
Investigating Normality in Lattice Valued Topological Spaces

by

Luke Hetzel

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Sciences

in the

Mathematics

Program

YOUNGSTOWN STATE UNIVERSITY

May, 2022



Investigating Normality in Lattice Valued Topological Spaces

Luke Hetzel

I hereby release this thesis to the public. I understand that this thesis will bemade available from the

OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize

the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Luke Hetzel, Student Date

Approvals:

Dr. Stephen Rodabaugh, Thesis Advisor Date

Dr. Jamal Tartir, Thesis Advisor Date

Dr. Padraic Taylor, Committee Member Date

Dr. Salvatore A. Sanders, Dean of Graduate Studies Date



Abstract

Separation axioms are a useful property in general topology. Important among them is the concept

of normality. Normality can be used to guarantee the existence of various continuous functions.

Three theorems towards that goal are Urysohn’s Lemma, the Katetov-Tong Insertion Lemma and

Tietze Extension Theorem. Much work has been done on extending these theorems into the realm

of lattice valued topological spaces. This paper compiles much of the existent work on the topic,

clearly and concisely elaborating on the proofs of these theorems in the current literature.
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Introduction

A fundamental concept within analysis is the notion of continuity. Continuous functions are nice

to work with, and continuity is necessary for properties such as differentiability. Intuitively, a func-

tion is continuous if, when one brings two inputs “close”, the corresponding outputs can be made

arbitrarily “close”.

In order to address this concept of continuity, metric spaces become useful. A metric space is a

set, together with a function which expresses a “distance” between two points. Equipped with such

a function, “close” can be defined rigorously and continuity can be studied in depth.

A great insight of topology is the knowledge that in order to discuss continuity, one does not

need a defined notion of distance, just a notion of open and closed sets. Metric spaces generate

topologies, and some topologies generatemetric spaces. Given setsX and Y , equippedwithmetrics

d, p respectively, we can generate topological spaces, (X, τd) and (Y, τp). Notably, a function

f : (X, d)→ (Y, p)

viewed as a function between metric spaces is continuous in the metric sense if and only if the

corresponding function

f : (X, τd)→ (Y, τp)

between topological spaces is continuous in the topological sense.

As it was laid out in [12], general topological spaces hold no guarantees as to how many open

sets are available. In the trivial topology, the only open sets are the empty set and the space itself,

as such there are very few continuous functions. In the discrete topology, every set is open, and so
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every function is continuous. Neither of these are useful to work with, instead, useful spaces are

spaces with a richness of open sets, and yet not an overabundance of them.

Normality is a property which guarantees a richness of open sets within a space sufficient to ob-

tain a richness of real-valued continuous functions on the space [12]. As such it is a useful property

to understand.

There are a plethora of theorems showing the existence of various types of continuous functions

on normal topological spaces. Three famous results in the study of normal spaces are Urysohn’s

Lemma, the Tietze Extension Theorem and the Katetov-Tong Insertion Lemma.

A useful generalization of the concept of a topological space is that of a lattice-valued topological

space. Here instead of open sets, we have open L-valued subsets.

The natural questions one might ask next become, “Can one define a notion of normality in lat-

tice valued topological spaces?” and “Do the above theorems have counterparts in lattice valued

topological spaces?”

This has been an active area of research over the last fifty years which has led to many useful

results [6] [4] [2]. This paper reviews many of the important results which have been achieved in

that time, adding clarifications and expansions of the proofs where useful.
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Mathematical Preliminaries

2.1 Topological Spaces

Definition 2.1.1. Suppose X is a set. A subset τ ⊂ ℘(X) is a topology if:

• τ is closed under arbitrary unions;

• τ is closed under finite intersections;

• ∅ ∈ τ and X ∈ τ .

Definition 2.1.2. Suppose X and Y are sets, and f : X → Y . This gives rise to two functions,

f→ : ℘(x)→ ℘(Y ) and f← : ℘(Y )→ ℘(Y ), given by

f→(A) = {y ∈ Y : x ∈ X, f(x) = y},

f←(B) = {x ∈ X : f(x) ∈ B}

Definition 2.1.3. Suppose (X, τX) and (Y, τY ) are topological spaces and f : X → Y . Then f is

continuous if

∀ V ∈ τY , f
←(V ) ∈ τX

Definition 2.1.4. Suppose (X, τ) is a topological space. ThenX is normal if and only if whenever A

and B are disjoint closed sets in X, U, V ∈ τ with A ⊂ U , B ⊂ V and U ∩ V = ∅.

These motivate our ideas as we move into lattice valued topological spaces.
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2.2 Lattice Valued Topological Spaces

Definition 2.2.1 [4]. Let (L,≤,′ ) be a complete lattice with an order reversing involution. Suppose

X is a set. Then an L-valued subset of X is a map A : X → L.

