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Abstract

In this manuscript we study a general family of discrete nonlinear boundary value problems

of the form

x(t+ 1) = A(t)x(t) + f(x(t)) where t ∈ {0, 1, ..., N − 1} (1)

subject to

B0x(0) + B1x(1) + · · ·+BNx(N) = 0. (2)

We concern ourselves with establishing conditions that are sufficient to guarantee the exis-

tence of solutions to these boundary value problems in two distinct cases.

First, we will examine this problem as a scalar, discrete, nonlinear, mulitpoint boundary

value problem. We then tackle this problem in the setting of a full n×n system. In both of

these cases, if the associated linear homogeneous boundary value problem only has trivial

solutions we are able to show the existence of solutions when the nonlinear term exhibits

sublinear growth.

We then allow for the solution space of the associated linear problem to be of dimension

one. In this instance, we introduce a projection scheme in order to relate the solution space

of the linear problem to the nonlinearity. We then leverage this relationship to establish a

framework that is sufficient to guarantee the existence of a solution.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

In this manuscript we will examine the solvability for a well-established family of discrete,

nonlinear, multipoint boundary value problems. More specifically, we will study equations

of the form

x(t+ 1) = A(t)x(t) + f(x(t)) where t ∈ {0, 1, ..., N − 1} (1.1)

subject to

B0x(0) + B1x(1) + · · ·+BNx(N) = 0. (1.2)

For the duration of this work we will assume that A(t) is an invertible n × n matrix

for each t and x(t) is a vector in Rn. Furthermore, we impose the condition that Bi is a

real-valued n×n matrix for all i, f is a continuous function on Rn, and N is a fixed integer

larger than two. In the third chapter we require f to be continuous on {0, 1, · · ·N} × Rn.

Multipoint boundary value problems are known to arise in a wide array of disciplines

in the physical sciences. One notable example in which these boundary value problems

appear is in determining an optimal size for large bridges with multipoint supports [2].
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This is not the only scenario in which these types of problems occur, in fact, any physical

problem in which N states are recorded at N times will force N boundary conditions into

the resulting system. It then becomes clear why research into the existence of solutions to

these systems is warranted.

We will look at (1.1)-(1.2) in two separate settings. In chapter two, we first examine

scalar, discrete, nonlinear, multipoint boundary value problems of the form

y(t+ n) + an−1(t)y(t+ n− 1) + · · ·+ a0(t)y(t) = g(y(t+m− 1) (1.3)

for t = 0, 1, . . . N − 1, subject to

n∑
j=1

bij(0)y(j−1)+
n∑
j=1

bij(1)y(j)+
n∑
j=1

bij(2)y(j+1)+ · · ·+
n∑
j=1

bij(N)y(j+N−1) = 0

(1.4)

where n is a positive integer and i = 1, 2, . . . , n. While in the third chapter, we will remove

the scalar hypothesis and consider a full system at resonance. That is, our problem takes

the form of

x(t+ 1) = A(t)x(t) + f(t, x(t)) where t ∈ {0, 1, ..., N − 1} (1.5)

under the N -point boundary condition

B0x(0) + B1x(1) + · · ·+BNx(N) = 0. (1.6)

In both examined cases we take a similar approach. We will reformulate the above prob-

lems into equivalent equations comprised of linear and nonlinear operators defined on Ba-

nach spaces. We then examine two sub-cases, the first in which we assume the linearity is

invertible, and the second where the linearity is noninvertible, but has a one dimensional

kernel.
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In the case of the nonsingular linearity we will assume the nonlinearity exhibits sub-

linear growth. We then rely on the Brouwer Fixed Point Theorem to show that we are

able to solve the problem at hand. In the second sub-case, we assume the nonlinearity is

bounded, and through the use of a projection scheme, seek to relate the large argument

behavior of the nonlinearity to the solution space of the associated homogeneous linear

problem. In the scalar setting we will again invoke the Brouwer Fixed Point Theorem. In

the environment of the full system, we will utilize an argument centered on topological

degree to obtain the desired result.

This manuscript servers as extension of my undergraduate project in which I examined

the solvability of discrete, nonlinear, two-point boundary value problems. The approach

taken follows techniques used in [3],[9],[10].

1.2 Preliminaries

The idea of degree theory plays an essential role throughout this text, either through direct

use as we see in chapter three, or as background machinery to the Brouwer Fixed Point

Theorem used in chapter two. Therefore, it is essential to familiarize the reader with some

fundamental results from the field. In short, degree theory can be thought of as a way to

gather information on the existence of zeros to equations of the form y = f(x) [8]. A

familiar analog to the degree of a given mapping is the winding number of a closed curve

in the complex plane. In fact, the degree serves as a generalization of the winding number

observed in complex analysis and differential geometry. The interested reader may find

more information relating to degree theory, including proofs of the following propositions

and theorems in [8],[11].

To start our brief summary of degree theory, we first state some basic assumptions that

we will use to define the topological degree. We will denote the closure of a set A by

A and will denote the boundary of a set A by ∂A. Now suppose D ⊆ Rn is open and
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bounded, f : D → Rn is continuous and satisfies f(x) 6= 0 for all x ∈ ∂D. We now

define Af = {x ∈ D | f(x) = 0}. We will use this set as an indexing set, as such we will

introduce definitions and properties to ensure that Af is finite.

Defintion 1.1. Let D ⊆ Rn, f : D → Rn be a function such that each of its first partial

derivatives exist. Denote Jf (x) to be the determinant of the Jacobian matrix of f and set

Bf = {x ∈ D | Jf (x) = 0}. Then we say f is a non-degenerate mapping if Af ∩Bf = ∅.

Proposition 1.2. Let D ⊆ Rn be open and bounded, f : D → Rn be continuous such that

f(x) 6= 0 for all x ∈ ∂D. If f is of class C1 and is non-degenerate, then Af is finite.

Defintion 1.3. Let D ⊆ Rn be open and bounded, f : D → Rn be of class C1 such that

f(x) 6= 0 for all x ∈ ∂D. The topological degree of f with respect to D and 0, d
[
f,D, 0

]
is defined by

d
[
f,D, 0

]
=
∑
x∈Af

sign
(
Jf (x)

)

As it stands, our current definition of the degree of a mapping is very limited in scope

due to the strong conditions imposed on the function f . Using Sard’s Lemma and the

Weierstrass Approximation Theorem, we are able to extend the definition of the topological

degree to a function that is degenerate and is continuous. Formal statements and proofs of

these results can be found in the text by Rouche and Mahwin [11].

Our use of degree theory focuses on two very powerful properties of the degree. The

first property relates the value of the degree with the existence of solutions to the equation

of interest, and the second is the homotopy invariance of the degree. Before we formally

state these properties, first consider the following definition.

Defintion 1.4. Let X and Y be subsets of R, and f and g be continuous functions from X

to Y . If there exists a continuous map H : [0, 1] ×X → Y such that H(0, x) = f(x) and

H(1, x) = g(x) we say f and g are homotopic and the map H is a homotopy.
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That is, we can consider a homotopy to be a continuous deformation between two

continuous functions. We now state the two properties of interest.

Theorem 1.5 (Kronecker Existence Theorem). Let D ⊆ Rn be open and bounded, f :

D → Rn be of class C1 such that f(x) 6= 0 for all x ∈ ∂D. If d
[
f,D, 0

]
6= 0, then there

exists an x ∈ D such that f(x) = 0.

Theorem 1.6 (Theorem of Invariance with Respect to Homotopy). Let F : D̄×[0, 1]→ Rn,

(x, λ) 7→ F (x, λ), be a continuous mapping such that F (x, λ) 6= 0 for all x ∈ ∂D and

λ ∈ [0, 1]. Define: fλ : D → Rn, x 7→ F (x, λ). Then d
[
fλ, D, 0

]
is well defined for all

λ ∈ [0, 1] and is independent of λ.

