will be defined, along with several properties regarding the sub-

groups from which the series is built.

Definition 2.2.1 (The Subgroup Generated by a Set).

Let G be a group and S be a non-empty subset of G. Then the subgroup generated by S is given by

〈S〉 = {sn1
1 sn2

2 sn3
3 · · · s

nk

k : si ∈ S, ni ∈ Z, for all 1 ≤ i ≤ k, k ∈ Z+}.

As defined, it is not necessarily clear that 〈S〉 forms a subgroup. This will now be proven.

Theorem 2.2.2 (〈S〉 is a Subgroup).

Let G be a group and S be a non-empty subset of G. Then 〈S〉 ≤ G.

Proof. Let s ∈ S. Then s = s1 ∈ 〈S〉 and so 〈S〉 is non-empty.

Now let

sn1
1 sn2

2 · · · s
nk

k , rm1
1 rm2

2 · · · rml

l ∈ 〈S〉,

where si ∈ S for all 1 ≤ i ≤ k, rj ∈ S for all 1 ≤ j ≤ l, ni,mj ∈ Z for each i and j, and k, l ∈ Z+.

13



Then

(sn1
1 sn2

2 · · · s
nk

k )(rm1
1 rm2

2 · · · rml

l )−1 = sn1
1 sn2

2 · · · s
nk

k r−ml

l r
−ml−1

l−1 · · · r−m1
1 ∈ 〈S〉.

Thus 〈S〉 ≤ G by the subgroup test.

Example (Computing 〈2, 6〉 ≤ Z8).

Consider Z8 and S = {2, 6} ⊆ Z8. Note that 〈2, 6〉 ≤ Z8 must contain 0. Additionally 2 = 21 ∈ 〈2, 6〉

and 6 = 23 ∈ 〈2, 6〉. Since 6 = 23, it follows that any product of powers of 2 and 6 will, in fact, simply be a

product of powers of 2.

Thus 〈2, 6〉 = 〈2〉 = {0, 2, 4, 6}.

This concept of generating a subgroup from a set of elements will now prove useful in defining

an important canonical subgroup.

Definition 2.2.3 (Commutators).

Let G be a group, a, b ∈ G, H ≤ G and K ≤ G.

Then:

1. The commutator of a and b is given by [a, b] = a−1b−1ab;

2. The commutator subgroup generated by H and K is given by [H,K] = 〈[h, k] : h ∈ H, k ∈ K〉;

3. The commutator subgroup of G is given by G′ = 〈[x, y] : x, y ∈ G〉.

Note that G′ is often referred to as the derived subgroup of G as well. Several properties of

commutators and the derived subgroup will now be explored.
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Theorem 2.2.4 (Commutator Calculus).

Let G be a group, a, b, c ∈ G, H ≤ G, and K ≤ G.

Then:

1. [a, b]c = [c, a][a, bc];

2. [a, b]c = [ac, b][b, c];

3. [a, b]c = [ac, bc];

4. [a, b]−1 = [b, a];

5. [a, bc] = [a, c][a, b]c;

6. [ab, c] = [a, c]b[b, c];

7. [a, b] = 1 if and only if ab = ba;

8. If a ∈ CG(b), then [a, bc] = [a, c];

9. If a ∈ CG(b), then [ac, b] = [c, b].

Proof. For 1, let [a, b] ∈ G′.

Then

[c, a][a, bc] = (c−1a−1ca)(a−1(bc)−1a(bc))

= c−1a−1caa−1c−1b−1abc

= c−1a−1cc−1b−1abc

= c−1a−1b−1abc

= c−1[a, b]c

= [a, b]c.

15



For 2, consider [ac, b][b, c] ∈ G′.

Then

[ac, b][b, c] = ((ac)−1b−1(ac)b)(b−1c−1bc)

= c−1a−1b−1acbb−1c−1bc

= c−1a−1b−1acc−1bc

= c−1a−1b−1abc

= c−1[a, b]c

= [a, b]c.

For 3, consider [ac, bc] ∈ G′.

Then

[ac, bc] = (c−1ac)−1(c−1bc)−1(c−1ac)(c−1bc)

= c−1a−1cc−1b−1cc−1acc−1bc

= c−1a−1b−1abc

= c−1[a, b]c

= [a, b]c.

For 4, consider [a, b]−1 ∈ G′.

Then

[a, b]−1 = (a−1b−1ab)−1

= b−1a−1(b−1)−1(a−1)−1

= b−1a−1ba

= [b, a].

Thus [a, b]−1 = [b, a].

16



For 5, consider [a, c][a, b]c ∈ G′.

Then

[a, c][a, b]c = [a, c]([c, a][a, bc]), by part 1

= [a, c][a, c]−1[a, bc], by part 4

= [a, bc].

For 6, consider [a, c]b[b, c] ∈ G′.

Then

[a, c]b[b, c] = ([ab, c][c, b])[b, c], by part 2

= [ab, c][b, c]−1[b, c], by part 4

= [ab, c].

For 7, note that [a, b] = 1 or a−1b−1ab = 1 or ab = ba.

For 8, let a ∈ CG(b) and consider [a, bc].

Then

[a, bc] = [a, c][a, b]c, by part 5

= [a, c]1c, by part 7, since a ∈ Cg(b) implies ab = ba

= [a, c].

Lastly, for 9, let a ∈ CG(b) and consider [ac, b].
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Then

[ac, b] = [a, b]c[c, b], by part 6

= 1c[c, b], by part 7, since a ∈ Cg(b) implies ab = ba

= [c, b].

Theorem 2.2.5.

Let G be a group, H ≤ G and K ≤ G. Then [H,K] = [K,H] and [H,K] E 〈H,K〉.

Proof. To show that [H,K] = [K,H], consider
n∏
i=1

[hi, ki]
−1 ∈ [H,K], where hi ∈ H and ki ∈ K

for each 1 ≤ i ≤ n. Note that [H,K] is a group, so any arbitrary element may be written as the

inverse of another element. By part 4 of Theorem 2.2.4, [hi, ki]−1 = [ki, hi] for each 1 ≤ i ≤ n. Thus
n∏
i=1

[hi, ki]
−1 =

n∏
i=1

[ki, hi] ∈ [K,H] and so [H,K] ≤ [K,H].

Similarly, let
n∏
i=1

[ki, hi]
−1 ∈ [K,H], where hi ∈ H and ki ∈ K for all 1 ≤ i ≤ n. Again, by part 4

of Theorem 2.2.4, [ki, hi]−1 = [hi, ki] for each i. Thus,
n∏
i=1

[ki, hi]
−1 =

n∏
i=1

[hi, ki] ∈ [H,K]. Therefore

[K,H] ≤ [H,K] and so [H,K] = [K,H].

To show that [H,K] E 〈H,K〉, let
n∏
i=1

[hi, ki] ∈ [H,K], where hi ∈ H and ki ∈ K for all 1 ≤ i ≤ n.

Since 〈H,K〉 is generated by elements of H and K, it is sufficient to show that [H,K] E H and

[H,K] E K.

First, let x ∈ H and consider
(

n∏
i=1

[hi, ki]

)x
.

Then

(
n∏
i=1

[hi, ki]

)x
=

n∏
i=1

[hi, ki]
x

=
n∏
i=1

[hix, ki][ki, x], by part 2 of Theorem 2.2.4

=

n∏
i=1

[hix, ki][x, ki]
−1, by part 4 of Theorem 2.2.4.
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Now hix ∈ H for each i by closure ofH , and so [hix, ki] ∈ [H,K]. Additionally [x, ki]
−1 ∈ [H,K]

and so [hix, ki][x, ki]
−1 ∈ [H,K] for each i, by closure. Thus

n∏
i=1

[hix, ki][x, ki]
−1 ∈ [H,K] and so

[H,K] E H .

Now let y ∈ K and consider (
∏n
i=1[hi, ki])

y .

Then

(
n∏
i=1

[hi, ki]

)y
=

n∏
i=1

[hi, ki]
y

=
n∏
i=1

[y, hi][hi, kiy], by part 1 of Theorem 2.2.4

=

n∏
i=1

[hi, y]
−1[hi, kiy], by part 4 of Theorem 2.2.4.

By a similar argument to the previous case, both [hi, y]
−1 ∈ [H,K] and [hi, kiy] ∈ [H,K] for each

1 ≤ i ≤ n by closure. Thus
n∏
i=1

[hi, y]
−1[hi, kiy] ∈ [H,K] and [H,K] E K. Hence [H,K] E 〈H,K〉.

Theorem 2.2.6.

Let G be a group, H ≤ G, N E G and N E H . Then H/N ≤ Z(G/N) if and only if [G,H] ≤ N .

Proof. Now

H/N ≤ Z (G/N) or gNhN = hNgN, for all hN ∈ H/N and for all gN ∈ G/N

or ghN = hgN, for all h ∈ H and for all g ∈ G

or (hg)−1gh ∈ N, for all h ∈ H and for all g ∈ G

or g−1h−1gh ∈ N, for all h ∈ H and for all g ∈ G

or [g, h] ∈ N, for all h ∈ H and for all g ∈ G

or [G,H] ≤ N.

Thus the theorem holds.

19



Theorem 2.2.7.

Let G be a group, a, b ∈ G, N E G, and H ≤ G.

Then:

1. G′ E G;

2. G/G′ is abelian;

3. G/N is abelian if and only if G′ ≤ N ;

4. If G′ ≤ H , then H E G.

Proof. For 1, we know that G′ ≤ G by Theorem 2.2.2. Let g ∈ G and
n∏
i=1

[ai, bi] ∈ G′.

Then (
n∏
i=1

[ai, bi]

)g
=

n∏
i=1

[ai, bi]
g =

n∏
i=1

[agi , b
g
i ], by Theorem 2.2.4, part 3.

Thus, since agi , b
g
i ∈ G, it follows that

n∏
i=1

[agi , b
g
i ] ∈ G

′. Therefore G′ E G.

For 2, let aG′, bG′ ∈ G/G′.

Then

[aG′, bG′] = (aG′)−1(bG′)−1aG′bG′ = a−1G′b−1G′aG′bG′ = a−1b−1abG′ = [a, b]G′.