Definition 2.2.2 [1] [4]. We define the usual set theory operations and relations as

(
⋃
λ∈Λ

Aλ)(x) =
∨
λ∈Λ

Aλ(x)

(
⋂
λ∈Λ

Aλ)(x) =
∧
λ∈Λ

Aλ(x)

A′(x) = A(x)′

A ⊂ B ⇔ A(x) ≤ B(x), ∀x ∈ X.

Definition 2.2.3 [1] [10]. AnL-topological space is a pair (X, τ)whereX is a set and τ is a collection

of L-valued sets closed under arbitrary union and finite intersection. An L-valued set is called open

if it is in τ and called closed if its complement, constructed from the order reversing involution, ′, is

in τ . We call τ an L-topology.

Definition 2.2.4 [10] [15]. Suppose X and Y are sets and f : X → Y is a function. Then we can

construct f→L : LX → LY by

f→L (A)(y) =
∨
{A(x) : f(x) = y}

and f←L : LY → LX by

f←L (B) = B ◦ f.

Note 2.2.1 [10] [11]. We have the adjunction relationship we would expect based on the notation of

these functions. Namely,

f→L ⊣ f←L .

Definition 2.2.5[1] [13]. Let (X, τX) and (Y, τY ) be L-topological spaces and let f : (X, τX) →

(Y, τY ) be a function. Then f is continuous if whenever A ∈ τY , we have f←(A) ∈ τX .

Note 2.2.2 [11]. It can be shown that a function is continuous if and only if the preimage of a sub-

basic open set in Y is open in X .
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Definition 2.2.6 [4]. an L-topological space is normal if and only if for every closed K and open U

withK ⊂ U there exists a V with

K ⊂ V ◦ ⊂ V ⊂ U.

In order to discuss Urysohn’s Lemma in the lattice valued case, we will need to define the L-

valued unit interval.

2.3 The L-valued unit interval

Definition 2.3.1 [4]. Consider the set F of antitone maps λ : R→ L, satisfying

• λ(t) = 1, ∀t < 0

• λ(t) = 0, ∀t > 1.

Define λ(t−) =
∧

s<t{λ(s)} and λ(t+) =
∨

s>t{λ(s)}.

We define an equivalence class of functions in F by µ ∈ [λ] if and only if, ∀t ∈ R, λ(t−) =

µ(t−), λ(t+) = µ(t+).

Definition 2.3.2 [4]. We define the L-valued unit interval to be the set of equivalence classes of F .

Definition 2.3.3 [4]. We define an L-valued topology on [0, 1](L) by taking {Lt, Rt : t ∈ R} as a

subbase, where

Lt([λ]) = λ(t−)′, Rt([λ]) = λ(t+).

Note 2.3.1. This is well defined by construction.

Note 2.3.2 [4]. We obtain a partial ordering on [0, 1](L) by taking [µ] ≤ [λ] if and only if,

∀t ∈ R, µ(t−) ≤ λ(t−), µ(t+) ≤ λ(t+).

Lemma 2.3.1. In the case L = 2, [0, 1](L) and its L-topology reduce to the family of step functions

with jumps occurring in [0, 1] together with the characteristic functions of the open sets of the usual
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topology on [0, 1] evaluated at those jumps.

Proof. Let [λ] ∈ [0, 1](L).

Then each µ ∈ [λ] is a step function, which jumps from ⊤ to ⊥ at some s ∈ [0, 1].

Rt([λ]) = λ(t+) =


⊤ if s > t

⊥ if s ≤ t

= χ(t,1](s).

Now we can view χ(t,1](s) as the set (t, 1] via the natural correspondence.

By the same process, we get Lt([λ])
′ = χ[0,t)(s) which we may view as [0, t).

Now we have {[0, t), (t, 1] : t ∈ [0, 1]}, which forms a subbase for the usual topology on [0, 1].

Note 2.3.3 [2]. We can define R(L) in an appropriate way.

Definition 2.3.4. [6] Let (X.τ) be an L-topological space and f : X → R(L). Then f is called lower

semicontinuous if f←(Rt) is open for every t ∈ R. Likewise a function is called upper semicontin-

uous if f←(Lt) is open for every t ∈ R.
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Urysohn’s Lemma

3.1 Importance of Urysohn’s Lemma

As described in the introduction, a main goal of the study of separation properties in topological

spaces is to ensure a sufficient amount of continuous functions on a space, without containing an

unnecessary excess of continuous functions [12]. Especially valuable are functions from a topolog-

ical space to itself, and functions into the real numbers or the unit interval.

Urysohn’s Lemma is a fundamental theorem toward our goal of constructing continuous func-

tions. It allows one to build functions into the unit intervalwhich separate closed sets. The statement

of the theorem is given below.

Theorem 3.1.1 (Urysohn’s Lemma) [12]. A topological space (X, τ) is normal if and only if when-

everA andB are disjoint closed sets in X, there exists a continuous f : X → [0, 1]with f→(A) ⊂ {0}

and f→(B) ⊂ {1}.

Important to this theorem is that it is bidirectional. If a space is normal, one can build a contin-

uous function into the unit interval which separates closed sets. But also, if one can always build

such a Urysohn function, then the space is normal.