The proof of the Kronecker Existence Theorem and Theorem of Invariance with Re-

spect to Homotopy can be found in [8]. The homotopic invariance of the degree will prove

to be the key to showing our problem has a solution. If we are able to create a homotopy

between a map with nonzero degree and the map we are studying, then we will know each

map to have the same degree. Of possible note to the reader is the axiomization of the

topological degree. As cited in the text by Outerelo and Ruiz, the development of degree

theory culminated with the axiomatic characterization of the degree. This process began

with the work of Mitio Nagumo in 1951 and was completed by Lutz Führer in 1971. More

information regarding this axiomatic approach can be found in [8].
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Chapter 2

Scalar Problem

2.1 Introduction

In this chapter we will focus on scalar, nonlinear, discrete, multipoint boundary value prob-

lems of the form

y(t+ n) + an−1(t)y(t+ n− 1) + · · ·+ a0(t)y(t) = g(y(t+m− 1)) (2.1)

for t = 0, 1, . . . N − 1, subject to

n∑
j=1

bij(0)y(j−1)+
n∑
j=1

bij(1)y(j)+
n∑
j=1

bij(2)y(j+1)+ · · ·+
n∑
j=1

bij(N)y(j+N−1) = 0

(2.2)

where i = 1, 2, . . . , n. We will assume that n is a positive integer, g : R→ R is continuous,

m ∈ {1, 2, . . . , n}, N is an integer larger than two, and that the coefficients bij and the

functions a0, a1, · · · , an−1 are all real valued where a0(t) 6= 0 for all t. We will analyze

this problem as the system

x(t+ 1) = A(t)x(t) + f(x(t)) where t ∈ {0, 1, ..., N − 1} (2.3)
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under the boundary condition

B0x(0) + B1(1)x(1) + · · ·+BNx(N) = 0. (2.4)

Each n× n matrix Bk is given by Bk = [bij(k)]. The n× n matrix A(t) is defined as

A(t) =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
...

...

0 0 0 · · · 1

−a0(t) −a1(t) −a2(t) · · · −an−1(t)


.

We will define the vector function

x(t) =



x1(t)

x2(t)

...

xn(t)


=



y(t)

y(t+ 1)

...

y(t+ n− 1)


,

and define f : Rn → Rn by

f(x) = f





x1

x2
...

xn




=



0

0

...

g(xm)


.
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We will study the boundary value problem (2.3)-(2.4) by way of operators. To aid in this

discussion we introduce the following finite dimensional spaces:

Z = {φ : {0, 1, ..., N} → Rn}

X = {φ ∈ Z | Bφ(0) + B1(1)φ(1) + · · ·+BNφ(N) = 0}

Y = {φ : {0, 1, ..., N − 1} → Rn}.

We will define the norms on X and Y by

‖x‖ = sup
t=0,1,··· ,N

|x(t)|,

‖y‖ = sup
t=0,1,··· ,N−1

|y(t)|,

where | · | is any norm on Rn. Using these spaces, we can define the operators:

L : X → Y defined by (Lx)(t) = x(t+ 1)− A(t)x(t)

F : X → Y defined by (F (x))(t) = f(x(t)).

We make note that the operator L is linear and that x is a solution to (2.3)-(2.4) if and only

if Lx = F (x).

We will use these operators as leverage to determine conditions sufficient to guarantee

solutions to the boundary value problem exist. To this end, the kernel of L will prove

instrumental to our procedure. If the kernel of L is trivial, we will find a fixed point of

the map L−1F . If L is singular, we will examine the case when the kernel of L is one

dimensional. In this case, we will use projections to help understand the behavior of the

nonlinearity.
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2.2 The Case of Nonsingular L

We seek to show that solutions to the nonlinear scalar discrete boundary value problem (2.1)

- (2.2) exist when the associated operator L is invertible and g exhibits sublinear growth.

To begin the analysis of the problem, we will first examine the linear homogeneous scalar

problem of the form

y(t+ n) + an−1(t)y(t+ n− 1) + · · ·+ a0(t)y(t) = 0 (2.5)

for t = 0, 1, . . . N − 1, subject to

n∑
j=1

bij(0)y(j−1)+
n∑
j=1

bij(1)y(j)+
n∑
j=1

bij(2)y(j+1)+ · · ·+
n∑
j=1

bij(N)y(j+N−1) = 0

(2.6)

where i = 1, 2, . . . , n. To this end, we introduce a widely known solution to the linear

homogeneous system

x(t+ 1) = A(t)x(t). (2.7)

Define

Φ(t) =


I t = 0

A(t− 1)A(t− 2) · · ·A(0) t = 1, 2, · · ·

then Φ is a fundamental matrix solution of (2.7) [6].

Proposition 2.1. The solution space of the linear homogeneous scalar problem (2.5) - (2.6)

has the same dimension of ker(B0 +B1Φ(1) + · · ·+BNΦ(N)).

Proof. x is in the solution space of (2.5)-(2.6) if and only if Lx = 0 andB0x(0)+B1x(1)+

· · ·+BNx(N) = 0. This is true if and only if x(t+ 1) = A(t)x(t) and B0x(0) +B1x(1) +

· · · + BNx(N) = 0. So we have x ∈ ker(L) if and only if x(t) = Φ(t)d and B0d +
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B1Φ(1)d + · · · + BNΦ(N)d = 0 for some d ∈ Rn. Therefore the solution space of

the linear homogeneous scalar problem (2.5)-(2.6) has the same dimension as ker(B0 +

B1Φ(1) + · · ·+BNΦ(N)).

We now turn our attention to the problem stated at the beginning of the section by

exploring the relationship between the inevitability of the operator L and the matrix B0 +

B1Φ(1) + · · ·+BNΦ(N).

Proposition 2.2. The linear map L is invertible if and only ifB0+B1Φ(1)+ · · ·+BNΦ(N)

is invertible.

Proof. Let h ∈ Y . Now Lx = h if and only if there is an x ∈ X such that x(t + 1) =

A(t)x(t) + h(t) and B0 + B1Φ(1) + · · · + BNΦ(N) = 0. By Variation of Parameters [6]

we have Lx = h if and only if

x(t) = Φ(t)x(0) +
t−1∑
i=0

Φ(t)Φ−1(i+ 1)h(i) (2.8)

and the boundary condition is satisfied. Substituting (2.8) into the boundary condition

yields Lx = h if and only if

B0x(0) + B1

[
Φ(1)x(0) + h(0)

]
+ · · ·+BN

[
Φ(N)x(0) + Φ(N)

N−1∑
i=0

Φ−1(i+ 1)h(i)
]

= 0.

That is Lx = h if and only if

[
B0+B1Φ(1)+· · ·+BNΦ(N)

]
x(0) = −

[
B1h(0)+· · ·+Φ(N)x(0)+Φ(N)

N−1∑
i=0

Φ−1(i+1)h(i)
]

(2.9)

Now suppose that L is invertible. Then there is only one x that satisfies Lx = h. Therefore

there exists a unique x(0) satisfying (2.9). Hence, B0 + B1Φ(1) + · · · + BNΦ(N) is

invertible. Conversely, suppose thatB0+B1Φ(1)+ · · ·+BNΦ(N) is invertible. Then there

is one and only one x(0) satisfying (2.9). By using the Variation of Parameters formula we
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can build the unique x that satisfies Lx = h. Thus L is invertible.

Theorem 2.3. Suppose B0 + B1Φ(1) + · · · + BNΦ(N) is invertible and that there exists

positive real numbers α,M1,M2 with 0 ≤ α < 1 such that |g(x)| ≤ M1‖x‖α +M2 for all

x ∈ Rn. Then there exists at least one solution to (2.1)-(2.2).

Proof. Define the sets X and Y and the maps L and F as done previously. Since B0 +

B1Φ(1) + · · · + BNΦ(N) is invertible L is also invertible by proposition 2.2. Therefore

Lx = F (x) is equivalent to x = L−1F (x). We now define Γ : X → X by Γx =

L−1F (x). We will show that the map Γ has a fixed point by utilizing the Brouwer Fixed

Point Theorem. To this end, we define the set B = {x ∈ X | ‖x‖ ≤ M} where M is

a positive real number. By construction, B is a closed, bounded, and convex set, and Γ is

continuous by composition. Thus all that is left to show is that Γ maps B into B. First,

observe that for each t ∈ {0, 1, . . . , N − 1}

|f(x(t))| = |g(xm(t))| ≤M1|xm(t)|α +M2

≤M1|x(t)|α +M2

≤M1‖x‖α +M2.

Therefore we have

‖F (x)‖ = sup
t=0,...N−1

|f(x(t))| ≤M1‖x‖α +M2.

Now for x ∈ B we have

‖Γx‖ = ‖L−1F (x)‖ ≤ ‖L−1‖‖F (x)‖ ≤ ‖L−1‖
[
M1‖x‖α +M2

]

11



That is

‖Γx‖
M
≤ ‖L−1‖

(
M1

M1−α +
M2

M

)

For M sufficiently large,
‖Γx‖
M
≤ 1, and so ‖Γx‖ ≤M . Therefore Γ is a map from B into

B. By the Brouwer Fixed Point Theorem there exists x ∈ X such that x = L−1F (x). Thus

Lx = F (x) and so a solution to (2.1)-(2.2) exists.