Note now that [a, b]G′ = 1G′, since 1−1[a, b] = [a, b] ∈ G′. Thus [aG′, bG′] = 1G′ for all aG′, bG′ ∈

G/G′. Therefore, by 1, aG′bG′ = bG′aG′ for all aG′, bG′ ∈ G/G′. Hence G/G′ is abelian.

For 3, consider G/N .

Then

G/N is abelian or [aN, bN ] = 1N, for all a, b ∈ G

or [a, b]N = 1N, for all a, b ∈ G

or 1−1[a, b] ∈ N, for all a, b ∈ G

or [a, b] ∈ N, for all a, b ∈ G

or G′ ≤ N.
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Thus G/N is abelian if and only if G′ ≤ N .

Finally, for 4, let g ∈ G and h ∈ H ≤ G. Then [h, g] ∈ G′ ≤ H . Hence h−1g−1hg ∈ H . By the

closure of H , it follows that h(h−1g−1hg) = hg ∈ H . Thus, since g ∈ G was arbitrary, it follows that

H E G.

Remark. Note that, by part 3 of the previous theorem, taking G/G′ is the most efficient way to create an

abelian quotient, as any other applicable normal subgroup will contain G′.

The concept of the derived subgroup will now yield a useful subnormal series which may be

examined in any group.

Definition 2.2.8 (The Derived Series).

Let G be a group. The derived series of G is defined by:

G(0) = G,G(1) = G′, G(2) = (G(1))′, and inductively G(n+1) = (G(n))′

for all n ∈ Z+ ∪ {0}.

Remark. Note that since each term in the sequence is the derived subgroup of the previous term, part 1 of

Theorem 2.2.7 yields that G(n) E G(n−1) for each n. Additionally, by part 2 of Theorem 2.2.7, it follows that

each quotient G(n−1)/G(n) is abelian. Thus, if there exists some n ∈ N such that G(n) = 1, then the derived

series will provide the desired subnormal series to show that G is solvable.

This characterization of solvability will be proven in the next theorem.

Theorem 2.2.9 (The Derived Series Characterizes Solvability).

Let G be a group. Then G is solvable if and only if there exists n ∈ Z+ ∪ {0} such that G(n) = 1.

Proof. (⇐= ) Suppose there exists n ∈ Z+ ∪ {0} such that G(n) = 1.

Then

G = G(0) D G(1) D · · · D G(n−1) D G(n) = 1
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is a subnormal series of G. Additionally, for all 0 ≤ i ≤ n − 1, the factor G(i)/G(i+1) = G(i)/(G(i))′

which is abelian by part 2 of Theorem 2.2.7. Thus G is solvable.

( =⇒ ) Now suppose G is solvable. Then there exists a subnormal series

G = G0 D G1 D G2 D · · · D Gn = 1

where n ∈ Z+ ∪ {0} and Gi/Gi+1 is abelian for all 0 ≤ i ≤ n− 1.

Claim: G(i) ≤ Gi for all 0 ≤ i ≤ n. We will proceed by induction on i.

If i = 0, then G(0) = G ≤ G = G0. Suppose now that G(i) ≤ Gi. Then

G(i+1) = (G(i))′

= [G(i), G(i)]

≤ [Gi, Gi], by inductive hypothesis

≤ Gi+1, by part 3 of Theorem 2.2.7.

Thus G(i+1) ≤ Gi+1 and the claim holds. But then G(n) ≤ Gn = 1 and so G(n) = 1.

Additionally, the derived series can be used to show that subgroups of solvable groups are also

solvable.

Theorem 2.2.10 (Subgroups of Solvable Groups are Solvable).

Let G be a solvable group and H ≤ G. Then H is solvable.

Proof. Since G is solvable, by Theorem 2.2.9, there exists n ∈ Z+ ∪ {0} such that G(n) = 1.

Claim: H(i) ≤ G(i), for all i ∈ Z+ ∪ {0}. We will proceed by induction on i.

If i = 0, then H(0) = H ≤ G = G(0). Suppose H(i) ≤ G(i).

Then H(i+1) = (H(i))′ ≤ (G(i))′ = G(i+1) or H(i+1) ≤ G(i+1). Thus, the claim holds. But then

H(n) ≤ G(n) = 1, and so H(n) = 1. Therefore H is solvable.
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Theorem 2.2.9 shows that the derived series characterizes the solvability of a group. In the fol-

lowing section, another type of canonical series will be introduced which gives rise to yet another

important class of groups known as nilpotent groups.
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Nilpotent Groups

The next important class of groups that will be explored are nilpotent groups. First, another canon-

ical series will be defined, which will directly motivate the definition of nilpotent groups. From

there, the structure and properties of such groups will be explored.

3.1 The Upper Central Series and Nilpotency

In the previous section, it was shown that the derived series lead to a characterization of solvability.

We will now define another series which will come to define the class of nilpotent groups.

Definition 3.1.1 (The Upper Central Series).

Let G be a group. Define the upper central series of G by:

Z0(G) = 1, Z1(G) = Z(G),
Z2(G)

Z1(G)
= Z

(
G

Z1(G)

)
, . . .

where inductively Zn+1(G)/Zn(G) = Z(G/Zn(G)) for all n ∈ Z+ ∪ {0}.

Remark. Note that in order to define the terms of the upper central series using quotients, it is necessarily

true that Zn(G) E Zn+1(G) for all n. Thus

1 = Z0(G) E Z1(G) E Z2(G) E · · ·

forms a subnormal series. Unlike many subnormal series, however, each Zi(G) is not only normal in the

following term, but in G as well.

24



Theorem 3.1.2. Let G be a group. Then Zi(G) E G for all i ∈ Z+ ∪ {0}.

Proof. We will proceed by induction on i. If i = 0, then Z0(G) = 1 E G. Also, if i = 1, then

Z1(G) = Z(G) E G. Suppose now that Zi(G) E G.

Then G/Zi(G) is a group and Zi+1(G)/Zi(G) = Z (G/Zi(G)) E G/Zi(G). Taking preimages, it

follows that Zi+1(G) E G and the theorem holds by induction.

In addition to having each term normal in G, this series will either stabilize where, for some

n ∈ Z+∪{0}, Zi(G) = Zi+1(G) for all i > n, or it will continue until reachingG itself. It is the latter

case which defines a nilpotent group.

Definition 3.1.3 (Nilpotent Group).

Let G be a group. Then G is nilpotent if there exists n ∈ Z+ ∪ {0} such that Zn(G) = G.

Now that nilpotent groups have been defined, several results regarding which types of groups

are nilpotent can be shown.

Theorem 3.1.4 (Abelian Groups are Nilpotent).

Let G be an abelian group. Then G is nilpotent.

Proof. Recall thatZ1(G) = Z(G). Thus, sinceG is abelian,Z1(G) = Z(G) = G. HenceG is nilpotent.

Theorem 3.1.5 (Subgroups of Nilpotent Groups are Nilpotent).

Let G be a nilpotent group and H ≤ G. Then H is nilpotent.

Proof. Since G is nilpotent, there exists n ∈ Z+ ∪ {0} such that Zn(G) = G.

Claim: H ∩ Zi(G) ≤ Zi(H) for all 0 ≤ i ≤ n. We will proceed by induction on i.

If i = 0, H ∩ Z0(G) = H ∩ {1} ≤ {1} = Z0(H). Suppose now that H ∩ Zi(G) ≤ Zi(H).
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Then

[H,H ∩ Zi+1(G)] ≤ H ∩ [G,Zi+1(G)]

≤ H ∩ Zi(G), by Theorem 2.2.6, since Zi+1(G)/Zi(G) = Z(G/Zi(G))

≤ Zi(H), by inductive hypothesis.

Thus [H,H ∩ Zi+1(G)] ≤ Zi(H) and so by Theorem 2.2.6

H ∩ Zi+1(G)Zi(H)

Zi(H)
≤ Z

(
H

Zi(H)

)
=
Zi+1(H)

Zi(H)
.

Taking preimages yields

(H ∩ Zi+1(G))Zi(H) ≤ Zi+1(H)

and therefore H ∩ Zi+1(G) ≤ Zi+1(H). Thus, the claim holds by induction.

Then Zn(H) ≥ H ∩ Zn(G) = H ∩G = H . Hence Zn(H) = H and so H is nilpotent.

Theorem 3.1.6 (Quotients of Nilpotent Groups are Nilpotent).

Let G be a group and N E G. Then G/N is nilpotent.

Proof. Since G is nilpotent, there exists n ∈ Z+ ∪ {0} such that Zn(G) = G. Let G = G/N .

Claim: Zi(G) ≤ Zi(G), for all 0 ≤ i ≤ n. We will proceed again by induction on i.

If i = 0, then Z0(G) = {1} = Z0(G) and the base case holds. Suppose Zi(G) ≤ Zi(G).

Now

[G,Zi+1(G)] = [G,Zi+1(G)], since the natural map is a homomorphism

≤ Zi(G), by Theorem 2.2.6

≤ Zi(G), by inductive hypothesis.

Then
Zi1(G)Zi(G)

Zi(G)
≤ Z

(
G

Zi(G)

)
=
Zi+1(G)

Zi(G)
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by Theorem 2.2.6. Taking preimages yields

Zi+1(G)Zi(G) ≤ Zi+1(G)

and so Zi+1(G) ≤ Zi+1(G). Thus, the claim holds by induction.

Then Zn(G) ≥ Zn(G) = G. But it cannot be that G < Zn(G) and so it must be that G = Zn(G).

Hence G = G/N is nilpotent.

Theorem 3.1.7.

Let G be a group such that G/Z(G) is nilpotent. Then G is nilpotent.

Proof. Let G = G/Z(G). Since G is nilpotent, there exists n ∈ Z+ ∪ {0} such that Zn(G) = G.

Claim 1: Zi(G) ≤ Zi(G), for all i ∈ Z+ ∪ {0}. We will proceed by induction on i.

If i = 0, then Z0(G) = 1 = Z0(G). Suppose Zi(G) ≤ Zi(G).

Now

[G,Zi+1(G)] = [G,Zi+1(G)]

≤ Zi(G), by Theorem 2.2.6

≤ Zi(G), by inductive hypothesis.