3.2 Proof of Urysohn’s Lemma

Below we will consider the proof of Urysohn’s Lemma. The proof below is an expanded version of

that given in [14].

Proof. (⇒) Suppose (X, τ) is normal, A,B are disjoint closed sets in X.

7



By normality, there exists U 1
2
∈ τ with A ⊂ U 1

2
and U 1

2
∩B = ∅.

Now A and X⧹U 1
2
are disjoint closed sets. So are U 1

2
and B.

So there exists open sets U 1
4
and U 3

4
so that

A ⊂ U 1
4
⊂ U 1

4
⊂ U 1

2
⊂ U 1

2
⊂ U 3

4
⊂ U 3

4

With U 3
4
∩B = ∅.

We will now use induction to continue this process.

Suppose n ∈ N and that we have defined sets U k
2n

for all

k = 1, 2, ...2n − 1 such that

A ⊂ U 1
2n
⊂ U 1

2n
⊂ U 2

2n
⊂ ...U 2n−2

2n
⊂ U 2n−1

2n
.

And U 2n−1
2n
∩B = ∅.

Then by normality we can insert open sets between each of these sets, extending to n+1.

So by induction we achieve a collection of open sets indexed by the dyadic rationals, subject to

the properties that:

• A ⊂ Ur and B ∩ Ur = ∅ for every dyadic rational r.

• Ur ⊂ Us, ∀r < s.

Note, we will denote the set of dyadics as D. We now define a function f : X → [0, 1] by

f(x) =


1 ∀x, x /∈ Ur, ∀r ∈ D

inf{r : x ∈ Ur} otherwise

Clearly f→(A) ⊂ {0} and f→(B) ⊂ {1}.

Claim: f is continuous.

Case 1: f(x) = 1.

Let U be a basic open set with f(x) ∈ U . Then U = (r, 1] for some r ∈ (0, 1). Then X⧹Ur ∈ τ
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and x ∈ X⧹Ur and f→(X⧹Ur) ⊂ (r, 1].

The cases of f(x) = 0 and f(x) ∈ (0, 1) follow similarly. So f is continuous.

(⇐) Suppose whenever A and B are disjoint closed set inX and f : X → [0, 1] there is a contin-

uous function with f→(A) ⊂ {0} and f→(B) ⊂ {1}.

Let A and B be disjoint closed sets and f : X → [0, 1] be defined from the hypothesis. Then

f←([0, 1
2 )) and f←(( 12 , 1]) are disjoint open sets which separate A and B.

3.3 Generalization into Lattice Valued Topology

In his 1975 paper, Hutton proposed a generalization of Urysohn’s Lemma for lattice valued topo-

logical spaces. A slightly modified version of his statement is given below.

Theorem 3.3.1Hutton’s LatticeValuedUrysohn’s Lemma [4]. Let (X, τ) be anL-topological space.

Then (X, τ) is normal if and only if (X, τ) has the “Hutton Property”, i.e. for every closed setK and

open set U with K ⊂ U there exists a continuous function f : X → [0, 1](L) such that for every

x ∈ X, K(x) ≤ f(x)(1−) ≤ f(x)(0+) ≤ U(x)

This statement is initially confusing. It does not, at surface level appear particularly related to

Urysohn’s lemma, which builds a continuous function to separate closed sets. However, in the case

of L = 2, the Hutton Property reduces to Urysohn’s Lemma.

Consider the case of L = 2. We have, ∀x ∈ X,

K(x) ≤ f(x)(1−) ≤ f(x)(0+) ≤ U(x).

Let x ∈ X . NowK(x) ≤ f(x)(1−). SoχK(x) ≤ f(x)(1−) = [λrx ](1−). If x ∈ K,⊤ ≤ f(x)(1−) =

[λrx ](1−) = ⊤. So ∀x ∈ K, f(x) ∈ [λ1] which we can view as 1. SoK ⊂ f←({1}).

Similarly we have f(x)(0+) ≤ U(x). So f(x)(0+) ≤ χU (x). If x /∈ U, f(x)(0+) ≤ ⊥. So for

x ∈ U ′, f(x) ∈ [λ0]. Or, U ′ ⊂ f←({0}).

So in the case of L = 2, the statement of the Hutton Property can be read as:
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Property 3.3.1 (Hutton Property). For every open set U , closed set K, with K ⊂ U , there exists a

continuous function f : X → [0, 1], with

K ⊂ f←({1}), U ′ ⊂ f←({0}).

Lemma 3.3.1. The Hutton Property and Urysohn Property are equivalent when L = 2.

Proof. (⇒) Suppose a topological space (X, τ) has the Hutton Property.

Let A and B be disjoint closed sets. Choose U ∈ τ by U = X⧹B. Then ∃f : X → [0, 1] with

A ⊂ f←({1}) and U ′ ⊂ f←({0}).

Now U ′ = (X⧹B)′ = B so

f→(B) = f→(U ′) ⊂ f→(f←({0})) ⊂ {0}.