2.3 The Case of Singular L

We now assume that the kernel of L is one dimensional and begin our analysis of the linear

operator L by defining the map S : {0, 1, · · · , N − 1} → Rn by

S(t) = Φ(t)d

where d ∈ ker(B0 + B1Φ(1) + · · ·+ BNΦ(N)) is a unit vector. Using this map S we can

state a useful corollary to proposition 2.1.

Corollary 2.4. If the solution space of the linear homogeneous scalar problem is nontrivial

then x ∈ ker(L) if and only if x(t) = S(t)α for some α ∈ R.

Through the use of this corollary we can define the following projection on the set X .

Proposition 2.5. The map P : X → X defined by (Px)(t) = S(t)dTx(0) is a projection

onto the kernel of L.

Proof. Linearity and boundedness is clear. It must now be shown that P 2 = P and
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Im(P ) = ker(L). To see that P 2 = P consider

(P 2x)(t) = (P (Px))(t) = P (S(·)dTx(0))(t)

= S(t)dTS(0)dTx(0)

= S(t)dT (Φ(0)d)dTx(0)

= S(t)dTx(0)

= (Px)(t).

Therefore P is a projection. Now, let x ∈ Im(P ). Then there exists y ∈ X such that

x(t) = (Py)(t) = S(t)dTy(0) = S(t)α, where α = dTy(0).

That is x = Sα ∈ ker(L). Therefore Im(P ) ⊆ ker(L). Now let x ∈ ker(L). Then

x = Sα for some α ∈ R. Applying P yields

(Px)(t) = P (S(·)α)(t)

= S(t)dTS(0)α

= S(t)dTdα

= S(t)α = x(t).

Thus we have x ∈ Im(P ) ⊆ ker(L). Therefore Im(P ) = ker(L) and P is a projection

onto the ker(L).

We note the boundedness of P implies that P is continuous. Furthermore, settingX
P

=

Im(P ) and X
I−P

= Im(I − P ) allows us to write X = X
P
⊕X

I−P
.

Proposition 2.6. Suppose ker
( N∑
i=0

[BiΦ(i)]T
)

= span{c} for some vector c ∈ Rn. Then

13



h is in the image of L if and only if

N−1∑
i=0

hT (i)
N∑

k=i+1

[
BkΦ(k)Φ−1(i+ 1)

]T
c = 0.

Proof. By proposition 2.2, h is in the image of L if and only if

N∑
i=0

BiΦ(i)x(0) = −
(
B1h(0)+B2

1∑
i=0

Φ(2)Φ−1(i+1)h(i)+· · ·+BN

N−1∑
i=0

Φ(N)Φ−1(i+1)h(i)
)
.

This is true if and only if

B1h(0) + · · ·+BN

N−1∑
i=0

Φ(N)Φ−1(i+ 1)h(i) ∈ Im
( N∑
i=0

BiΦ(i)
)
.

Since Im
( N∑
i=0

BiΦ(i)
)

= ker
([ N∑

i=0

BiΦ(i)
]T)⊥

we have that

[
B1h(0) + · · ·+BN

N−1∑
i=0

Φ(N)Φ−1(i+ 1)h(i)
]T
β = 0

for β ∈ ker
( N∑
i=0

[BiΦ(i)]T
)

. Since c spans ker
( N∑
i=0

[BiΦ(i)]T
)

we have h is in the image

if L if and only if

[
B1h(0) + · · ·+BN

N−1∑
i=0

Φ(N)Φ−1(i+ 1)h(i)
]T
c = 0.

Rearranging, we obtain

N−1∑
i=0

hT (i)
N∑

k=i+1

[
BkΦ(k)Φ−1(i+ 1)

]T
c = 0.

Defintion 2.7. Suppose ker
( N∑
i=0

[BiΦ(i)]T
)

= span{c} for some vector c ∈ Rn. Define
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ψ : {0, 1, . . . , N − 1} → Rn by

ψ(t) =
N∑

i=t+1

[
BiΦ(i)Φ−1(t+ 1)

]T
c.

Using this definition we are able to say h is in the image ofL if and only if
N−1∑
i=0

h(i)Tψ(i) =

0. Note that this condition is equivalent to
N−1∑
i=0

ψ(i)Th(i) = 0. This map ψ along with the

previous result are key in building the projection onto the image of L. In order to define

this projection we need to make use of the following lemma.

Lemma 2.8. ψ is the zero map if and only if
N⋂
i=0

ker
(
BT
i

)
6= {0}.

Proof. Suppose v ∈
N⋂
i=0

ker
(
BT
i

)
. Then we have [BiΦ(i)]Tv = 0 for all 0 ≤ i ≤ N . Thus

[ N∑
i=0

BiΦ(i)
]T
v =

N∑
i=0

[BiΦ(i)]Tv = 0.

Therefore v ∈ ker
([ N∑

i=0

BiΦ(i)
]T)

. That is v = αc for some real number α. Now

ψ(t) =
N∑

i=t+1

[
BiΦ(i)Φ−1(t+ 1)

]T
c

=
N∑

i=t+1

[
BiΦ(i)Φ−1(t+ 1)

]T v
α

= 0.
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Now suppose ψ ≡ 0. Then we have

ψ(N − 1) =
[
BNΦ(N)Φ−1(N)

]T
c = BT

Nc = 0.

ψ(N − 2) = BT
N−1c+

[
BNΦ(N)Φ−1(N − 1)

]T
c = BT

N−1c = 0.

...

ψ(0) = BT
1 c+ · · ·+

[
BNΦ(N)Φ−1(1)

]T
c = BT

1 c = 0.

Thus c ∈
N⋂
i=1

ker
(
BT
i

)
. To see c ∈ ker(BT

0 ), consider
(
B0 +B1Φ(1)+ · · ·+BNΦ(N)

)T
c.

Since c ∈ ker
([ N∑

i=0

BiΦ(i)
]T)

we have

0 =
(
B0 +B1Φ(1) + · · ·+BNΦ(N)

)T
c

= BT
0 c+ (B1Φ(1))T c+ · · ·+ (BNΦ(N))T c

= BT
0 c.

Therefore c ∈ ker(BT
0 ) and so c ∈

N⋂
i=0

ker
(
BT
i

)
.

Now that we have ψ is not identically zero when
N⋂
i=0

ker
(
BT
i

)
= {0}, we can define the

map W : Y → Y by

(Wh)(t) = ψ(t)
(N−1∑

i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψ(i)Th(i).

Proposition 2.9. Assume
N⋂
i=0

ker
(
BT
i

)
= {0}. Then E = I −W is a projection onto the

image of L.

Proof. Linearity and boundedness is clear. It must now be shown that E2 = E and

Im(E) = Im(L). To see that E2 = E it is sufficient to show that W 2 = W . Now
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consider

(W (Wh))(t) = W
(
ψ(·)

[N−1∑
i=0

|ψ(i)|2
]−1 N−1∑

i=0

ψ(i)Th(i)
)

= ψ(t)
[N−1∑
k=0

|ψ(k)|2
]−1 N−1∑

k=0

ψT (k)ψ(k)
[N−1∑
i=0

|ψ(i)|2
]−1 N−1∑

i=0

ψ(i)Th(i)

= ψ(t)
(N−1∑

i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψ(i)Th(i)

= (Wh)(t).

Thus W is a projection and so E = I −W is also a projection. Now, to show that E is a

projection onto the image of L let y ∈ Im(E). That is y = Eh for some h ∈ Y . Then

N−1∑
i=0

ψ(i)T (Eh)(i) =
N−1∑
i=0

ψ(i)Th(i)− ψ(i)T (Wh)(i)

=
N−1∑
i=0

ψ(i)Th(i)− ψ(i)Tψ(i)
(N−1∑
k=0

|ψ(k)|2
)−1 N−1∑

k=0

ψT (k)h(k)

=
N−1∑
i=0

ψ(i)Th(i)−
N−1∑
k=0

ψT (k)h(k)

= 0.

Therefore y ∈ Im(L) and so Im(E) ⊆ Im(L). Conversely, let y ∈ Im(L). Then

(Ey)(t) = y(t)− (Wy)(t)

= y(t)− ψ(t)
(N−1∑

i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψ(i)Ty(i)

= y(t).

Hence Ey = y and so y ∈ Im(E). Thus Im(L) ⊆ Im(E) and so Im(E) = Im(L).

Therefore E is a projection onto the image of L.
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Since we have X = X
P
⊕X

I−P
, we can restrict L to L : X

I−P
→ Im(L) such that L

is a bijection. Therefore, there exists a bounded linear map M : Im(L)→ X
I−P

satisfying

(i) LMh = h for all h ∈ Im(L);

(ii) MLx = x
I−P

for all x ∈ X .