Thus, [G,Zi+1(G)] ≤ Zi(G) and so

Zi+1(G)

Zi(G)
≤ Z

(
G

Zi(G)

)
=
Zi+1(G)

Zi(G)
.

Taking preimages yields Zi+1(G) ≤ Zi+1(G) and so claim 1 holds by induction.

Claim 2: Zi(G) ≤ Zi(G), for all i ∈ Z+ ∪ {0}. Again, we will proceed by induction on i.

If i = 0, then Z0(G) = 1 = Z0(G). Suppose Zi(G) ≤ Zi(G). Let U = U/Z(G) = Zi+1(G).
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Then

[G,U ] = [G,U ]

= [G,Zi+1(G)]

≤ Zi(G), by Theorem 2.2.6

≤ Zi(G), by inductive hypothesis.

Thus [G,U ] ≤ Zi(G). Taking preimages yields [G,U ]Z(G) ≤ Zi(G). Hence [G,U ] ≤ Zi(G). Then

UZi(G)

Zi(G)
≤ Z

(
G

Zi(G)

)
=
Zi+1(G)

Zi(G)

and so UZi(G) ≤ Zi+1(G). But Zi(G) ≤ Zi+1(G), so U ≤ Zi+1(G) and it follows that U ≤ Zi+1(G).

However, U = Zi+1(G), so Zi+1(G) ≤ Zi+1(G), and claim 2 holds.

By a combination of the two claims,Zi(G) = Zi(G), for all i ∈ Z+∪{0}. ThenG−Zn(G) = Zn(G).

Taking preimages yields G = Zn(G) and so G is solvable.

Theorem 3.1.8 (p-Groups are Nilpotent).

Let G be a p-group. Then G is nilpotent.

Proof. Toward a contradiction, suppose G is not nilpotent. Then Zi(G) < G for every i ∈ Z+ ∪ {0}.

Claim: Zi(G) < Zi+1(G), for all i ∈ Z+ ∪ {0}. We will proceed by induction on i.

Since G is a p-group, if i = 0, then Z1(G) = Z(G) 6= {1} = Z0(G). Thus Z0(G) < Z1(G).

Suppose Zi(G) < Zi+1(G).

Now Zi+1(G) E G by Theorem 3.1.2, so G = G/Zi+1(G) is a group. Since G is a p-group, it

follows that G is a p-group as well. Additionally |G| = |G/Zi+1(G)| = |G|/|Zi+1(G)| < |G| and,

since G is not nilpotent, G 6= 1.

Thus

1 6= Z(G) = Z

(
G

Zi+1(G)

)
=
Zi+2(G)

Zi+1(G)
.
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Hence Zi+1(G) < Zi+2(G) and the claim holds by induction. Then the upper central series never

stabilizes, or

1 = Z0(G) < Z1(G) < Z2(G) < Z3(G) < · · · < Zn(G) < · · ·

which is a contradiction, since |G| = pn <∞, where n ∈ Z+ ∪ {0}. Thus G is nilpotent.

Remark. Theorem 3.1.8 shows that every p-group is nilpotent. In fact, there are other structural connections

between p-groups and nilpotent groups, which will be explored more thoroughly in the following section.

3.2 Additional Properties of Nilpotent Groups

In this section, the structure of nilpotent groups will be explored in greater detail, including a link

between nilpotent groups and the solvable groups introduced in part two, and the similarities be-

tween the structures of p-groups and nilpotent groups. We will begin with the former.

Theorem 3.2.1 (Nilpotent Groups are Solvable).

Let G be a nilpotent group. Then G is solvable.

Proof. SinceG is nilpotent, there exists n ∈ Z+ ∪{0} such that Zn(G) = G. Consider now the upper

central series:

G = Zn(G) D Zn−1(G) D · · · D Z0(G) = 1

which is a subnormal series. Also Zi+1(G)/Zi(G) = Z (G/Zi(G)) which is the center of a group,

and therefore abelian for all 0 ≤ i ≤ n− 1. Hence G is solvable.

Following the result of Theorem 3.2.1, it is natural to ask if all solvable groups are necessarily

nilpotent. We will turn to a notable characteristic of p-groups to provide a method for finding a

counterexample. Namely, the fact that p-groups have a non-trivial center. It will now be shown that

the same is true for nilpotent groups.
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Theorem 3.2.2 (Non-Trivial Nilpotent Groups Have Non-Trivial Centers).

Let G be a non-trivial nilpotent group. Then Z(G) 6= 1.

Proof. Toward a contradiction, suppose Z(G) = 1.

Claim: Zi(G) = 1 for every i ∈ Z+ ∪ {0}. We will proceed by induction on i.

If i = 0, then Z0(G) = 1 by definition. If i = 1, then Z1(G) = Z(G) = 1. Suppose now that

Zi(G) = 1.

Then

Zi+1(G) ∼=
Zi+1(G)

{1}
=
Zi+1(G)

Zi(G)
= Z

(
G

Zi(G)

)
But

Z

(
G

Zi(G)

)
= Z

(
G

{1}

)
∼= Z(G) = Z1(G) = 1

and so Zi+1(G) = 1. Thus, the claim holds by induction. But then Zi(G) = 1 for all i, and so there

does not exist n ∈ Z+∪{0} such that Zn(G) = G. This is a contradiction sinceG is nilpotent. Hence

Z(G) 6= 1.

Theorem 3.2.2 will now prove useful in showing that certain groups of smaller order are not

nilpotent. Recall from a previous example thatS3 is solvable with the subnormal seriesS3 D A3 D 1.

We can now examine its center to show that not all solvable groups are nilpotent.

Example (S3 is not Nilpotent).

Recall that S3 = {1, (12), (13), (23), (123), (132)}. Consider Z(S3).

Clearly 1 ∈ Z(S3). Note that

(12)(13) = (132) 6= (123) = (13)(12)

(12)(23) = (123) 6= (132) = (23)(12)

(13)(132) = (23) 6= (12) = (132)(13)

(13)(123) = (12) 6= (23) = (123)(13).

Therefore (12), (13), (23), (123), (132) /∈ Z(S3) and so Z(S3) = 1. Thus, S3 is not nilpotent by Theorem

3.2.2.
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Another shared trait with p-groups is the containment of proper subgroups within their normal-

izers. This result will be proven after establishing a relationship between the commutator subgroup

of two subgroups and the normalizer of a subgroup.

Theorem 3.2.3.

Let G be a group, H ≤ G and K ≤ G such that [H,K] ≤ H . Then K ≤ NG(H).

Proof. Now K ≤ G, so k ∈ G for all k ∈ K. Also [H,K] ≤ H , and so [h, k] ∈ H for all h ∈ H and for

all k ∈ K. Then since h ∈ H and [h, k] ∈ H , by the closure of H , we have that

h[h, k] = hh−1k−1hk = hk ∈ H

for all h ∈ H and for all k ∈ K. Thus Hk ≤ H for all k ∈ K. But |Hk| = |H| and so Hk = H for all

k ∈ K. Thus K ≤ NG(H).

This result allows for the proof that normalizers of proper subgroups “grow” in a nilpotent

group.

Theorem 3.2.4 (Normalizers of Proper Subgroups “Grow” in Nilpotent Groups).

Let G be a nilpotent group and H < G. Then H < NG(H).

Proof. SinceG is nilpotent, there exists n ∈ Z+∪{0} such thatZn(G) = G. Let 0 ≤ i ≤ n be maximal,

where Zi(G) is the largest (in terms of order) term of the upper central series such that Zi(G) ≤ H .

Then Zi+1(G) is not contained in H be the maximality of i.

Now

[H,Zi+1(G)] ≤ [G,Zi+1(G)] ≤ Zi(G) ≤ H

where the second containment follows from Theorem 2.2.6 and the third follows from the choice of

i. Then [H,Zi+1(G)] ≤ H , and so by Theorem 3.2.3, we have that Zi+1(G) ≤ NG(H).

Since Zi+1(G) is not contained in H , there exists x ∈ Zi+1(G) ≤ NG(H) such that x /∈ H . Thus,

H < NG(H).

31



Theorem 3.2.4 has given rise to another property of nilpotent groups. In fact, it will begin a

chain of equivalent properties which characterize nilpotency, similar to the way the derived series

characterizes solvability. First, a definition must be established.

Definition 3.2.5 (Maximal Subgroups).

Let G be a group and M ≤ G. Then M is a maximal subgroup of G if:

1. M 6= G;

2. Whenever there exists H ≤ G such that M ≤ H ≤ G, then either H = M or H = G. (i.e. there are

no proper subgroups ”between” M and G in the subgroup lattice of G)

Example (Maximal Subgroups of Z12).

Consider the subgroup lattice of Z12 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. It can be written as:

Z12

〈2〉 〈3〉

〈4〉 〈6〉

〈0〉

This lattice shows that 〈2〉 and 〈3〉 are maximal subgroups of Z12, while 〈4〉, 〈6〉, and 〈0〉 are not.

The concept of maximal subgroups will now be used to show another property of nilpotent

groups.

Theorem 3.2.6 (Maximal Subgroups are Normal in Nilpotent Groups).

Let G be a nilpotent group and M be a maximal subgroup of G. Then M E G.

Proof. By definition, since M is a maximal subgroup of G, we have that M < G. By Theorem 3.2.4,

since G is nilpotent, M < NG(M) ≤ G. Thus by the maximality of M , we have NG(M) = G and so

M E G.
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Remark. Note that Theorem 3.2.4 implies Theorem 3.2.6. We will now see that Theorem 3.2.6 will imply yet

another property of nilpotent groups. However, a few definitions and results are required first.

Definition 3.2.7 (External Direct Product).

Let A and B be groups. The external direct product of A and B is given by

A×B = {(a, b) : a ∈ A, b ∈ B}.

Definition 3.2.8 (Internal Direct Product).

Let G be a group, n ∈ Z+, and Hi ≤ G for all 1 ≤ i ≤ n such that:

1. G =
n∏
i=1

Hi ;

2. Hi E G for all 1 ≤ i ≤ n;

3. Hi

⋂∏
j 6=i

Hj = 1 for all 1 ≤ i ≤ n.

Then G is said to be the internal direct product of the Hi’s.