And likewise,

f→(A) ⊂ f→(f←({1})) ⊂ {1}.

(⇐) Suppose the space has Urysohn Property.

Let K be a closed set and U be open such that K ⊂ U . Choose A = X⧹U . Then K and A are

disjoint. So there exists a Urysohn function with f→(A) ⊂ {0} and f→(K) ⊂ {1}.

Then

U ′ = A ⊂ f←(f→(A)) ⊂ f←({0})

and

K ⊂ f←(f→(K)) ⊂ f←({1})

as desired.

Proof of Theorem 3.3.1.

With the above preparations, the proof of Theorem 3.3.1 is now given. Sufficiency elaborates upon

the proof given in [4], while necessity, at the recommendation of [5], adapts the approach of Lemma

3.1 in [8].

Proof. (⇐) Let x ∈ X . By hypothesis we have,

K(x) ≤ f(x)(1−) ≤ f(x)(0+) ≤ U(x).
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Since, ∀t ∈ (0, 1) it is true that f(x)(1−) ≤ f(x)(t+) ≤ f(x)(t−) ≤ f(x)(0+), we have

K(x) ≤ f(x)(t+) ≤ f(x)(t−) ≤ U(x).

.

By definition, f←(L′t)(x) = f(x)(t−) and f←(Rt)(x) = f(x)(t+) and by the continuity of f we

have f←(L′t) is closed and f←(Rt) is open. So

K ⊂ f←(Rt) ⊂ f←(L′t) ⊂ U.

By the properties of the interior of a set we have

K ⊂ f←(Rt) ⊂ f←(L′t)
◦ ⊂ f←(L′t) ⊂ U.

So if we let V = f←(L′t) we have

K ⊂ V ◦ ⊂ V ⊂ U.

So X is normal.

(⇒) Construct by normality, a sequence of sets {Vr : r ∈ (0, 1) and r ∈ [0, 1] ∩ Q} with the

properties

• K ⊂ V ◦r ⊂ Vr ⊂ U

• If r < s then Vr ⊂ V ◦s

And now define f : X → [0, 1](L) by

f(x)(t) =
∧
r<t

Vr(x).

Then by construction, for every x ∈ X

K(x) ≤ f(x)(1−) ≤ f(x)(0+) ≤ U(x).

It remains to show that f is continuous. We cando this by showing that the preimages of subbasic
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open sets remain open [13]. Note, since the preimage operator preserves complements, showing

that the preimages of the complements of basic open sets are closed acheives our goal. Now

f←L (R′t) =
∧
r>t

Vr =
∧
r>t

Vr

which is the intersection of closed sets and thus closed [8]. Also,

f←L (Lt) =
∨
r<t

Vr =
∨
r<t

V ◦r

is open so f is continuous as desired [8].
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The Katetov-Tong Insertion Lemma

4.1 Importance of the Katetov-Tong Insertion Lemma

Continuing our construction of continuous functions we have the Katetov-Tong Insertion Lemma.

It allows us to build a continuous function that sits between an upper semicontinuous and a lower

semicontinuous function.

Theorem 4.1.1 Katetov-Tong Insertion Lemma [3]. A topological space (X, τ) is normal if and only

if whenever g : X → R is upper semicontinuous and h : X → R is lower semicontinuous with g ≤ h

then there exists a continuous function f : X → R with g ≤ f ≤ h.

Besides furthering our goal of developing a rich theory of continuous functions [12], theKatetov-

Tong Insertion Lemma has an alternate use. With the Katetov-Tong Insertion Lemma, one can prove

Tietze Extension Theorem as a quick consequence. We will see this becomes very useful as we gen-

eralize into lattice-valued topological spaces. The traditional methods of proving Tietze Extension

Theorem have not yielded much, yet using Katetov-Tong works in the generalized setting [6].

4.2 Proof of Katetov-Tong

The Katetov-Tong Insertion Lemma was originally proven independently by both Miroslav Katětov

and Hing Tong. Multiple people have since given different proofs for the theorem. This paper

analyzes and expands upon a version of the proof from [3].

Proof. (⇒) Suppose (X, τ) is normal and g, h are given as above.

∀t ∈ Q, define
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H(t) = {x ∈ X : h(x) ≤ t}

and

G(t) = {x ∈ X : g(x) < t}.

Finally consider

P = {(r, s) : r, s ∈ Q, r < s}.

This is infinite and countable so we can index it as a sequence {(rn, sn)}n∈N.

Let Pn = {(rk, sk) : k ≤ n}.

Subclaim 1: For any r < s, H(r) is closed, G(s) is open and H(r) ⊂ G(s).

H(r) = h←((−∞, r]) and h is lower semicontinuous, so H(r) is closed.

G(s) = g←((−∞, s)) = g←(R⧹[s,∞)) = X⧹g←([s,∞)) and

g is upper semicontinuous so g←([s,∞)) is closed. So G(s) is open.

Now G(r) ⊂ G(s) since r < s and

H(r) ⊂ G(r) since g < h.