Proposition 2.10. Lx = F(x) if and only if there exists a real number α such that x =

Sα + MEF (x) and
N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n = 0 where [v]k denotes the

kth row of the vector v.

Proof.

Lx = F (x) ⇐⇒ Lx− F (x) = 0

⇐⇒ E(Lx− F (x)) = 0 and W (Lx− F (x)) = 0

⇐⇒ Lx = EF (x) and (I − E)Lx−WF (x) = 0

⇐⇒ x
I−P

= MEF (x) and WF (x) = 0

⇐⇒ x = x
P

+MEF (x) and F (x) ∈ Im(L)

⇐⇒ x = Sα +MEF (x) for a real number α and
N−1∑
i=0

[(F (x))(i)]Tψ(i) = 0

⇐⇒ x = Sα +MEF (x) and
N−1∑
i=0



0

0

...

g(xm(i))



T

ψ(i) = 0

⇐⇒ x = Sα +MEF (x) and
N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n = 0.

To conclude our analysis of the operator suppose that lim
x→∞

g(x) and lim
x→−∞

g(x) exist,
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and let lim
x→∞

g(x) = g(∞) and lim
x→−∞

g(x) = g(−∞). We introduce the following partition

O0 = {i ∈ {0, 1, . . . , N − 1} | [S(i)]m = 0}

O1 = {i ∈ {0, 1, . . . , N − 1} | [S(i)]m > 0}

O2 = {i ∈ {0, 1, . . . , N − 1} | [S(i)]m < 0}.

and then define the following numbers

J1 = g(∞)
∑
i∈O1

[ψ(i)]n + g(−∞)
∑
i∈O2

[ψ(i)]n

J2 = g(−∞)
∑
i∈O1

[ψ(i)]n + g(∞)
∑
i∈O2

[ψ(i)]n.

Proposition 2.11. Suppose g is continuous, g(∞), g(−∞) exist,O0 is empty, and J1, J2 6=

0. Then there exists some real number α0 > 0 such that for all α ≥ α0 J1 has the same

sign as K1 and J2 has the same sign as K2 where

K1 =
N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n

K2 =
N−1∑
i=0

g
(
[S(i)(−α) + (MEF (x))(i)]m

)
[ψ(i)]n

Proof. Let ε > 0. Since S and MEF are linear maps on finite dimensional spaces we have

that S and MEF are bounded. That is, there exists α0 > 0 such that for all α ≥ α0

g(∞)− ε < g
(
[S(i)α + (MEF (x))(i)]m

)
< g(∞) + ε

where i ∈ O1, and

g(−∞)− ε < g
(
[S(i)α + (MEF (x))(i)]m

)
< g(−∞) + ε
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where i ∈ O2. Now define the sets

U0 = {i ∈ O1 | [ψ(i)]n = 0}

U1 = {i ∈ O1 | [ψ(i)]n > 0}

U2 = {i ∈ O1 | [ψ(i)]n < 0}.

Then for α ≥ α0

∑
i=O1

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n =

∑
i=U1

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n +

∑
i=U2

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n.

This gives way to

(g(∞)− ε)
∑
i=U1

[ψ(i)]n + (g(∞) + ε)
∑
i=U2

[ψ(i)]n

<
∑
i=O1

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n

< (g(∞) + ε)
∑
i=U1

[ψ(i)]n + (g(∞)− ε)
∑
i=U2

[ψ(i)]n.

Similarly, define the sets

W0 = {i ∈ O2 | [ψ(i)]n = 0}

W1 = {i ∈ O2 | [ψ(i)]n > 0}

W2 = {i ∈ O2 | [ψ(i)]n < 0}.
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Again, we have

∑
i=O2

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n =

∑
i=W1

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n +

∑
i=W2

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n.

for α ≥ α0. Thus

(g(−∞)− ε)
∑
i=W1

[ψ(i)]n + (g(−∞) + ε)
∑
i=W2

[ψ(i)]n

<
∑
i=O2

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n

< (g(−∞) + ε)
∑
i=W1

[ψ(i)]n + (g(−∞)− ε)
∑
i=W2

[ψ(i)]n.

Adding these inequalities yields

g(∞)
∑
i=U1

[ψ(i)]n + g(∞)
∑
i=U2

[ψ(i)]n + g(−∞)
∑
i=W1

[ψ(i)]n + g(−∞)
∑
i=W2

[ψ(i)]n

−ε
(∑
i=U1

[ψ(i)]n −
∑
i=U2

[ψ(i)]n +
∑
i=W1

[ψ(i)]n −
∑
i=W2

[ψ(i)]n

)
<
∑
i=O1

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n +

∑
i=O2

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n

< g(∞)
∑
i=U1

[ψ(i)]n + g(∞)
∑
i=U2

[ψ(i)]n + g(−∞)
∑
i=W1

[ψ(i)]n + g(−∞)
∑
i=W2

[ψ(i)]n

+ε

(∑
i=U1

[ψ(i)]n −
∑
i=U2

[ψ(i)]n +
∑
i=W1

[ψ(i)]n −
∑
i=W2

[ψ(i)]n

)
.
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Simplifying this inequality results in

g(∞)
∑
i∈O1

[ψ(i)]n + g(−∞)
∑
i∈O2

[ψ(i)]n − ε
(N−1∑

i=0

∣∣∣[ψ(i)]n

∣∣∣)

<

N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n

< g(∞)
∑
i∈O1

[ψ(i)]n + g(−∞)
∑
i∈O2

[ψ(i)]n + ε

(N−1∑
i=0

∣∣∣[ψ(i)]n

∣∣∣).
Therefore we have

J1 − ε
(N−1∑

i=0

∣∣∣[ψ(i)]n

∣∣∣) < K1 < J1 + ε

(N−1∑
i=0

∣∣∣[ψ(i)]n

∣∣∣).

That isK1 lies in an interval of radius ε
(N−1∑

i=0

∣∣∣[ψ(i)]n

∣∣∣) about J1. Since ψ is not identically

zero the radius of the interval is nonzero. Hence, by letting ε be arbitrarily small, J1 and

K1 have the same sign for α ≥ α0. We obtain the result for J2 and K2 by utilizing a similar

argument.

We can now state and prove the main theorem. We will accomplish this task using the

Brouwer Fixed Point Theorem.

Theorem 2.12. Suppose ker
( N∑
i=0

[BiΦ(i)]T
)

= span{c} for some vector c ∈ Rn and

N⋂
i=0

ker
(
BT
i

)
= {0}. If

(i) g : R→ R is continuous;

(ii) g(∞) and g(−∞) exist;

(iii) O0 is empty;

(iv) J1J2 < 0.

Then there is at least one solution to (1)-(2).
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Proof. Without loss of generality suppose J1 > J2. Let α0 be sufficiently large such that

for α ≥ α0 > rN‖ψ‖ where r = sup
t∈R
|g(t)|, J1 and K1 have the same sign and J2 and K2

have the same sign.

We will proceed by using the Brouwer Fixed Point Theorem. To this end, we define the

functions

H
X

: X × R→ X by H
X

(x, α) = Sα +MEF (x),

HR : X × R→ R by HR(x, α) = α−
N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n,

H : X × R→ X × R by H(x, α) = (H
X
, HR).

It is clear that H is continuous. Now define

B =
{

(x, α)
∣∣∣ ‖x‖ ≤ ‖S‖δ + ‖ME‖r and |α| ≤ δ where δ = α0 + rN‖ψ‖

}
.

Clearly, B is nonempty, closed, and convex. To invoke the Brouwer Fixed point theo-

rem it is left to show that H(B) ⊆ B. We note that J1J2 < 0, and J1 > J2 implies

N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n > 0

and
N−1∑
i=0

g
(
[S(i)(−α) + (MEF (x))(i)]m

)
[ψ(i)]n < 0

for all x ∈ X and α ≥ α0. So for α ∈ [α0, δ] we have

HR(x, α) = α−
N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n ≤ α
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and

HR(x,−α) = −α−
N−1∑
i=0

g
(
[S(i)(−α) + (MEF (x))(i)]m

)
[ψ(i)]n ≥ −α.

Since
∣∣∣N−1∑
i=0

g
(
[S(i)(α) + (MEF (x))(i)]m

)
[ψ(i)]n

∣∣∣ ≤ rN‖ψ‖, if α ∈ [α0, δ] then

HR(x, α) = α−
N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n

≥ α− rN‖ψ‖

≥ 0

and

HR(x,−α) = −α−
N−1∑
i=0

g
(
[S(i)(−α) + (MEF (x))(i)]m

)
[ψ(i)]n

≤ −α + rN‖ψ‖

≤ 0.