Remark. Note that, while the above definitions appear quite different, they are essentially the same; the main

difference being that the external direct product is created from arbitrary groups, which may not be contained

in the same group, while the internal direct product is created from subgroups of a common group.

It will now be shown that the two are, in fact, isomorphic to one another. This fact, along with

Theorem 3.2.6, will yield the next property of nilpotent groups.

Theorem 3.2.9 (External Direct Products and Internal Direct Products are Isomorphic).

Let G be a group, n ∈ Z+, and {Hi}ni=1 be a collection of subgroups of G such that G is the internal direct

product of the Hi’s. Then G ∼= H1 ×H2 × · · · ×Hn.

Proof. By definition, sinceG is the internal direct product of theHi’s,G =
n∏
i=1

Hi where eachHi E G

and H
⋂∏
i6=j

Hj = 1.

Note that for all k 6= i, Hk ⊂
∏
i6=j

Hj since each hk ∈ Hk can be written as hk111 · · · 1. Thus

Hi

⋂∏
i6=j

Hj = 1 implies Hi ∩Hk = 1 for all k 6= i.
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Let hi ∈ Hi, hj ∈ Hj where i 6= j, and consider [hi, hj ]. Now [hi, hj ] = (h−1i h−1j hi)hj ∈ Hj since

Hj E G. Also, [hi, hj ] = h−1i (h−1j hihj) ∈ Hi since Hi E G. Thus [hi, hj ] ∈ Hi ∩Hj = 1 since i 6= j.

By part 7 of Theorem 2.2.4, [hi, hj ] = 1 =⇒ hihj = hjhi. Since hi and hj were chosen arbitrarily, it

follows that all elements of distinct subgroups commute.

Now define

φ : H1 ×H2 × · · · ×Hn −→
n∏
i=1

Hi

by φ((h1, h2, · · · , hn)) = h1h2 · · ·hn. It will not be shown that φ is an isomorphism.

φ is well-defined

Let (h1, h2, · · · , hn), (k1, k2, · · · , kn) ∈ H1×H2×· · ·×Hn such that (h1, h2, · · · , hn) = (k1, k2, · · · , kn).

Then hi = ki for all 1 ≤ i ≤ n. Thus h1h2 · · ·hn = k1k2 · · · kn and so φ((h1, h2, · · · , hn)) =

φ((k1, k2, · · · , kn)) and φ is well-defined.

φ is a homomorphism

Let (h1, h2, · · · , hn), (k1, k2, · · · , kn) ∈ H1 ×H2 × · · · ×Hn where hi, ki ∈ Hi for all 1 ≤ i ≤ n.

Then

φ((h1, h2, · · · , hn)(k1, k2, · · · , kn)) = φ((h1k1, h2k2, · · · , hnkn))

= h1k1h2k2 · · ·hnkn

= h1h2 · · ·hng1g2 · · · gn, since elements of distinct Hi’s commute

= φ((h1, h2, · · · , hn))φ((k1, k2, · · · , kn)).

Thus φ is a homomorphism.

φ is onto

Let h1h2 · · ·hn ∈
n∏
i=1

Hi where hi ∈ Hi for each 1 ≤ i ≤ n. Then by definition there exists

(h1, h2, · · · , hn) ∈ H2 × · · · ×Hn such that φ((h1, h2, · · · , hn)) = h1h2 · · ·hn. Hence φ is onto.
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φ is one-to-one

Suppose now that there exist (h1, h2, · · · , hn), (k1, k2, · · · , kn) ∈ H1 × H2 × · · · × Hn such that

φ((h1, h2, · · · , hn)) = φ((k1, k2, · · · , kn)).

Then

h1h2 · · ·hn = k1k2 · · · kn

or k−11 h1 = k2k3 · · · knh−1n h−1n−1 · · ·h
−1
2

or k−11 h1 = k2h
−1
2 k3h

−1
3 · · · knh−1n , since elements of distinct subgroups commute.

Now k−11 h1 ∈ H1 and k−11 h1 = k2h
−1
2 k3h

−1
3 · · · knh−1n ∈

∏
j 6=1

Hj . But then k−11 h1 ∈ H1

⋂∏
j 6=1

Hj .

Since H1

⋂∏
j 6=1

Hj = 1, it follows that k−11 h1 = 1 or h1 = k1.

Then 1 = k2h
−1
2 k3h

−1
3 · · · knh−1n implies k−12 h2 = k3h

−1
3 k4h

−1
4 · · · knh−1n and so

k−12 h2 = k3h
−1
3 k4h

−1
4 · · · knh−1n = 1k3h

−1
3 k4h

−1
4 · · · knh−1n ∈

∏
j 6=2

Hj .

Since H2

⋂∏
j 6=2

Hj = 1, we have k−12 h2 = 1 or h2 = k2. By repeating this argument, it follows

that hi = ki for all 1 ≤ i ≤ n and so φ is one-to-one.

Therefore φ is an isomorphism and so H1 ×H2 × · · · ×Hn
∼=

n∏
i=1

Hi.

Remark. Due to the internal and external direct products being isomorphic, it is common to simply refer to

“the direct product” without specifying which one. It is in this way we will refer to it throughout the remainder

of the paper, with internal or external being explicitly shown or stated only when necessary.

Before proving the next equivalent property of nilpotent groups, one more definition is needed.
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Definition 3.2.10.

Let G be a group. Then π(G) = {p : p is prime and p | |G|}.

Noting these definitions and results, the next property of nilpotent groups will now be stated

and proved.

Theorem 3.2.11.

Let G be a nilpotent group. Then G is isomorphic to the direct product of its Sylow p-subgroups for distinct

p. That is, G ∼= P1 × P2 × · · · × Pn where Pi ∈ Sylpi(G) for each pi ∈ π(G), with n ∈ Z+ and 1 ≤ i ≤ n.

Proof. Let p ∈ π(G) and P ∈ Sylp(G). If P is not normal in G, then NG(P ) < G. Thus, there exists

a maximal subgroup M such that NG(P ) ≤M .

Since G is nilpotent, by Theorem 3.2.6, M E G. Also, P ≤ NG(P ) and so P ≤ M . But P ∈

Sylp(G) and P ≤ M , so it must be that P ∈ Sylp(M). Then by Theorem 1.1.11, G = NG(P )M .

However, NG(P ) ≤ M and so G = NG(P )M = M . This is a contradiction, since M is a maximal

subgroup of G and therefore cannot be equal to G. Hence, it must be that P E G.

Since P E G, where P ∈ Sylp(G) for each p ∈ π(G),
∏

P∈Sylp(G),
p∈π(G)

P is a group and

∣∣∣∣∣∣∣∣
∏

P∈Sylp(G),
p∈π(G)

P

∣∣∣∣∣∣∣∣ =
∏

P∈Sylp(G),
p∈π(G)

|P | = |G|.

Note that the first equality follows by Lagrange’s Theorem, since the orders of any two P are

coprime.

Thus

G =
∏

P∈Sylp(G),
p∈π(G)

P .

Additionally, because Sylow p-subgroups and Sylow q-subgroups intersect trivially for p 6= q, we

have that

P
⋂ ∏

Q∈Sylq(G),
q∈π(G)\{p}

Q = 1

for all P ∈ Sylp(G) and for all p ∈ π(G).
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Thus, by definition, we have that G is the internal direct product of its Sylow p-subgroups for

distinct p. It follows by the isomorphism established in Theorem 3.2.11 that G ∼= P1 ×P2 × · · · × Pn

where Pi ∈ Sylpi(G) for each pi ∈ π(G), with n ∈ Z+ and 1 ≤ i ≤ n.

Note that Theorem 3.2.6 implies Theorem 3.2.11, as the normality of maximal subgroups lead

to each P being normal in G. To close the section, three more results will be established in order

to show that Theorem 3.2.11 implies Theorem 3.2.4, thus establishing three equivalent properties to

being nilpotent.

Theorem 3.2.12 (The Center of a Direct Product is the Direct Product of the Centers).

Let A and B be groups, then Z(A×B) = Z(A)× Z(B).

Proof. Suppose (a, b) ∈ Z(A×B) where a ∈ A and b ∈ B. Also, let (x, y) ∈ A×B where x ∈ A and

y ∈ B.

Then (a, b)(x, y) = (x, y)(a, b), or (ax, by) = (xa, yb). Thus, ax = xa and so a ∈ Z(A). Similarly,

by = yb and so b ∈ Z(B). Thus, (a, b) ∈ Z(A)× Z(B). Hence, Z(A×B) ≤ Z(A)× Z(B).

Now suppose (a, b) ∈ Z(A)× Z(B) where a ∈ Z(A) and b ∈ Z(B). Let (x, y) ∈ A×B such that

x ∈ A and y ∈ B.

Then (a, b)(x, y) = (ax, by) = (xa, yb) since a ∈ Z(A) and b ∈ Z(B). Also, (xa, yb) = (x, y)(a, b).

Thus, (a, b)(x, y) = (x, y)(a, b) and so (a, b) ∈ Z(A×B). Therefore Z(A)×Z(B) ≤ Z(A×B) and it

follows that Z(A×B) = Z(A)× Z(B).

Theorem 3.2.13.

Let A,B,C, and D be groups such that C E A and D E B. Then

A×B
C ×D

∼=
A

C
× B

D
.

Proof. Since C E A and D E B, both A/C and B/D are groups. Thus, A/C ×B/D is a group.
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Let φ : A×B −→ A/C ×B/D be defined by φ((a, b)) = (aC, bD) for all (a, b) ∈ A×B. Suppose

(a, b), (x, y) ∈ A×B. Then

φ((a, b))φ((x, y)) = (aC, bD)(xC, yD)

= (aCxC, bDyD)

= (axC, byD)

= φ((ax, by))

= φ((a, b)(x, y)).

Thus φ is a homomorphism.

Suppose now that (a, b) ∈ Kern(φ). Then

(a, b) ∈ Kern(φ) if and only if φ((a, b)) = (1C, 1D)

if and only if (aC, bD) = (1C, 1D)

if and only if aC = 1C and bD = 1D

if and only if 1−1a ∈ C and 1−1b ∈ D

if and only if a ∈ C and b ∈ D

if and only if (a, b) ∈ C ×D.