Therefore, H(r) ⊂ G(s) as desired.

Now we will use induction to construct a sequence of closed subsets, D(rn, sn) in X with the

properties

• H(r) ⊂ D(r, s) ⊂ G(s), ∀r < s

• r < u, s < t =⇒ D(r, s) ⊂ D(u, t)◦.

Base Case: n = 1.

By normality, we may construct a closed set D(r1, s1) such that

H(r1) ⊂ D(r1, s1)
◦ ⊂ D(r1, s1) ⊂ G(s1).

14



Since we have only one object in our collection, the properties hold.

Inductive Step (Strong): Suppose ∀k < n, ∃D(rk, sk) with the desired properties.

Let J = {j ∈ N : j < n, rj < rn, sj < sn} and

K = {k ∈ N : k < n, rk > rn, sk > sn}.

Then

H(rn) ∪ (
⋃
j∈J

D(rj , sj))

is closed and

G(sn) ∩ (
⋂
k∈K

D(rk, sk)
◦)

is open.

Also, we have

H(rn) ∪ (
⋃
j∈J

D(rj , sj)) ⊂ G(sn) ∩ (
⋂
k∈K

D(rk, sk)
◦).

By normality, we may construct D(rn, sn) to be a closed set such that

H(rn) ∪ (
⋃
j∈J

D(rj , sj)) ⊂ D(rn, sn)
◦ ⊂ D(rn, sn) ⊂ G(sn) ∩ (

⋂
k∈K

D(rk, sk)
◦).

So we have that

H(rn) ⊂ D(rn, sn)
◦ ⊂ D(rn, sn) ⊂ G(sn).

Also, let (rk, sk) ∈ Pn with rk < rn, sk < sn.

Then (rk, sk) ∈ J and
⋃

j∈J D(rj , sj) ⊂ D(rn, sn) so D(rk, sk) ⊂ D(rn, sn).

Now let (ri, si) ∈ Pn with rn < ri, sn < si. Then (ri, si) ∈ K.

So

D(rn, sn) ⊂
⋃
k∈K

D(rk, sk)
◦.

And therefore D(rn, sn) ⊂ D(ri, si) and the induction holds.

We now have our desired family of sets. Now for each rational number t, let
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F (t) =
⋂
s>t

D(t, s)

Now eachD(t, s) is closed so F (t) is closed. Also, ∀s > twe haveH(t) ⊂ F (t) and F (t) ⊂ G(s).

Now we also have that

⋃
t∈Q

F (t) = X,
⋂
t∈Q

F (t) = ∅, F (r) ⊂ F (s)◦, ∀r < s.

We will now define f : X → R by

f(x) = inf{t : X ∈ F (t)}.

Subclaim 2: f is well defined.

The reals are a conditionally complete lattice, so every set with a lower bound has a unique in-

fimum.

Note that {t : x ∈ F (t)} is bounded below by g(x)− 1.

So f is well defined.

Subclaim 3: f is continuous.

Let f(x) ∈ B(y, ϵ) for some y ∈ R, ϵ > 0, x ∈ X . Then x ∈ F (y + ϵ)◦⧹F (y − ϵ) and we have

f→(F (y + ϵ)◦⧹F (y − ϵ)) ⊂ B(y, ϵ)

So f is continuous at all x ∈ X .

Subclaim 4: g ≤ f .

Let x ∈ X and f(x) = y. Then x ∈ F (s), ∀s > y. So x ∈ G(s), ∀s > y. So g(x) ≤ y = f(x).

Subclaim 5: f ≤ h

Let x ∈ X with h(x) = z. Then x ∈ H(r) ⊂ F (r), ∀r ≥ z. So f(x) ≥ z as desired.

And so f is as desired.
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4.3 Generalizations into Lattice Valued Topology

Theorem 4.3.1 Kubiak’s L-valued Katetov-Tong Insertion Lemma. Let (L,≤,′ ) be a complete,

completely distributive lattice with an order reversing involution. An L-topological space (X, τ) is

normal if and only if whenever g, h : X → R(L), g is upper semicontinuous, h is lower semicon-

tinuous and g ≤ h, then there exists a continuous function f : X → R(L) with g ≤ f ≤ h and f

continuous.

TheLatticeValuedExtension of theKatetov-Tong InsertionLemmawasproven in 1987 byTomasz

Kubiak [6]. This was done as an intermediate step to his true goal, a fuzzification of the Tietze Ex-

tension Theorem. However, gaining even this result requires sophisicatedmathematical machinery.

Note that this theorem requires the underlying lattice to be completely distributive. For a careful

description of complete distributivity see [7]. Below we will go through the proof of the theorem

as given in [6], expanding where useful. Before tackling the theorem above, we will first consider

some intermediate lemmas.

Lemma 4.3.1. Let (X, τ) be a normalL-topological space, {Ai}∞i=1 and {Bi}∞i=1 be countable families

of elements in LX . If there exists an A,B ∈ LX with Ai ≤ A ≤ B◦j and Ai ≤ B◦ ≤ B◦j , ∀i, j ∈ N,

then there exists a U ∈ LX with

Ai ≤ U◦ ≤ U ≤ B◦j , ∀i, j ∈ N.