So for α ∈ [α0, δ] we have HR(x, α) ∈ [−δ, δ]. Now consider α ∈ [0, α0), then

∣∣∣HR(x, α)
∣∣∣ =

∣∣∣α− N−1∑
i=0

g
(
[S(i)(α) + (MEF (x))(i)]m

)
[ψ(i)]n

∣∣∣
≤ |α|+ rN‖ψ‖

< δ.

Identically, |HR(x,−α)| ≤ δ. Therefore |HR(x, α)| ≤ δ for all α ∈ [−δ, δ]. Now let
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(x, α) ∈ B. Then

‖H
X

(x, α)‖ = ‖Sα +MEF (x)‖

≤ ‖S‖δ + ‖ME‖r.

Thus we have H(x, α) ∈ B for (x, α) ∈ B. Therefore, by the Brouwer Fixed Point

theorem, there exists (x, α) ∈ B such that H(x, α) = (x, α). That is

α−
N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n = α

=⇒
N−1∑
i=0

g
(
[S(i)α + (MEF (x))(i)]m

)
[ψ(i)]n = 0

and

x = Sα +MEF (x).

Thus by proposition 2.10, Lx = Fx and so (x, α) is a solution to the scalar problem (2.1)-

(2.2).

2.4 Example

Consider the scalar equation

y(t+ 2)− 2y(t+ 1) + y(t) = g(y(t+ 1)) (2.10)

subject to

3y(0)− 10y(1) + 2y(6) + y(7) = 0 (2.11)

− 6y(0)− y(3) + 3y(4) = 0 (2.12)
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We note that in this example, N = 6, n = 2, and m = 2. Now we define

A(t) =

 0 1

−1 2

 for all t ∈ {0, 1, · · · , 6},

B0 =

 3 −10

−6 0

 , B3 =

 0 0

−1 3

 , B6 =

2 1

0 0

 ,

x(t) =

x1(t)
x2(t)

 =

 y(t)

y(t+ 1)

 ,
and

f(x) = f


x1
x2


 =

 0

g(x2)

 .
Using matrices defined above, we can rewrite the problem as

x(t+ 1) = A(t)x(t) + f(x(t)) (2.13)

subject to

B0x(0) + B3x(3) + B6x(6) = 0. (2.14)
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Since A(t) is constant for all t, we can write A(t) = A, and so we have Φ(t) = At. Further

we note that At has a closed form formula allowing us to write

Φ(t) = At =

1− t t

−t 1 + t

 .
Now we have

B0 +B3A
3 +B6A

6 =

−13 9

−13 9

 ,
and so

ker(B0 +B3A
3 +B6A

6) = span


 9

13

1


 .

We note that

 9

13

1

 is a unit vector under the max norm, and that

 9

13

1

 plays the role of

the unit vector d. We can now define the function S by

S(t) = At

 9

13

1

 =


9

13
+

4

13
t

1 +
4

13
t


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where t = 0, 1, . . . , 5. Thus O1 = {1, 2, 3, 4, 5}, and O0 and O2 are empty. We also note

that

ker(BT
0 ) = span


0

0


 ,

ker(BT
3 ) = span


1

0


 ,

ker(BT
6 ) = span


0

1




and so
6⋂
i=0

ker
(
BT
i

)
= {0}. We now seek to define the map ψ. To do so, consider

ker
(

[B0 +B3A
3 +B6A

6]T
)

= span


 1

−1


 .
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Again, we note that

 1

−1

 is a unit vector, and mention that

 1

−1

 plays the role of the

vector c. Therefore

ψ(t) =
6∑

i=t+1

[BiA
i−1−t]T

 1

−1



=



(
[B3A

2−t]T + [B6A
5−t]T

) 1

−1

 for t = 0,1,2

[B6A
5−t]T

 1

−1

 for t = 3,4,5

=



t− 8

9− t

 for t = 0,1,2

3t− 13

16− 3t

 for t = 3,4,5.
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Now we must ensure that J1 and J2 are of opposite sign. We note that

J1 = g(∞)
∑
i∈O1

[ψ(i)]2 + g(−∞)
∑
i∈O2

[ψ(i)]2

= g(∞)
∑
i∈O1

[ψ(i)]2

= g(∞)
[ 2∑
i=0

9− i+
5∑
i=3

16− 3i
]

= 36g(∞).

Similarly we have J2 = 36g(−∞). Therefore, to guarantee a solution to (2.10) - (2.12)

we can select g to be any continuous function satisfying g(∞)g(−∞) < 0. For example,

consider g(x) =
2

π
arctan(x). Then we have g(∞) = 1 and g(−∞) = −1, and so

J1J2 < 0. Thus there exists a solution to (2.10) - (2.12).
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Chapter 3

Full System at Resonance

3.1 Introduction

In this chapter, we extend the results obtained from chapter two and examine the discrete,

nonlinear system subject to a multipoint boundary condition. Namely, we seek sufficient

conditions for the existence of solutions to the nonlinear, discrete, multipoint boundary

value problem

x(t+ 1) = A(t)x(t) + f(t, x(t)) where t ∈ {0, 1, ..., N − 1} (3.1)

under the boundary condition

B0x(0) + B1x(1) + · · ·+BNx(N) = 0. (3.2)

Here A(t) is an invertible n × n matrix for all t ∈ {0, 1, . . . , N − 1}, each Bk is a real

valued n× n matrix, x : {0, 1, . . . , N} → Rn, and f : {0, 1, . . . N − 1} × Rn → Rn.

The approach taken will resemble that done in the previous chapter. We will rely on the
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related linear homogeneous equation

x(t+ 1) = A(t)x(t) where t ∈ {0, 1, . . . , N − 1}, (3.3)

and the linear inhomogeneous equation

x(t+ 1) = A(t)x(t) + h(t) where t ∈ {0, 1, . . . , N − 1}, h ∈ Rn. (3.4)

We will then examine the case in which the solution space to (3.3) subject to the boundary

condition (3.2) is one dimensional. If 0 is the only solution to the problem, then theorem 2.3

guarantees a solution to (3.1) - (3.2) exists where f satisfies the sublinear growth condition

established in chapter 2. In the case of a one dimensional solution space we will restrict

the behavior of the nonlinearity f(t, x(t)) for large values of x. As done in the previous

chapter, we will introduce a projection scheme and then we will use degree theory to attain

the desired result.

This problem is a clear extension of the previous section as we no longer require scalar

hypothesis. The methods in this section resemble previous work done by Pollack and

Taylor [9].

3.2 Preliminaries

For the remainder of this chapter we will assume the following fundamental hypothesis:

H1:
N⋂
i=0

ker
(
BT
i

)
= {0}.

H2: f(t, ·) is continuous on Rn for all t ∈ {0, 1, · · · , N − 1} and there exists a real

number b such that |f(t, x)| ≤ b for all t ∈ {0, 1, · · · , N − 1} and x ∈ Rn.

H3: There exists α0 ≥ 0 and a decreasing function δ : [α0,∞)→ [0,∞) such that:

(i) lim
α→∞

δ(α) = 0;
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(ii) If t ∈ {0, 1, · · · , N − 1}, |x0| > α0 + s and |x1| ≤ s, then |f(t, x0)− f(t, x0 +

x1) ≤ δ(|x0| − s)s.

H4: The linear homogeneous problem (3.3)-(3.2) has a one dimensional solution space.

As in the case of the nonlinear, scalar, discrete problem, the solution space of the homoge-

neous system is fundamental to our analysis of the nonlinear function f . We reiterate that

a fundamental matrix solution to the linear homogeneous difference equation

x(t+ 1) = A(t)x(t) for t = 0, 1, 2, . . . N − 1

is given by

Φ(t) =


I t = 0

A(t− 1)A(t− 2) · · ·A(0) t = 1, 2, · · · .

By hypothesisH4, we know ker
( N∑
i=0

BiΦ(i)
)

= span{d} for some d ∈ Rn. Furthermore,

H4 guarantees that ker
( N∑
i=0

[BiΦ(i)]T
)

= span{c} for a vector c ∈ Rn. So as done in

chapter two, we can define the map S : {0, 1, · · · , N − 1} → Rn by

S(t) = Φ(t)d,

and we can define the map ψ : {0, 1, . . . , N − 1} → Rn by

ψ(t) =
N∑

i=t+1

[
BiΦ(i)Φ−1(t+ 1)

]T
c. (3.5)
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Using proposition 2.6 and definition 2.7, we have (3.4)-(3.2) has a solution if and only if
N−1∑
i=0

ψ(i)Th(i) = 0. Lastly, we define J : R→ R by

J(α) =
N−1∑
i=0

ψ(i)Tf(i, S(i)α). (3.6)

H5: J1 = lim
α→∞

J(α) and J2 = lim
α→−∞

J(α) exist and are of differing sign.