Thus Kern(φ) = C ×D.

Note that φ is clearly onto by design. Thus φ(A×B) =
A

C
× B

D
.

Therefore, by the First Isomorphism Theorem

A×B
Kern(φ)

∼= φ(A×B)

or
A×B
C ×D

∼=
A

C
× B

D
.
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Theorem 3.2.14 (Direct Products of Nilpotent Group are Nilpotent).

Let A and B be nilpotent groups. Then A×B is nilpotent.

Proof. SinceA andB are nilpotent, there existm,n ∈ Z+∪{0} such thatZm(A) = A andZn(B) = B.

Let k = max{m,n}.

Claim: Zi(A×B) = Zi(A)× Zi(B), for all 0 ≤ i ≤ k. We will proceed by induction on i.

If i = 0, then Z0(A × B) = (1, 1) = {1} × {1} = Z0(A) × Z0(B). Suppose Zi(A × B) =

Zi(A)× Zi(B). Then

Zi+1(A×B)

Zi(A×B)
= Z

(
A×B

Zi(A×B)

)

= Z

(
A×B

Zi(A)× Zi(B)

)
, by inductive hypothesis

∼= Z

(
A

Zi(A)
× B

Zi(B)

)
, by Theorem 3.2.13

= Z

(
A

Zi(A)

)
× Z

(
B

Zi(B)

)
, by Theorem 3.2.12

=
Zi+1(A)

Zi(A)
× Zi+1(B)

Zi(B)

∼=
Zi+1(A)× Zi+1(B)

Zi(A)× Zi(B)
, by Theorem 3.2.13

=
Zi+1(A)× Zi+1(B)

Zi(A×B)
, by inductive hypothesis.

Thus
Zi+1(A×B)

Zi(A×B)
=
Zi+1(A)× Zi+1(B)

Zi(A×B)
.

Taking preimages yields Zi+1(A×B) = Zi+1(A)×Zi+1(B) and so the claim holds by induction.

But then Zk(A×B) = Zk(A)× Zk(B) = A×B. Hence A×B is nilpotent.
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Remark. Using the result from Theorem 3.2.14, we can see that any group which is the product of nilpotent

groups is itself nilpotent. Note that for any group G, P ∈ Sylp(G) is a p-group and is therefore nilpotent

by Theorem 3.1.8. Thus any group which is the product of it’s Sylow p-subgroups for distinct p is nilpotent.

This nilpotency implies that normalizers “grow” by Theorem 3.2.4, which in turn implies that all maximal

subgroups are normal by Theorem 3.2.6. Thus, we have found three properties equivalent to being nilpotent,

with each implying the next.

To close the section, these equivalent properties will be stated, and are as follows:

Remark (Equivalent Properties to Nilpotency).

Let G be a group. Then the following are equivalent:

1. G is nilpotent;

2. If H < G, then H < NG(H);

3. If M is a maximal subgroup of G, then M E G;

4. G ∼= P1 × P2 × · · · × Pn, where Pi ∈ Sylpi(G) for each pi ∈ π(G), with n ∈ Z+ and 1 ≤ i ≤ n.

In the next section, group automorphisms and characteristic subgroups will be defined and ex-

plored, which will provide a variety of results and complete the necessary information to begin

exploring the influence of subgroup structure on groups which are the product of two subgroups.
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Automorphisms, Characteristic

Subgroups, and Minimal Normal

Subgroups

In this part of the thesis, we will establish the remaining definitions and results necessary to begin

examining groups which are the product of two subgroups. Namely, a few more useful types of

subgroups will be established, along with automorphisms, as well as the relationships between the

two.

4.1 Automorphisms and Characteristic Subgroups

Definition 4.1.1 (Automorphisms).

Let G be a group and suppose φ : G −→ G. Then φ is an automorphism if φ is a one-to-one and onto

homomorphism. The set of all such automorphisms of a group is given by:

Aut(G) = {φ : G −→ G : φ is an automorphism }.

Remark. Aut(G) forms a group under function composition.

In fact, conjugation of a group by any of its elements generates an automorphism- a fact which

will now be proven. Once formally defined, the structure of the set of these automorphisms within

Aut(G) will be explored.
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Theorem 4.1.2 (Conjugation Generates an Automorphism).

Let G be a group and g ∈ G. Define φg : G −→ G by φg(x) = xg , for all x ∈ G. Then φg ∈ Aut(G).

Proof. First, we will show that φg is well-defined and one-to-one. Let x, y ∈ G. Then x = y if and

only if xg = yg , if and only if φg(x) = φg(y). Thus, φg(x) is well-defined and one-to-one.

To see that φg is onto, let y ∈ G. By the closure of G, x = yg
−1 ∈ G. Then

φg(x) = xg = (yg
−1

)g = y.

Hence φg is onto.

Lastly, to show φ is a homomorphism, let x, y ∈ G. Then

φg(x)φg(y) = xgyg

= g−1xgg−1yg

= g−1xyg

= (xy)g

= φg(xy).

Thus, φg is a homomorphism and so φg ∈ Aut(G).

Definition 4.1.3 (Inner Automorphisms).

Let G be a group. We define the set of inner automorphisms as

Inn(G) = {φg : g ∈ G}

where φg is the automorphism generated from conjugation by the element g ∈ G, as described in previous

theorem.

The set Inn(G) not only forms a subgroup ofAut(G), but is actually normal inAut(G). This will

be shown in the following theorem.
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Theorem 4.1.4.

Let G be a group. Then Inn(G) E Aut(G).

Proof. Let φg ∈ Inn(G), ψ ∈ Aut(G), x ∈ G, and y ∈ G such that ψ(x) = y. By theorem 4.1.2,

φg ∈ Aut(G). It follows by the group structures of G and Aut(G) that Inn(G) ≤ Aut(G). Thus, it

remains to show that Inn(G) is normal in Aut(G).

Consider

φψg (x) = (ψ−1 ◦ φg ◦ ψ)(x)

= (ψ−1 ◦ φg)(y)

= ψ−1(yg)

= ψ−1(g−1)ψ−1(y)ψ−1(g), since ψ is a homomorphism

= ψ−1(g−1)x ψ−1(g).

But ψ is a homomorphism, and so ψ−1(g−1) = (ψ−1)−1(g) = ψ(g). Thus ψ−1(g−1)x ψ−1(g) =

ψ(g)x ψ−1(g) = xψ
−1(g).

But ψ ∈ Aut(G) and Aut(G) is a group. Hence ψ−1 ∈ Aut(G). Thus, there exists g0 ∈ G such

that ψ−1(g) = g0. But then xψ−1(g) = xg0 = φg0(x), where φg0 ∈ Inn(G) since g0 ∈ G. Therefore

Inn(G) E Aut(G).

Remark. The choice of name for Inn(G) implies the existence of “outer” automorphisms of a group G. By

the result of Theorem 4.1.4, we can define the group of outer automorphisms asOut(G) = Aut(G)/Inn(G).

Having defined and briefly explored a group’s automorphisms, we can now identify another

type of subgroup, whose special properties become apparent thanks to the elements of Aut(G).

Definition 4.1.5 (Characteristic Subgroups).

Let G be a group and H ≤ G. Then H is a characteristic subgroup of G if φ(H) ≤ H for all φ ∈ Aut(G).

We denote this as H char G.
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Remark. If H char G, then φ(H) ≤ H . However, each φ ∈ Aut(G) is a bijection, and so |φ(H)| = |H|.

Thus, φ(H) = H . Essentially, characteristic subgroups are invariant under all of the group’s automorphisms,

much in the same way that normal subgroups are invariant under conjugation by any of the group’s elements.

We will now identify a few characteristic subgroups which reside in any group and prove that

they are, in fact, characteristic.

Theorem 4.1.6 (The Center is a Characteristic Subgroup).

Let G be a group. Then Z(G) char G.

Proof. Let φ ∈ Aut(G), z ∈ Z(G), and g ∈ G. Since φ is onto, there exists x ∈ G such that φ(x) = g.

Then

gφ(z) = φ(x)φ(z)

= φ(xz), since φ is a homomorphism

= φ(x), since z ∈ Z(G)

= g.

Thus gφ(z) = g, or gφ(z) = φ(z)g, and so φ(z) ∈ Z(G). Hence Z(G) char G.

Theorem 4.1.7 (The Derived Subgroup is a Characteristic Subgroup).

Let G be a group. Then G′ char G.

Proof. Let φ ∈ Aut(G) and
n∏
i=1

[ai, bi] ∈ G′, where n ∈ Z+. Now G′ ≤ G and so [ai, bi] ∈ G for all

1 ≤ i ≤ n. Thus

φ

(
n∏
i=1

[ai, bi]

)
=

n∏
i=1

φ ([ai, bi]) , since φ is a homomorphism

=
n∏
i=1

[φ(ai), φ(bi)] , since φ is an isomorphism.
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Since φ ∈ Aut(G), φ(ai) ∈ G and φ(bi) ∈ G for all 1 ≤ i ≤ n, and so [ai, bi] ∈ G′ for each i. Thus

φ

(
n∏
i=1

[ai, bi]

)
=

n∏
i=1

[φ(ai), φ(bi)] ∈ G′

and therefore G′ char G.

We will now identify some properties of characteristic subgroups and their relationship with a

group’s normal subgroups.

Theorem 4.1.8.

Let G be a group, H ≤ G, and K ≤ G. Then:

1. If H char G, then H E G;

2. If H char K and K E G, then H E G.

Proof. For 1, let g ∈ G. By Theorem 4.1.2, φg ∈ Aut(G). Since H char G, it follows by definition and

from a previous remark that φg(H) = H . But then Hg = H , and so H E G.

For 2, let g ∈ G. Then φg ∈ Aut(G). Since K E G, it follows that φg ∈ Aut(K). Then because H

char K, we have that Hg = φg(H) ≤ H and so Hg = H . Hence H E G.

Remark. Note that under most circumstances, normality is not a transitive property. Thus, for a group G

with subgroups H ≤ G and K ≤ G, it is not necessarily true that H E K E G implies H E G. The

presence of H as a characteristic subgroup of K is required. This lack of transitivity will be illustrated with a

specific example.