Proof. Subclaim: ∀n ∈ N, n ≥ 2, ∃{Ui, Vj : 1 ≤ i, j ≤ n} ⊂ LX with

• Ai ≤ U◦i

• Vj ≤ Bj

• A ≤ V ◦j

• Ui ≤ B◦

• Ui ≤ Vj .

We will prove this by induction. Let Pk be the statement that the above is true for n = k. P2

follows immediately from normality.
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Inductive Step: Suppose for some n ≥ 2we have defined {Ui, Vj : 1 ≤ i, j ≤ n− 1} such that Pn

holds.

Since An ≤ A ≤ V ◦j (for j < n), and An ≤ B◦j , by normality there exists Un ∈ LX with

An ≤ U◦n ≤ Un(
∧
j<n

(Vj ∧B))◦.

Likewise, there exists a Vn ∈ LX with

∨
i≤n

(Un ∧A) ≤ V ◦n ≤ Vn ≤ B◦n.

and therefore Pn+1 holds. And so the subclaim holds.

Now set

U =

∞∧
i=1

Ui.

Then Ai ≤ U◦i ≤ U◦, ∀i ∈ N.

Since Ui ≤ V ◦j , ∀i, j ∈ N, we have that Ui ≤ Vj , ∀i, j ∈ N. So ∀j ∈ N, Vj is an upper bound for

{Ui}.

Therefore U ≤ Vj , ∀j ∈ N. So

U ≤ Vj ≤ B◦j , ∀j ∈ N

and finally we have

Ai ≤ U◦ ≤ U ≤ B◦j , ∀i, j ∈ N.
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Lemma 4.3.2. Let (X, τ) be a normal L-topological space. If {Hr}r∈Q is a monotone increasing

(isotone) collection of closed L-valued subset ofX and {Gr}r∈Q is a monotone increasing (isotone)

collection of open L-valued subsets of X such that Hr ≤ Gs whenever r < s, we have

∃{Fr}r∈Q ⊂ LX

with the property Hr ≤ F ◦s , F ≤ Gs and Fr ≤ F ◦s whenever r < s.

Proof. First we will order the the rationals {rn}n∈N without repetitions. Again, we will use induc-

tions for this proof.

Let S(n) be the statement that for 1 ≤ i, j ≤ n− 1we have defined Fri ∈ LX with

• r < ri =⇒ Hr ≤ F ◦ri

• ri < r =⇒ Fri ≤ Gr

• ri < rj =⇒ Fri ≤ F ◦rj .

Now note that {Hr : r < r1} and {Gt : t > r1} together with Hr1 and Gr1 satisfy that

• The families are countable families of elements of LX

• Hr ≤ Hr1 ≤ G◦t

• Hr ≤ G◦r1 ≤ G◦t

∀r < r1, t > r1.

This note follows from the facts that Hr = Hr, Gt ≤ G◦t , Hr1 = Hr1 , Gt1 ≤ G◦t1 , Hr ≤ Hr1 since

the sequence of sets is monotone and Gr1 ≤ Gt since the sequence is monotone.

Now by our note and by Lemma 4.3.2 ∃U1 ∈ LX with Hr ≤ U◦1 , ∀r < r1 and U1 ≤ Gt, ∀t > r1.

Set Fr1 = U1 and we have S(2).

Inductive Step: Suppose Fri ∈ LX are defined for i < n, n ∈ N such that they satisfy S(n).

Define A =
∨
{Fri : i < n, ri < rn} ∨Hrn and B =

∧
{Fri : j < n, rj > rn} ∧Grn .
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Now note that whenever ri < rn < rj with i, j < n we have that

• Fri ≤ A ≤ F ◦rj

• Fr1 ≤ B◦ ≤ F ◦j .

Also, whenever r < rn < t, we have Hr ≤ A ≤ Gt and Hr ≤ B◦ ≤ Gt. Therefore the collections

{Fri : i < n, ri < rn}∪ {Hr : r < rn} and {Fri : j < n, rj > rn}∪ {Gr : r > rn} together with A and

B fulfill the hypothesis of Lemma 4.3.1 so ∃Un ∈ LX with

• r < rn =⇒ Hr ≤ Un

• ri < rn =⇒ Fri ≤ U◦n

• rn < r =⇒ Un ≤ Gr

• rn < rj =⇒ Un ≤ F ◦rj

when 1 ≤ i, j ≤ n − 1. Set Frn = Un. Then {Fri : 1 ≤ i ≤ n} satisfies S(n + 1). And so the lemma

holds.

With these lemmas, we are now equipped to handle Kubiak’s L-valued Katetov-Tong Insertion

Lemma. The proof of this theorem is an expanded version of the one found in [6].

Theorem 4.3.1 Kubiak’s L-valued Katetov-Tong Insertion Lemma.