Under these fundamental hypothesis, we can state the theorem at hand

Theorem 3.1. If A(t), Bk, and f are as defined above and hypotheses H1−H5 are satis-

fied, then there is a solution to (3.1)− (3.2).

To prove theorem 3.1, we will first state and prove a more general result about the

existence of solutions to linear mappings that does not rely on the setting of difference

equations. Theorem 3.1 will then be able to be proven as a consequence of this more

general result.

3.3 General Setting

Theorem 3.2. Let X and Y be finite dimensional, normed, linear spaces with the same

dimension, L : X → Y be a linear map such that ker(L) = span{k} where ‖k‖ = 1.

Suppose ψ∗ : Y → R is a linear functional satisfying the property y ∈ Im(L) if and only

if ψ∗y = 0. Furthermore, suppose that F : X → Y is continuous on X and ‖F (x)‖ ≤ b

for all x ∈ X . Then Lx = F (x) has a solution if the following additional hypotheses are

satisfied:

H6: For all positive real numbers, s, there exists As ≥ 0 and µs : [As,∞)→ [0,∞) such

that:

(i) lim
α→∞

µs(α) = 0
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(ii) if |α| ≥ As and ‖x1‖ ≤ s, then ‖F (αk)− F (αk + x1)‖ ≤ µs(|α|)s

H7: J1 = lim
α→∞

ψ∗F (αk) and J2 = lim
α→−∞

ψ∗F (αk) exist and are of differing sign.

Proof. Let X0 = ker(L) = span{k} where ‖k‖ = 1. Since X is a finite dimensional

linear space, we know there exists a complement X1 such that X = X0 ⊕X1. Let P0 and

P1 be projections associated with X0 and X1. Again, since X is finite, the projections P0

and P1 exist and are bounded. Let Y1 = Im(L) and Y0 be any complement of Y1 such that

Y = Y0 ⊕ Y1. Define E0 and E1 to be projections on Y associated with Y0 and Y1. The

finite dimensionality of Y ensures that these projections exist and are bounded. We can

now restrict the linear map L to L : X1 → Y1. We note that L is a continuous bijection and

so there exists a bounded inverse M : Y1 → X1. We make note of the relationship between

the projections and the maps L and M : for x ∈ X we have P1x ∈ X1, this implies

MLx = ML(P0x+ P1x) = MLP1x = P1x.

That is ML = P1. In a similar manner, suppose y ∈ Y , then E1y ∈ Y1. Therefore

LME1y = E1y,

thus LME1 = E1.

Claim: Lx = F (x) if and only if there exists a real number α such that x1 = ME1F (αk+

x1) and ψ∗F (αk + x1) = 0.

Proof:

Lx = F (x) ⇐⇒ Lx− F (x) = 0

⇐⇒ ψ∗(Lx− F (x)) = 0 and ME1(Lx− F (x)) = 0

⇐⇒ ψ∗Lx− ψ∗F (x) = 0 and ME1Lx = ME1F (x)

⇐⇒ ψ∗F (αk + x1) = 0 and x1 = ME1F (αk + x1)
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Therefore Lx = F (x) is equivalent to the system

x1 = ME1F (αk + x1) (3.7)

0 = ψ∗F (αk + x1). (3.8)

Now define the functions

HX1 : X1 × R→ X1 by H
X

(x, α) = x1 −ME1F (αk + x1),

HR : X1 × R→ R by HR(x, α) = ψ∗F (αk + x1),

H : X1 × R→ X1 × R by H(x, α) = (H
X
, HR).

We note if H(x1, α) = (0, 0) then x = αk + x1 satisfies Lx = F (x). So we seek to use

degree theory to find a zero of the function H on X1 ×R. We will accomplish this goal by

constructing an open set B ⊂ X1 × R where the topological degree deg[H,B, 0] = 1. By

H7, J1 J2 < 0. Without loss of generality suppose J1 > 0 and J2 < 0. To create B, we

select a real number s such that ‖ME1‖b ≤ s. Now choose α1 ≥ As satisfying:

(i) 0 <
J1
2
< ψ∗F (α1k);

(ii) ψ∗F (−α1k) <
J2
2
< 0;

(iii) α1 > max{J1,−J2};

(iv) µs(α1) ≤
min{J1,−J2}

2‖ψ∗‖s
.

Now define B ⊆ X1 × R to be

B =
{

(x1, α)
∣∣∣ ‖x1‖ < s and |α| < α1

}
.

Let B denote the closure of B. We seek to use the invariance of topological degree with
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respect to homotopy to show that the map H has at least one zero. To this end, we define

the functions

GX1 : B × [0, 1]→ X1 by G
X

(x1, α, λ) = x1 − λME1F (αk + x1),

GR : B × [0, 1]→ R by GR(x1, α, λ) = (1− λ)α + λψ∗F (αk)− λψ∗
[
F (αk)− F (αk + x1)

]
,

G : B × [0, 1]→ X× R by G(x1, α, λ) = (GX1 , GR).

For each λ ∈ [0, 1] let Gλ = G(·, ·, λ). We note that G is continuous and G0(x1, α) =

(x1, α) and G1(x, α) = H(x, α). Since (0, 0) ∈ B, we know deg[G0, B, 0] = 1. It is left to

show that Gλ(x, α) is nonzero along the boundary of B for all λ ∈ [0, 1]. Let (x1, α) ∈ ∂B

and λ ∈ [0, 1]. Then we have ‖x1‖ = s. Thus

‖GX1(x1, α, λ)‖ = ‖x1 − λME1F (αk + x1)‖

≥ ‖x1‖ − λ‖ME1F (αk + x1)‖

≥ s− ‖ME1‖b

> 0.

That isGX1(x1, α, λ) 6= 0 on the boundary ofB for all λ ∈ [0, 1]. Again, suppose (x1, α) ∈

∂B and λ ∈ [0, 1]. Thus |α| = α1. Now consider

∣∣GR(x1, α, λ)
∣∣ =

∣∣(1− λ)α + λψ∗F (αk)− λψ∗[F (αk)− F (αk + x1)]
∣∣

≥
∣∣(1− λ)α + λψ∗F (αk)

∣∣− ‖ψ∗‖∣∣F (αk)− F (αk + x1)
∣∣

≥ min{α, ψ∗F (αk)} − ‖ψ∗‖µs(α1)s

>
J1
2
− ‖ψ∗‖min{J1,−J2}

2‖ψ∗‖s
s

≥ 0.

Similarly we obtain
∣∣GR(x1, α, λ)

∣∣ > 0 when α = −α. Thus GR(x1, α, λ) 6= 0 along the
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boundary of B and for all λ ∈ [0, 1]. Therefore Gλ 6= (0, 0) on the boundary of B for all

λ ∈ [0, 1]. We then have

deg[H,B, 0] = deg[G1, B, 0] = deg[G0, B, 0] = 1.

Therefore there exists (x, α) ∈ B such that such that H(x, α) = (0, 0), hence we have a

solution to Lx = F (x).

3.4 Difference Equation

We will now use Theorem 3.2 to prove our main result.

Theorem 3.1. If A(t), Bk, and f are as defined above and hypotheses H1−H5 are satis-

fied, then there is a solution to (3.1)− (3.2).

Proof. We seek to verify all hypotheses to Theorem 3.2 are satisfied. We begin by defining

Z = {φ : {0, 1, ..., N} → Rn} and β = B0x(0) + B1(1)x(1) + · · · + BNx(N). We

note that H1 is equivalent to rank(β) = n. Denote X = ker(β) ⊂ Z and let Y = {φ :

{0, 1, ..., N − 1} → Rn}. We note that dim(X) = nullity(β) = dim(Z) − rank(β) =

(N + 1)n− n = Nn = dim(Y ). We define the following norms on the sets X and Y :

‖x‖ = sup
t=0,1,··· ,N

|x(t)|,

‖y‖ = sup
t=0,1,··· ,N−1

|y(t)|,

where | · | is any norm on Rn. Lastly define the operators

L : X → Y defined by (Lx)(t) = x(t+ 1)− A(t)x(t);

F : X → Y defined by (F (x))(t) = f(t, x(t))

where t ∈ {0, 1, · · · , N − 1}. We note that x ∈ X solves x(t + 1) = A(t)x(t) if and only
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if x ∈ ker(L). Furthermore, x solves (3.1)-(3.2) if and only if Lx = F (x). Hypothesis H4

guarantees that ker(L) = span{k} where ‖k‖ = 1. If we define ψ∗ : Y → R by

ψ∗h =
N−1∑
i=0

ψ(i)Th(i)

then we have ψ∗h = 0 if and only if h ∈ Im(L) by proposition 2.6. Since (F (x))(t) =

f(t, x(t)) we have F is continuous and ‖F (x)‖ ≤ b.