Example. Consider A4 with subgroups K = {1, (12)(34), (13)(24), (14)(23)} and H = {1, (12)(34)}.

Recall that conjugation preserves cycle type. Thus since all elements of K are 2− 2−cycles, we have that

ka ∈ K for all k ∈ K and for all a ∈ A4. Thus K E A4.
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Additionally, note that 1k = 1 ∈ H , for all k ∈ K. Checking the remaining elements of H conjugated by

the remaining elements of K yields:

(12)(34)(12)(34) = (12)(34) ∈ H

(12)(34)(13)(24) = (12)(34) ∈ H

(12)(34)(14)(23) = (12)(34) ∈ H.

Thus H E K.

However

(12)(34)(143) = (143)−1(12)(34)(143)

= (14)−1(13)−1(12)(34)(13)(14)

= (14)(13)(12)(34)(13)(14)

= (14)(23) /∈ H.

Therefore H 6E A4.

The previous example highlights one structural influence imparted by the presence of charac-

teristic subgroups. Namely, their ability to guarantee the transitivity of normal subgroups. It is also

true that a lack of characteristic subgroups affects the structure of a group. We will investigate the

effects of a shortage of characteristic subgroups, along with an additional type of subgroup, in the

following section.

4.2 Characteristically Simple Groups and Minimal Normal Sub-

groups

Recall that a group G is called simple if its only normal subgroups are 1 and G. Theorem 4.1.8

established a relationship between characteristic subgroups and normal subgroups, and as such,

we may define what it means for a group to be characteristically simple and what this means for its

structure.
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Definition 4.2.1 (Characteristically Simple Groups).

Let G be a group. Then G is called characteristically simple if it has 1 and G as its only characteristic sub-

groups.

Remark. The definitions for simple and characteristically simple groups are closely related in that all simple

groups are characteristically simple. SupposeG is simple and H char G. By part 1 of Theorem 4.1.8, we have

H E G. But G is simple, so either H = 1 or H = G, making G characteristically simple as well.

Example. Using the previous remark, it is easy to find examples of characteristically simple groups. We now

have that An is characteristically simple for all n ≥ 5 and Zp is characteristically simple for any prime p.

We will now see that being characteristically simple relates a group’s structure to that of simple

groups.

Theorem 4.2.2.

Let G be a characteristically simple group. Then G is isomorphic to the direct product of simple isomorphic

groups.

Proof. Let G1 E G such that G1 6= 1 and |G1| is minimal. Also, let {Gi}si=1 be a collection of sub-

groups of G such that Gi ∼= G1 for all 1 ≤ i ≤ s, Gi E G for all 1 ≤ i ≤ s, Gi
⋂∏
j 6=i

Gj = 1 for all

1 ≤ i ≤ s, and s ∈ Z+ is maximal. Lastly, let H =

s∏
i=1

Gi. Then since Gi E G for all 1 ≤ i ≤ s, it

follows that H E G.

Now, if H is not a characteristic subgroup of G, then there exists 1 ≤ i ≤ s and φ ∈ Aut(G) such

that φ(Gi) 6≤ H . Since Gi E G and φ ∈ Aut(G), we have that φ(Gi) E G. Thus φ(Gi) ∩H E G.

Because φ(Gi) 6≤ H , it follows that φ(Gi)∩H < φ(Gi). But then, since φ ∈ Aut(G) andGi ∼= G1,

we have |φ(Gi) ∩H| < |φ(Gi)| = |Gi| = |G1|. Therefore φ(Gi) ∩H = 1 by the minimality of |G1|.

Now φ(Gi) ∼= Gi ∼= G1 or φ(Gi) ∼= G1. Also, φ(Gi)
⋂ s∏
i=1

Gi = φ(Gi) ∩ H = 1. Thus, φ(Gi)

is disjoint from each Gi and satisfies the properties necessary to be included in H . Hence H <

φ(Gi)

s∏
i=1

Gi which is a contradiction to the maximality of s. Therefore H char G.
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Since H 6= 1 and G is characteristically simple, we have that

G = H =
s∏
i=1

Gi ∼= G1 ×G2 × · · · ×Gs

by Theorem 3.2.9.

Let 1 ≤ i ≤ s. If N E Gi, then N E
s∏
i=1

Gi = G since all elements of Gi commute with all

elements of Gj , where i 6= j. But |N | ≤ |Gi| = |G1| and so by the minimality of |G1|, either |N | = 1

or |N | = |G1|. Hence N = 1 or N = Gi, yielding that Gi is simple for all 1 ≤ i ≤ s. Thus

G =
s∏
i=1

Gi ∼= G1×G2× · · · ×Gs and soG is isomorphic to the direct product of simple isomorphic

groups.

For the remainder of this section, we will turn our attention to minimal normal subgroups and

elementary abelian p-groups, both of which will be defined shortly. Combining these concepts with

the previous results regarding solvability and simple isomorphic groups will yield the remaining

theorems necessary to structurally examine groups which are the product of two subgroups in the

coming section.

Definition 4.2.3 (Minimal Normal Subgroups).

Let G be a group and N E G. Then N is a minimal normal subgroup if N 6= 1 and whenever K ≤ N such

that K E G, then either K = 1 or K = N .

Remark. Note that minimal normal subgroups behave in a similar manner to maximal subgroups. A minimal

normal subgroup of a group G will have no non-trivial, proper normal subgroups contained in it, much like

a maximal subgroup would have no proper subgroups containing it.

Definition 4.2.4 (Elementary Abelian p-Groups).

Let G be a group and p be a prime. Then G is an elementary abelian p-group if G ∼= Zp × Zp × · · · × Zp︸ ︷︷ ︸
n

for some n ∈ Z+.
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These definitions, along with the following proof, will yield the remaining results of this section.

Theorem 4.2.5 (Simple Abelian Groups are Isomorphic to Cyclic Groups of Prime Order).

Let G be a simple abelian group. Then G ∼= Zp for some prime p.

Proof. Note that if G = 1, then G 6= Zp for any prime p. Without loss of generality, assume G 6= 1.

Then there exists g ∈ G such that g 6= 1.

SinceG is an abelian group, every subgroup ofG is normal. However, sinceG is simple, its only

normal subgroups are 1 and G. Thus it must be that 1 and G are the only subgroups of G.

Consider 〈g〉. Since 〈g〉 ≤ G, either 〈g〉 = 1 or 〈g〉 = G. It cannot be that 〈g〉 = 1 since g ∈ 〈g〉 and

g 6= 1. Hence 〈g〉 = G and so G is cyclic.

Suppose now that G has composite order. Then there exist m,n ∈ Z+ such that m,n > 1,

gcd(m,n) = 1, and |G| = |〈g〉| = |g| = mn. Consider 〈gm〉 = {1, gm, g2m, · · · , g(n−1)m}. Now

〈gm〉 ≤ G, so either 〈gm〉 = 1 or 〈gm〉 = G. But m < mn and so gm 6= 1. Thus, 〈gm〉 6= 1. Hence

〈gm〉 = G = 〈g〉.

But then |〈gm〉| = |G| = |〈g〉| and so n = mn or m = 1, a contradiction. Thus 〈gm〉 6= 1 and

〈gm〉 6= G. This is, again, a contradiction since G is a simple abelian group and therefore has no

non-trivial subgroups. Thus G has prime order.

Then G is a cyclic group of prime order and so G ∼= Zp for some prime p.

Theorem 4.2.6.

Let G be a solvable group and N be a minimal normal subgroup of G. Then N is an elementary abelian

p-group for some prime p.

Proof. SinceG is solvable andN ≤ G, we knowN is solvable by theorem 2.2.10. LetK charN . Then

since N E G, by part 2 of theorem 4.1.8, K E G. But N is a minimal normal subgroup, so K = 1 or

K = N . Thus, N is characteristically simple.
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Then by Theorem 4.2.2, there exists a collection of subgroups ofN , say {Ni}ni=1, such that for all

1 ≤ i ≤ n, we haveN =
n∏
i=1

Ni,Ni E N ,Ni
⋂∏
i6=j

Nj = 1, and eachNi is a simple isomorphic group.

Suppose there exists 1 ≤ i ≤ n such that Ni is non-abelian. Now N ′i E Ni and so N ′i = 1 or

N ′i = Ni. ButNi is non-abelian so it cannot be thatN ′i = 1. Thus,N ′i = Ni and soNi is not solvable.

This is a contradiction since Ni ≤ N and N is solvable. Thus Ni is abelian for all 1 ≤ i ≤ n.

Since each Ni is a simple abelian group, by Theorem 4.2.5, there exists a prime p such that Ni ∼=

Zp for all 1 ≤ i ≤ n. But then

N =
n∏
i=1

Ni ∼= N1 ×N2 × · · · ×Nn = Zp × Zp × · · · × Zp︸ ︷︷ ︸
n

and so N is an elementary abelian p-group.

Theorem 4.2.7.

Let G be a p-group for some prime p and N E G such that N 6= 1. Then N ∩ Z(G) 6= 1.

Proof. SinceN E G, we knowG acts onN by conjugation. ThenG acts on S = N −{1} by conjuga-

tion as well. Note that |S| = |N |−1. Thus, if p | |S|, then since p | |N |, we have that p | |N |− |S| = 1.

This is a contradiction since no prime divides 1. Therefore p 6 | |S|.

Thus, since G is a p-group, by Theorem 1.1.13, there exists a ∈ S such that Ga = G. But Ga =

CG(a) since G is acting by conjugation, and so G = CG(a). Hence a 6= 1 and a ∈ N ∩ Z(G).

Theorem 4.2.8.

Let G be a nilpotent group and N E G such that N 6= 1. Then N ∩ Z(G) 6= 1.

Proof. LetN1 ≤ N such thatN1 is a minimal normal subgroup ofG. SinceG is nilpotent, by Theorem

3.2.1, G is solvable. Additionally, by Theorem 4.2.6, N1 is an elementary abelian p-group for some

prime p.
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Now by Sylow’s Second Theorem, there exists P ∈ Sylp(G) such that N1 ≤ P . Hence N1 E P

and N1 6= 1. Then by Theorem 4.2.7, N1 ∩ Z(P ) 6= 1. Since G is nilpotent, Z(P ) ≤ Z(G). Thus,

1 6= N1 ∩ Z(P ) ≤ N1 ∩ Z(G) or N1 ∩ Z(G) 6= 1.