Proof. (⇐) Suppose (X, τ) is an L-topological space. Suppose whenever g, h : X → R(L) with g

upper semicontinuous and h lower semicontinuous and g ≤ h then ∃f : X → R(L)with f continu-

ous and g ≤ f ≤ h.

Let U ∈ τ andK be a closed L-valued subset withK ≤ U . Define g, h : X → R(L) by ∀x ∈ X

g(x)(t) =


1 t < 0

K(x) 0 ≤ t ≤ 1

0 t > 1

h(x)(t) =


1 t < 0

U(x) 0 ≤ t ≤ 1

0 t > 1
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Note that these functions are upper/lower semicontinuous functions respectively. Also note that

sinceK(x) ≤ U(x), ∀x ∈ X we have g ≤ h. Now let t ∈ (0, 1). Then

K = Rt(g) = g←L (Rt) ≤ f←L (Rt) ≤ f←L (L′t) ≤ h←L (L′t) = Lt(h)
′ = U

And thus (X, τ) is normal.

(⇒) Suppose (X, τ) is normal. Also suppose g, h : X → R(L)with g ≤ h, g upper semicontinu-

ous and h lower semicontinuous. Define H,G : Q→ LX by ∀r ∈ Q

H(r) = Hr = h←L (R′r), G(r) = Gr = g←L (Lr)

Now if r < s with r, s ∈ Q then R′r ⊂ R′s, Lr ⊂ Ls so

h←L (R′r) ⊂ h←L (R′s), g
←
L (Lr) ⊂ g←L (Ls)

and so we have

• H and G are isotone

• Gr ∈ τ and Gr is closed ∀r ∈ Q

• Hr ≤ Gs whenever r < s

so by Lemma 4.3.2 ∃{Fr}r∈Q ⊂ LX with Hr ≤ F ◦s , Fr ≤ F ◦s , Fr ≤ Gs whenever r < s (r, s ∈ Q).

Now for each t ∈ R define

Vt =
∧
r<t

F ′r.

Note that this family is clearly antitone. Also whenever s < t we have Vt ≤ V ◦s .

Now suppose that q, t ∈ R and r, s ∈ Q with q < r < s < t. Then

V ′q ≤ Fr ≤ F ◦s ≤ V ′s

and thus Vt ≤ V ◦q . So we have
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∨
t∈R

Vt =
∨
t∈R

∧
r<t

F ′r

≥
∨
t∈R

∧
r<t

G′r

=
∨
t∈R

∧
r<t

g←L (L′r)

=
∨
t∈R

g←L (L′t)

= g←L (
∨
t∈R

L′t)

(
∨
t∈R

L′t) ◦ g = 1.

And likewise we have ∧
t∈R

Vt = 0.

Now define f : X ← R(L) by

f(x)(t) = Vt(x), ∀x ∈ X, t ∈ R

First we must check that f is continuous. It suffices to note that f is subbassic continuous. First

note that ∨
s>t

Vs =
∨
s>t

V ◦s ,
∧
s<t

Vs =
∧
s<t

Vs.

Therefore

f←L (Rt) =
∨
s>t

Vs =
∨
s>t

V ◦s ∈ τ

f←L (L′t) = (
∧
s<t

Vs) =
∧
s<t

Vs

which is closed so f is continuous.

It remains to show that g ≤ f ≤ h. This can be done by showing that ∀t ∈ R

g←L (L′t) ≤ f←L (L′t) ≤ h←L (L′t),

g←L (Rt) ≤ f←L (Rt) ≤ h←L (Rt)
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g←L (L′t) =
∧
s<t

g←L (L′t)

=
∧
s<t

∧
r<s
r∈Q

g←L (L′r)

=
∧
s<t

∧
r<s
r∈Q

G′r

≤
∧
s<t

∧
r<s
r∈Q

F ′r

=
∧
s<t

Vs = f←L (L′t).

Also

f←L (L′t) =
∧
s<t

Vs

=
∧
s<t

∧
r<s
r∈Q

F ′r

≤
∧
s<t

∧
r<s
r∈Q

H ′r

=
∧
s<t

∧
r<s
r∈Q

h←L (Rr)

=
∧
s<t

h←L (L′s) = h←L (L′t).

Now for the right subbassic sets

g←L (Rt) =
∨
s>t

g←L (Rs)

=
∨
s>t

∨
r>s
r∈Q

g←L (L′r)

=
∨
s>t

∨
r>s
r∈Q

G′r

≤
∧
s>t

∨
r<s
r∈Q

F ′r

=
∧
s>t

Vs = f←L (Rt).
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And

f←L (Rt) =
∨
s>t

Vs

=
∨
s>t

∧
r<s
r∈Q

F ′r

≤
∨
s>t

∨
r>s
r∈Q

H ′r

=
∨
s>t

∨
r>s
r∈Q

h←L (Rr)

=
∨
s>t

h←L (Rs) = h←L (Rr).