The only remaining hypotheses to verify are H6 and H7. To verify H6, we set

m = min
t=0,1,...,N

|k(t)| (3.9)

where k is the nonzero, unit vector in ker(L). Since A(t) is invertible for each t ∈

{0, 1, . . . , N}, it follows that k(t) 6= 0 for all t ∈ {0, 1, . . . , N}. Therefore 0 < m ≤ 1. Let

α0 be the real number assured by H3 and set As =
α0 + s

m
. Define µs : [As,∞)→ [0,∞)

by

µs(α) = δ(mα− s). (3.10)

We note that µs is well defined and lim
α→∞

us(α) = 0. To verify the second condition of H6

suppose |α| ≥ As and ‖x1‖ < s. Then we have |αk(t)| ≥ |α|m ≥ Asm = α0 + s for

t ∈ {0, 1 . . . , N − 1}. So by hypothesis H3 we have

‖F (αk)− F (αk + x1)‖ = sup
t=0,1,...,N−1

|f(t, αk(t))− f(t, αk(t) + x1(t))|

≤ sup
t=0,1,...,N−1

δ(|αk(t)| − s)s

≤ δ(|α|m− s)s

= µs(|α|)s.
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Therefore hypothesis H6 is satisfied. Lastly, if we set S(t) = k(t) then we have

J1 = lim
α→∞

ψ∗F (αk) = lim
α→∞

N−1∑
i=0

ψ(i)Tf(i, k(i)α)

and

J2 = lim
α→−∞

ψ∗F (αk) = lim
α→−∞

N−1∑
i=0

ψ(i)Tf(i, k(i)α)

which exist and are of opposite sign by H5. Therefore all hypotheses of Theorem 3.2 have

been satisfied and so there exists a solution to Lx = F (x).

3.5 Example

Consider the autonomous nonlinear three-point boundary value problem:

x(t+ 1) = Ax(t) + f(x(t)) (3.11)

where t = 0, 1, . . . , 4, subject to

B0x(0) + B2x(2) + B5x(5) =

0

0

 . (3.12)

Here we define

A =

0 2

1 0

 ,
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B0 =

−3 −5

0 0

 , B2 =

 2 2

−4 2

 , B5 =

 0 0

−1 3

 ,
and f : R2 → R2

f


x1
x2


 =


(x1 − x2)3

1 + (x21 + x22)
3
2

+ v1

(x1 + x2)
3

1 + (x21 + x22)
3
2

+ v2

 .

where v1 and v2 are constants. We seek to show that (3.11)-(3.12) satisfies all the hypothesis

of theorem 3.1. We begin by noting that A is an invertible constant matrix. Now, since A

is constant we have Φ(t) = At. Then we have

B0 +B2A
2 +B5A

5 =

1 −1

4 −4

 ,
and so

ker(B0 +B2A
2 +B5A

5) = span


1

1


 .

If we use the max norm on R2, we have that

1

1

 is a unit vector and so we can define the

map S : {0, 1, . . . , 5} → R2 by

S(t) = At

1

1

 .
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We note that the map S spans the solution space of the associated linear problem and so

H4 is satisfied. Next, we observe that

ker(BT
0 ) = span


0

1


 ,

ker(BT
2 ) = span


0

0


 ,

ker(BT
5 ) = span


−1

0




hence H1 is satisfied. To assist in the verification of H2 let

f̃(x) = f̃


x1
x2


 =


(x1 − x2)3

1 + (x21 + x22)
3
2

(x1 + x2)
3

1 + (x21 + x22)
3
2

 .

Since f̃ is continuous, |f̃(x)| <
√

2
3

for all x, f(x) = f̃(x) + v and v is constant, the

conditions of H2 are met.

We note that hypothesis H3 will be satisfied if f is differentiable and if ‖Df(x)‖ → 0

as |x| → ∞. Given our function, f , we have

Df(x) =

1

σ2

3(x1 − x2)2σ − 3x1
√
x21 + x22(x1 − x2)3 −3(x1 − x2)2σ − 3x2

√
x21 + x22(x1 − x2)3

3(x1 + x2)
2σ − 3x1

√
x21 + x22(x1 + x2)

3 3(x1 + x2)
2σ − 3x2

√
x21 + x22(x1 + x2)

3


where σ = (x21 + x22)

3
2 + 1 and x 6= 0. We note that the matrix norm compatible with the

max norm on R2 is the infinity matrix norm defined as ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij|. Thus we
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have

‖Df(x)‖∞ ≤

|3(x1 − x2)2σ − 3x1
√
x21 + x22(x1 − x2)3|+ |3(x1 − x2)2σ + 3x2

√
x21 + x22(x1 − x2)3|

σ2
.

To help interpret this inequality we convert to polar coordinates by letting x1 = r cos θ and

x2 = r sin θ. Doing so we obtain

‖Df(x)‖∞

≤ |3r
2(sin θ − cos θ)2[r3 + 1]− 3r5 cos θ(cos θ − sin θ)3|

(r3 + 1)3

+
|3r2(sin θ − cos θ)2[r3 + 1] + 3r5 sin θ(cos θ − sin θ)3|

(r3 + 1)3

≤ 6r2|r3 + 1|+ 3
√

2
3|r5|+ 6r2|r3 + 1|+ 3

√
2
3|r5|

(r3 + 1)2

≤ 30|r5|+ 12r2

(r3 + 1)2

≤ 30|r5|+ 12r2

r6 + 1
.

Therefore, if we define δ : [2,∞)→ (0,∞) by δ(α) =
30α5 + 12α2

α6 + 1
we have ‖Df(x)‖∞ ≤

δ(α) for 2 ≤ α ≤ |x|. Furthermore, lim
α→∞

δ(α) = 0 and so H3 is satisfied.

The only remaining hypothesis to verify is H5. To this end note

lim
α→∞

f̃(αx) = lim
α→∞


α3(x1 − x2)3

1 + α3(x21 + x22)
3
2

α3(x1 + x2)
3

1 + α3(x21 + x22)
3
2

 =


(x1 − x2)3

(x21 + x22)
3
2

(x1 + x2)
3

(x21 + x22)
3
2

 .

Let γ(x) = lim
α→∞

f̃(αx). Note that γ is an odd function of x and that lim
α→∞

f(αx) = γ(x)+v
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where v =

v1
v2

 . Now let us compute the numbers J1 and J2:

J1 = lim
α→∞

N−1∑
i=0

ψ(i)Tf(αS(i))

=
N−1∑
i=0

ψ(i)T lim
α→∞

f(αS(i))

=
N−1∑
i=0

ψ(i)T (γ(S(i)) + v)

and

J2 = lim
α→−∞

N−1∑
i=0

ψ(i)Tf(αS(i))

=
N−1∑
i=0

ψ(i)T lim
α→−∞

f(αS(i))

=
N−1∑
i=0

ψ(i)T (−γ(S(i)) + v).

Therefore, we have

J1J2 = −

(
N−1∑
i=0

ψ(i)Tγ(S(i))

)2

+

(
N−1∑
i=0

ψ(i)Tv

)2

.

In order to guarantee that J1 and J2 are of differing signs we need

∣∣∣∣∣
N−1∑
i=0

ψ(i)Tv

∣∣∣∣∣ <
∣∣∣∣∣
N−1∑
i=0

ψ(i)Tγ(S(i))

∣∣∣∣∣. (3.13)

First, we must ensure that the right hand side of (3.13) is not zero. To do this we recruit the

help of MATLAB to calculate the sum in question. The first step of calculating this sum is
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to examine the map ψ just as was done in the scalar example. We note

ker
(

[B0 +B2A
3 +B5A

5]T
)

= span


−1

1

4


 .

furthermore,

−1
1

4

 is a unit vector under the max norm. Using this vector we can define

the map ψ in the following manner

ψ(t) =
5∑

i=t+1

[BiA
i−1−t]T

−1

1

4



=



(
[B2A

1−t]T + [B5A
4−t]T

)−1

1

4

 for t = 0,1

[B5A
4−t]T

−1

1

4

 for t = 2,3,4.

With this piecewise definition of ψ we utilize the computational strength of MATLAB to

calculate the sum in question. Doing so, we obtain

∣∣∣∣∣
N−1∑
i=0

ψ(i)Tγ(S(i))

∣∣∣∣∣ ≈ 5.6490.