Theorem 4.2.9 (Products of Normal Nilpotent Subgroups are Nilpotent).

Let G be a group, M E G be nilpotent and N E G be nilpotent. Then MN E G is nilpotent.

Proof. Since M E G and N E G, it follows that MN E G. We will proceed by induction on |G|.

If |G| = 1, then G = 1 and so M = 1 and N = 1. Thus MN = 1 E G. Also 1 is trivially nilpotent

since Z0(1) = 1. Suppose the theorem holds for all groups of order less than |G|.

If MN < G, then M E MN is nilpotent and N E MN is nilpotent. Since |MN | < |G|, by the

inductive hypothesis, MN is nilpotent and the proof is complete. Thus it must be that G =MN .

Claim: Z(G) 6= 1.

Since M is nilpotent, Z(M) 6= 1 by Theorem 3.2.2. Consider [Z(M), N ]. If [Z(M), N ] = 1

then 1 6= Z(M) ≤ CG(MN) = Z(G), and the claim holds. Suppose instead that [Z(M), N ] 6= 1.

Then Z(M) char M E G and so Z(M) E G by Theorem 4.1.8. Thus since N E G, we have that

[Z(M), N ] E G and so 1 6= [Z(M), N ] E N .

Because N is nilpotent, by Theorem 4.2.8, 1 6= [Z(M), N ] ∩ Z(N). But 1 6= [Z(M), N ] ∩ Z(N) ≤

Z(M) ∩ Z(N) ≤ Z(G), since G =MN . Thus Z(G) 6= 1 and the claim holds.

Let G = G/Z(G). Then G = MN . Since M E G and N E G, we have that M E G and N E G.

Also, since M and N are nilpotent, Theorem 3.1.6 yields that M and N are nilpotent.

Now |G| < |G| and so by induction hypothesis MN E G and MN is nilpotent. But MN = G =

G/Z(G) and so G/Z(G) is nilpotent. Thus by Theorem 3.1.7, G =MN is nilpotent.

With these results in hand, an exploration into the structure of groups which are the product of

two subgroups can begin.
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Groups Which are the Product of Two

Subgroups

In the final section, we will explore a variety of results regarding the structure and properties of

groups which are the product of two of their subgroups. First, the necessary conditions for a product

of two subgroups to remain a subgroup will be established.

Theorem 5.1.1.

Let G be a group, H ≤ G and K ≤ G. Then HK ≤ G if and only if HK = KH .

Proof. ( =⇒ ) Suppose HK ≤ G. Let hk ∈ HK, where h ∈ H and k ∈ K. Since HK ≤ G, we know

(hk)−1 = k−1h−1 ∈ HK. Thus, there exists h1 ∈ H and k1 ∈ K such that k−1h−1 = h1k1. Then

(k−1h−1)−1 = (h1k1)
−1 or hk = k−11 h−11 ∈ KH . Thus HK ⊆ KH .

Now let kh ∈ KH , where k ∈ K and h ∈ H . Then h−1k−1 ∈ HK and so kh = (h−1k−1)−1 ∈

HK. Hence KH ⊆ HK and HK = KH .

( ⇐= ) Suppose now that HK = KH . Since H ≤ G, we have that H is non-empty. K is also

non-empty for the same reason. Thus there exists h ∈ H and k ∈ K. Then hk ∈ HK and so HK is

non-empty.

Let h1k1, h2k2 ∈ HK where h1, h2 ∈ H and k1, k2 ∈ K. Then k1k−12 h−12 ∈ KH = HK. Hence

there exists h3 ∈ H and k3 ∈ K such that k1k−12 h−12 = h3k3. Now

(h1k1)(h2k2)
−1 = h1k1k

−1
2 h−12 = h1h3k3 ∈ HK.

Thus HK ≤ G by the subgroup test.
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Theorem 5.1.2.

Let G be a group, H ≤ G and K ≤ G such that G = HK. Then G = HxKy for all x, y ∈ G.

Proof. Notice that HK ≤ G. Then by Theorem 5.1.1, HK = KH and so G = KH . Let x, y ∈ G.

Then yx−1 ∈ G = KH . Thus, there exists k ∈ K and h ∈ H such that yx−1 = kh−1. SinceG = HK,

by the closure of H and K, we have G = HhKk. Conjugation by h−1 yields

G = Gh
−1

= Hh−1

Kkh−1

= HKkh−1

= HKyx−1

or G = HKyx−1 . Conjugating again by x yields G = Gx = HxKyx−1x = HxKy or G = HxKy .

Theorem 5.1.3.

Let G be a group, H ≤ G, K ≤ G, A ≤ G and B ≤ G such that G = HK, H is conjugate to A and K is

conjugate to B. Then G = AB and there exists g ∈ G such that Hg = A and Kg = B.

Proof. Since K is conjugate to B and G = HK = KH , by Theorem 5.1.2, there exists h ∈ H and

k ∈ K such that Kkh = B. Then Kh = B.

Now G = HK and so G = Gh = HhKh = HKh = HB. Since H is conjugate to A, there exists

h1 ∈ H and b ∈ B such that Hh1b = A, or Hb = A. Then Hhb = Hb = A and Khb = Bb = B.

Therefore, conjugating G = HK by hb yields

G = Ghb = HhbKhb = HbBb = AB.

Thus G = AB, Hhb = A and Khb = B.

These results regarding the ability to conjugate subgroups will now help construct a Sylow p-

subgroup of a group G = HK using the Sylow p-subgroups of H ≤ G and K ≤ G.
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Theorem 5.1.4.

LetG be a group, p be a prime,H ≤ G andK ≤ G such thatG = HK. Then there exists P ∈ Sylp(H) and

Q ∈ Sylp(K) such that PQ ∈ Sylp(G).

Proof. Let R ∈ Sylp(G). By Sylow’s second theorem, there exist x, y ∈ G such that P x ≤ R and

Qy ≤ R. By Theorems 5.1.2 and 5.1.3, G = HxKy and there exists g ∈ G such that Hxg = H and

Kyg = K. Then P xg ≤ Hxg = H and Qyg ≤ Kyg = K. Thus, P xg ∈ Sylp(H) and Qyg ∈ Sylp(K).

Now P xg ≤ Rg and Qyg ≤ Rg . Thus, P xgQyg ⊆ Rg . Also |P xg ∩Qyg| ≤ |H ∩K|p. But then

|Rg| = |R| = |G|p = |HK|p =
|H|p|K|p
|H ∩K|p

=
|P xg||Qyg|
|H ∩K|p

≤ |P
xg||Qyg|

|P xg ∩Qyg|
= |P xgQyg|.

Thus P xgQyg = Rg ∈ Sylp(G).

Theorem 5.1.5.

Let G be a group. H ≤ G, K ≤ G such that G = HK, and H ≤ L ≤ G. Then L = H(L ∩K).

Proof. Since H ≤ L and L ∩K ≤ L, then H(L ∩K) ⊆ L by the closure of L.

Let l ∈ L. Then since l ∈ G = HK, there exist h ∈ H and k ∈ K such that l = hk. Then k = h−1l

and so k ∈ L. Thus, h−1l = k ∈ L ∩ K or l ∈ H(L ∩ K). Hence L ⊆ H(L ∩ K). But both H and

L ∩K are subgroups of L so it must be that L = H(L ∩K).

Theorem 5.1.5 illuminates the influence H and K have on other subgroups of G which contain

them. We will now explore the influence H and K have on G as a whole- particularly when H and

K are cyclic.

Theorem 5.1.6.

Let G be a group, H ≤ G and K ≤ G such that G = HK. If H and K are cyclic, then G is solvable.

Proof. Suppose the theorem is false and let G be a minimal counterexample. Since H and K are

cyclic, there exist h ∈ H and k ∈ K such that H = 〈h〉 and K = 〈k〉.
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Without loss of generality, suppose |K| ≤ |H|. If H ∩Hk = 1, then

|HHk| = |H||Hk|
|H ∩Hk|

= |H||H| ≥ |H||K| ≥ |HK| = |G|.

Thus G = HHk. Then by Theorem 5.1.2, we have G = HH = H or G = H . But then G is cyclic and

therefore solvable by Theorem 2.1.2, since every cyclic group is abelian. This is a contradiction, so

it must be that H ∩Hk 6= 1.

Then there exists a prime p such that p | |H ∩ Hk|. Since H ∩ Hk ≤ H and H is cyclic, then

H ∩Hk is cyclic. By Theorem 1.1.15, there exists L ≤ H ∩Hk such that |L| = p. Now L ≤ Hk and

so Lk−1 ≤ H . Also L ≤ H and |L| = |Lk−1 |. Thus, since H is cyclic, by Theorem 1.1.15, L = Lk
−1 or

Lk = L.

Now NG(L) ⊇ 〈H,K〉 = H〈k〉 = HK = G. Thus, NG(L) = G and so L E G. Let G = G/L.

ThenG = H K and by Theorem 1.1.14,H andK are cyclic. Moreover, |G| = |G/L| = |G|/|L| < |G|.

Thus, by the minimality of |G|, we get G = G/L is solvable. Also, L ≤ H and H is cyclic. Then L is

cyclic and therefore solvable by Theorem 2.1.2.

But then L E G is solvable andG/L is solvable, so by Theorem 2.1.5,G is solvable. This is, again,

a contradiction. Thus G is solvable and the theorem holds.

Remark.

Note that, under the conditions presented in Theorem 5.1.6, it cannot be proven that G is cyclic, abelian, or

even nilpotent. Being a solvable group is essentially the strongest structural conclusion that can be drawn in

regards to G. This fact will now be illustrated by an example of a group which meets the above criteria, but is

not cyclic, abelian, or nilpotent.

Example.

Consider S3 and note that S3 = A3〈(12)〉 ∼= Z3Z2.

Now both Z3 and Z2 are cyclic, and therefore abelian, and thus nilpotent by Theorem 3.1.4, but S3 is none

of these.
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After the result presented in Theorem 5.1.6, it is natural to ask what the effect onGwill be if the

conditions on H and K are “weakened”. Specifically, if H and K are abelian instead of cyclic, will

G retain its solvable status? It will now be shown that this is indeed the case.

Theorem 5.1.7.

Let G be a group, H ≤ G and K ≤ G such that G = HK. If H and K are abelian, then G is solvable and

G(2) = 1.

Proof. Now [H,K] ≤ G′. Since [H,K] E 〈H,K〉 by Theorem 2.2.5, we have that H ≤ NG([H,K])

and K ≤ NG([H,K]). Thus G = HK ≤ NG([H,K]) and so G = NG([H,K]). Hence [H,K] E G.

Since G = HK, [H,K] E G, and by parts 5 and 6 of Theorem 2.2.4, we have that G′ ≤ [H,K]. Thus

G′ = [H,K].

Let h1, h2 ∈ H and k1, k2 ∈ K. Then

[h1, k1]
h2k2 = [h1, k

h2
1 ]k2 , since H is abelian

= [h1, h3k3]
k2 , for some h3 ∈ H and k3 ∈ K, since G = HK

= [h1, k3]
k2 , by part 8 of Theorem 2.2.4

= [hk21 , k3], since K is abelian

= [h4k4, k3], for some h4 ∈ H and k4 ∈ K, since G = HK

= [h4, k3], by part 9 of Theorem 2.2.4

or [h1, k1]h2k2 = [h4, k3]. Also, note that

[h1, k1]
k2h2 = [hk21 , k1]

h2 , since K is abelian

= [h4k4, k1]
h2 , since G = HK

= [h4, k1]
h2 , by part 9 of Theorem 2.2.4

= [h4, k
h2
1 ], since H is abelian

= [h4, h3k3], since G = HK

= [h4, k3], by part 8 of Theorem 2.2.4.
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Thus [h1, k1]h2k2 = [h1, k1]
k2h2 or [h1, k1]h2k2h

−1
2 k−1

2 = [h1, k1]. But then [h1, k1]
[h−1

2 ,k−1
2 ] = [h1, k1]

or [h−12 , k−12 ] ∈ CG([h1, k1]), for all h2 ∈ H and for all k2 ∈ K. Thus since h−12 and k−12 were

arbitrary, we have that [H,K] ≤ CG([h1, k1]) and so [h, k] ∈ Z([H,K]) for all [h, k] ∈ [H,K]. Hence

[H,K] = G′ is abelian. It follows that G(2) = 1 and so G is solvable.

Theorem 5.1.7 will now allow for the proof of two more results regarding the relationships of

subgroups H and K to other subgroups within G, under the same conditions that G = HK and

both H and K are abelian.

Theorem 5.1.8.

Let G be a group, H ≤ G, K ≤ G where both H and K are abelian and G = HK. If H 6= G or K 6= G,

then there exists N E G such that N 6= G and either H ≤ N or K ≤ N .

Proof. Suppose the theorem is false and let G be a minimal counterexample. By Theorem 5.1.7, G

is solvable. Let N be a minimal normal subgroup of G. Then by Theorem 4.2.6, N is an elementary

abelian p-group for some prime p.

SinceN E G, we have thatHN ≤ G. SupposeHN < G, and letG = G/N . Then sinceG = HK,

it follows that G = H K. Moreover, since H and K are abelian, both H and K are abelian as well.

Additionally, H 6= G and |G| < |G|. Thus, by the minimality of G, there exists N1 = N1/N E G

such that N1 6= G and either H ≤ N1 or K ≤ N1.

ThenN1 E G, N1 6= G and eitherH ≤ HN ≤ N1 orK ≤ KN ≤ N1. This is a contradiction, and

so it must be that G = HN = KN .

Suppose now that G is a p-group. Since H 6= G, there exists a maximal subgroup M < G such

that H ≤M . Since G is a p-group, we have that G is nilpotent by Theorem 3.1.8. Thus by Theorem

3.2.6, M E G. Also, M 6= G and H ≤M , which is a contradiction. Hence G is not a p-group.

Now there exists a prime q 6= p such that q | |G|. Let P ∈ Sylq(H) and Q ∈ Sylq(K). Since H

and K are abelian, we know P E H and Q E K. Thus P and Q are unique Sylow q-subgroups of

H and K respectively, by Corollary 1.1.10. Hence, by Theorem 5.1.4, PQ ∈ Sylq(G).

Note that

|PQ| = |G|q = |HN |q =
|H|q|N |q
|H ∩N |q

=
|H|q · 1

1
= |H|q = |P |.

57



Thus |PQ| = |P |. But P ≤ PQ and so P = PQ. Similarly, Q = PQ and so P = Q. Then P = Q E

HK = G. Let N2 ≤ P such that N2 is a minimal normal subgroup of G. By the argument used for

N , it follows that G = HN2 = KN2. But G = HN2 ≤ HP = H and G = KN2 ≤ KP = KQ = K.

Thus G = H and G = K.

This is a contradiction since either H 6= G or K 6= G. Thus, the theorem holds.

Theorem 5.1.9.

Let G be a group, H ≤ G, K ≤ G where both H and K are abelian and G = HK. Then there exists N E G

such that N 6= 1 and either N ≤ H or N ≤ K.

Proof. Suppose the theorem is false and let G be a minimal counterexample.

Claim: There exists U E G such that U 6= G, H ≤ U or K ≤ U and Z(U) 6= 1.

Suppose G′ ∩H 6= 1. Then H ≤ HG′ E G and 1 6= G′ ∩H ≤ Z(HG′) since both H and G′ are

abelian. Then without loss of generality, suppose G′ ∩ H = G′ ∩ K = 1. By Theorem 5.1.8, there

exists U E G such that U 6= G and either H ≤ U or K ≤ U . Suppose H ≤ U . Since G = HK and

H ≤ U , by Theorem 5.1.5, U = HK1, where K1 < K.

Note that |U | < |G|. Thus, by the minimiality of G, there exists 1 6= L E U such that L ≤ H or

L ≤ K1. Suppose L ≤ H . Now [U,L] ≤ L ∩G′ ≤ H ∩G′ = 1. Thus 1 6= L ≤ Z(U) and so the claim

holds.

Let hk ∈ Z(U) where h ∈ H and k ∈ K. Also, let k1 ∈ K1. Then hk1k = k1hk and hkk1 = hk1k.

Thus hk1k = k1hk or hk1 = k1h. Hence h ∈ Z(U). Therefore h−1 ∈ Z(U) and it follows that

k ∈ Z(U). But then Z(U) = H1K2 where H1 ≤ H and K2 ≤ K.

If K2 6= 1, then CG(K2) ≥ UK = HK1K = HK = G, and so K2 E G with K2 ≤ K. This is a

contradiction. Thus, suppose K2 = 1. Then H1 = Z(U) char U E G and so H1 E G by Theorem

4.1.8. Note also that 1 6= Z(U) = H1 and H1 ≤ H .

Hence the theorem holds.
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With Theorem 5.1.9, we conclude the final proof regarding groups which are the product of two

subgroups. The results of this section point to the natural conclusion of this exploration, which is,

in fact, the strongest possible result regarding a group’s structure under the given conditions. This

conclusion is the result of a sequence of papers from the 1950’s and 60’s, whose statements will be

given here. Additionally, a final example will be presented which illustrates that if the structure of

H and K are weakened any further, then no meaningful conclusion can be drawn about the group

in general.

In Theorem 5.1.6, it was shown that if G = HK and both H and K were cyclic subgroups of G,

then G was solvable. In Theorem 5.1.7, the structures of H and K were weakened to being abelian,

and it was shown thatG remained a solvable group. Therefore, it is natural to wonder ifG is solvable

yet again, when bothH andK are nilpotent. This result was first proved by German mathematician

Helmut Wielandt in 1958, albeit with a condition imposed on the orders of H and K.

Theorem 5.1.10 (Helmut Wielandt’s Result).

Let G be a group, H ≤ G be nilpotent, K ≤ G be nilpotent such that G = HK and gcd(|H|, |K|) = 1.

Then G is solvable.

A short while later, in 1961, this result was improved upon by another German mathematician,

Otto Kegel. This time, there were no restrictions placed upon the orders of H and K.

Theorem 5.1.11 (Otto Kegel’s Result).

Let G be a group, H ≤ G be nilpotent, and K ≤ G be nilpotent such that G = HK. Then G is solvable.

This result is, in fact, the strongest possible conclusion that can be made regarding G, without

imposing additional conditions on H and K. To see that this is the case, we will naturally weaken

the structure ofH andK again such that bothH andK are solvable, and show that the same cannot

necessarily be said for G.
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Example.

Consider A5 and recall that |A5| = 5!
2 = 60 = 22 · 3 · 5.

Now (A5)5 ∼= A4, and |(A5)5| = |A4| = 4!
2 = 22 · 3. Also, H = 〈(12345)〉 ≤ A5 such that |H| = 5,

since (12345) is an element of order 5. Note that

|(A5)5H| =
|(A5)5||H|
|(A5)5 ∩H|

=
22 · 3 · 5

1
= |A5|.

Thus A5 = (A5)5H , where (A5)5 is solvable by Theorem 2.1.7 and H is solvable by Theorem 2.1.2. Hence

A5 is the product of two solvable subgroups.

Claim: A(i)
5 = A5, for all i ∈ Z+ ∪ {0}.

If i = 0, then A(0)
5 = A5. If i = 1, then A(1)

5 = A′5 E A5. But A5 is simple, so A′5 = 1 or A′5 = A5.

Since A5 is not abelian, it cannot be that A′5 = 1. Thus, A′5 = A
(1)
5 = A5.

Suppose A(i)
5 = A5. Then A(i+1)

5 = (A
(i)
5 )′ = A′5 = A

(1)
5 = A5, and so the claim holds.

Thus, there does not exist n ∈ Z+ ∪ {0} such that A(n)
5 = 1, and so A5 is not solvable by Theorem 2.2.9.

The above example confirms that Otto Kegel’s result is the strongest possible statement about

the structure ofG under the given conditions, and is thus the natural end to this exploration on the

structure of groups which are the product of two subgroups.
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