It remains to decipher inequality (3.13). To help us do so we introduce the following

notation:

ψ(t) =

ψ1(t)

ψ2(t)

 and γ(x) =

γ1(x)

γ2(x)

 .
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Now define

Ψ =



ψ1(0)

ψ2(0)

ψ1(1)

ψ2(1)

...

ψ1(4)

ψ2(4)



, Γ =



γ1(S(0))

γ2(S(0))

γ1(S(1))

γ2(S(1))

...

γ1(S(4))

γ2(S(4))



and V =



v1

v2

v1

v2
...

v1

v2


Using this new notation we note that (3.13) is equivalent to

|Ψ ·V| < |Ψ · Γ|. (3.14)

Since V is constant and does not influence Ψ and Γ, we can choose v1 and v2 such that

|V|2 <
|Ψ · Γ|
|Ψ|2

.

We note that |V|2 =
√

5|v|2. Thus, choosing v1 and v2 such that

|v|2 <
|Ψ · Γ|√

5|Ψ|2
. (3.15)

will guarantee that the crucial inequality holds and so J1 and J2 will be of differing signs.

Again using MATLAB, we find that

|Ψ · Γ|√
5|Ψ|2

≈ 5.6490

11.7659
≈ 0.4801. (3.16)
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Therefore if we choose v =


1

5
√

3

5

 we have

|v|2 =
2

5
< 0.4801 ≈ |Ψ · Γ|√

5|Ψ|2
.

Thus the final hypothesis H5 is satisfied, guaranteeing a solution to (3.11)-(3.12).
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Chapter 4

Conclusion

4.1 Future Directions

The results of this thesis show that under certain restrictions on the nonlinearity f we can

establish the existence of solutions to the discrete, nonlinear, multipoint boundary value

problem of study. One possible extension of this work is to lift the restriction of a bounded

nonlinearity and examine a sublinear growth condition similar to the one imposed when the

linear map was invertible. Another potential avenue of study is extending the dimensional-

ity of the associated linear homogeneous problem. In the scalar setting, we supposed that

the nonlinear term g only relied on y at a single time step, namely y(t+m−1) for somem.

An extension of this is to allow g to depend on y at more than one time step. We note that

these results have been proven for difference equations, so a natural extension is to think

about the applicability to differential equations. More generally, if we can extend the dis-

cussed theorems to a general time-scale, we will have results that hold for both difference

equations and differential equations.
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Appendix A

MATLAB Code

1 %Define t as symbolic variable

2 syms t u v

3

4

5 %Choose Integer N

6 N = input('Select Integer N: ')

7

8 %Get dimension of matrix A

9 n = input('Select n to generate square matrices: ')

10

11

12 %Create Symbolic Matrix A

13 A = sym('a',n)

14

15 %Create Variable to store boundary indices

16 ind=zeros(1,N+1);

17

18 %Initialize Matrices B_i, BT_i, NB_i
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19 B=cell(N+1,1);

20 NBT=cell(N+1,1);

21 for i=1:N+1

22 B{i} = zeros(n);

23 BT{i} = zeros(n);

24 end

25

26

27

28 %Get user input for matrix A(t)

29 for ro=1:n

30 for co=1:n

31 prompt=sprintf('Enter the value for A(%d,%d): ',ro,co)

32 A(ro,co) = input(prompt);

33 end

34 end

35 A

36

37 %Check for invertibility

38 for i=1:N

39 if cond(subs(A,t,i-1))==inf

40 Ainv = sprintf('The matrix is not invertible for all t. ...

Hypothesis 1.1 is not satisfied.');

41 break;

42 else

43 Ainv = sprintf('The matrix is invertible for all t. ...

Hypothesis 1.1 is satisfied.');

44 end

45 end

46 disp(Ainv)

47

48 %%% NOTE: You must enter B matrices as an array %%%

52



49 %%% i.e. [1 2; 3 4] will create the 2x2 matrix with entries 1 2 3 ...

4 $$$

50

51 %Get B_i matrices

52 i=0

53 while i<N+1

54 prompt =sprintf('Specify the index i : ')

55 i =input(prompt);

56 ind(i+1)=i;

57 prompt2=sprintf("Enter the values for B_%d. Use a semicolon ...

to specify a new row.",i)

58 B{i+1} =input(prompt2);

59

60 if i > N-1

61 break

62 end

63 end

64

65 B;

66 ind;

67

68

69 %Get Transpose of B_i

70 for i=1:N+1

71 BT{i} = transpose(B{i});

72 end

73

74

75

76 %Calculate Kernel of (B_i)ˆT

77 for i=1:N+1

78 %Calculates Null Space for nonzero B_i

79 if ind(i)==i-1
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80 NBT{i}=null(BT{i});

81 %Stores zero vector for matrices with nullity 0.

82 if isempty(NBT{i}) == 1

83 NBT{i}= zeros(1,n);

84 end

85 end

86 end

87

88

89 %Store null space of nonzero B_iˆT

90 k=1

91 for i=1:N+1

92 if ˜isempty(NBT{i}) == 1

93 KBT{k} = NBT{i};

94 k=k+1;

95 end

96 end

97 KBT

98

99

100 %Initialize matrix D

101 D = zeros(n);

102

103 %Initialize Dummy Matrix to Calculate State-Transisiton Matrix

104 AA = eye(n);

105

106 %Create Logical Test to determine if A is constant

107 K = isSymType(A,'constant');

108 if K == ones(n,n)

109 %Calculate Matrix D for Constant A

110 for i=1:N+1

111 D = D+B{i}*Aˆ(i-1);

112 end
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113 else

114 %Calculate Matrix D for A(t)

115 for i=1:N+1

116 AA = subs(A,t,i-1)*AA;

117 DD = DD+B{i}*AA;

118 end

119 end

120 D

121

122 %Nullity of D

123 ND = null(D)

124 if numel(ND) == 2 && norm(ND) ˜=0

125 fprintf("Solution space is one dimensional. Hypothesis H1.5 ...

is satisfied.")

126 end

127

128 NDT = null(transpose(D))

129

130

131

132 %Check intersection of ker(B_i)ˆT

133 %initialize dummy intersection

134 NN = size(KBT,2);

135 DummyInt=cell(NN-1,1);

136 %Check First intersection

137 DummyInt{1} = intersect(KBT{1},KBT{2});

138 %Loop

139 for i=2:NN-1

140 DummyInt{i} = intersect(DummyInt{i-1},KBT{i+1});

141 end

142 IKB = DummyInt{NN-1}

143

144 if IKB == 0
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145 fprintf("Intersection of Ker(B_iˆT) is the zero vector. H1.2 ...

is satisfied.")

146 end

147

148

149

150 %Input function and calculate Jacobian

151 g =@(u,v) [(u-v)ˆ3/(1+(uˆ2+vˆ2)ˆ(3/2));(u+v)ˆ3/(1+(uˆ2+vˆ2)ˆ(3/2))];

152 g(u,v)

153 JJ = jacobian(g(u,v))

154 JJM=norm(JJ,inf)

155

156

157

158 c = 1/4*NDT

159 psi =cell(N,1);

160 %Calculate psi(t)

161 for i=1:2

162 psi{i} =transpose(B{3}*Aˆ(2-i))*c + transpose(B{6}*Aˆ(5-i))*c;

163 end

164

165 for i=3:5

166 psi{i} = transpose(B{6}*Aˆ(5-i))*c;

167 end

168

169 %Look at psi

170 %for i=1:5

171 % psi{i}

172 %end

173

174

175 %Calculate S(i)

176 d = ND;
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177 S = cell(N,1);

178

179 for i=1:N

180 S{i} = Aˆ{i-1}*d;

181 end

182

183 %Look at values of S(i)

184 % for i=1:N

185 % S{i}

186 % end

187

188 g(S{1}(1,1),S{1}(2,1))

189

190 %Calculate gamma(S(i))

191 gam = cell(N,1);

192

193 for i = 1:N

194 gam{i} = g(S{i}(1,1),S{i}(2,1));

195 end

196

197

198 %calculate functional psi*

199 star = cell(N,1);

200 for i = 1:N

201 star{i} = transpose(psi{i})*gam{i};

202 end

203

204 %Check sum

205 S= 0;

206 for i = 1:N

207 S = abs(S+star{i});

208 end

209 S
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210 double(S)

211

212 %calculate 2 norm for cap Psi

213 psiSum = 0;

214 for i=1:N

215 psiSum = psiSum + psi{i}(1,1)ˆ2+psi{i}(2,1)ˆ2;

216 end

217 psiNorm = sqrt(psiSum)

218 double(psiNorm)

219 sqrt(5)*double(psiNorm)
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