And thus the theorem holds.
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Tietze Extension Theorem

5.1 Importance of Tietze Extension Theorem

A key concept within topology is the idea of hereditary properties and subspace topologies. If a

space has a given property, does its subspaces? Likewise, one can try to work backwards. If a sub-

space of a topological space has a property, does the original?

One way to approach this problem is to construct morphisms from both a space and its sub-

space into a third space. Given a topological space X and a subspace A, it is useful to start with a

continuous function from A into the reals, and build a continuous function from X into the reals

which agrees at all points in the A. Tietze Extension Theorem allows us to do that under certain

circumstances.

Theorem 5.1.1 Tietze Extension Theorem [12]. A Topological space (X, τ) is normal if and only

wheneverA is a closed subset ofX and f : A→ R is continuous then there exists a continuous map

F : X → R with F |A = f .

5.2 Proof of Tietze Extension Theorem

We will now consider the proof of the Tietze Extension Theorem. The proof below is an expanded

version of that given in [14]. The author has expanded it in various areas for the purpose of clarity.

Proof. (⇒) Suppose (X, τ) is a normal space, A ⊂ X is closed, f : A→ [−1, 1] is continuous.

Let A1 = {x ∈ A : f(x) ≥ 1
3} and B1 = {x ∈ A : f(x) ≤ −13 }.
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Now A1 and B1 are disjoint closed sets in A, and therefore in X .

So there exists a continuous

f1 : X → [
−1
3

,
1

3
]

such that f→1 (A1) ⊂ { 13} and f→1 (B1) ⊂ {− 1
3}

Now, by looking at cases, we can see that ∀x ∈ A, |f(x)− f1(x)| < 2
3 .

So f−f1 is a mapping fromA→ [− 2
3 ,

2
3 ]. Let g1 = f−f1 and continue this process, dividing [− 2

3 ,
2
3 ]

into thirds at − 2
9 and 2

9 .

Let A2 = {x ∈ A : g1(x) ≥ 2
9} and B2 = {x ∈ A : g1(x) ≤ − 2

9}.

Then there is a Urysohn function f2 : X → [− 2
9 ,

2
9 ] with f→2 (A2) = { 29} and f→2 (B2) = {− 2

9}

Now |(f − f1)− f2| ≤ ( 23 )
2 on A.

Continuing this process, we obtain a sequence of continuous functions on A with the property

|f −
n∑

i=1

fi| ≤ (
2

3
)n

Define F : X → R by

F (x) =

∞∑
i=1

fi(x), ∀x ∈ X

Now F (x) = f(x), ∀x ∈ A.

Claim: F is continuous.

Let x ∈ X and let ϵ > 0. Choose N > 0 such that

∞∑
n=N+1

(
2

3
)n <

ϵ

2

For i = 1, 2, ...N , fi is continuous. So for i = 1, 2, ...N pick an open Ui containing x such that

y ∈ Ui =⇒ |fi(x)− fi(y)| <
ϵ

2N

.

Then U = U1 ∩ U2 ∩ ... ∩ UN is open in X and,

y ∈ U =⇒ |F (x)− F (y)| ≤ (
N∑
i=1

|fi(x)− fi(y)|) + (
∞∑

i=N+1

|2
3
|i) < N

ϵ

2N
+

ϵ

2
= ϵ.
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So F is continuous as desired.

We now have a continuous map to [-1,1] with the desired properties. Now note that (-1,1) is

homeomorphic to R.

Now consider a continuous map f : A → (−1, 1). We can regard it as a mapping from A to

[-1,1].

Therefore, by our above work, we can find an extension

F ′ : X → [−1, 1]

Let A0 = {x ∈ X : |F ′(x)| = 1}.

Then A and A0 are disjoint closed sets in X. So there is a Urysohn function

g : X → [0, 1]

with the property that g→(A0) ⊂ {0} and g→(A) ⊂ {1}.

Define F : X → (−1, 1) by

∀x ∈ X,F (x) = g(x)F ′(x)

Then F is the composition of continuous functions, so F is continuous. And if x ∈ A

F (x) = g(x)F ′(x) = 1F ′(x) = f(x)

So F is the desired extension function.

(⇐)

Suppose the extension property holds. Let A and B be closed disjoint sets in X .

Then A ∪ B is a closed set in X. Now f : A ∪ B → [0, 1] by f→(A) ⊂ {0} and f→(B) ⊂ {1} is

continuous on A ∪B.
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Then the extension of f onto X will be a Urysohn function. So X is normal.

5.3 Generalizations into Lattice Valued Topology

The generalization of Tietze Extension Theorem into lattice valued topological spaces came from

Kubiak in the same paper as his version of the Katetov-Tong Insertion Lemma [6]. It requires a mi-

nor lemma which can be found in [9].

Lemma 5.3.1 [9]. If (X, τ) is a normal L-topological space and A is a closed crisp subset of X , then

(A, τA) is normal.

With this lemma, we are equipped to handle Kubiak’s proof of the lattice valued Tietze Exten-

sion Theorem. The proof below comes from Kubiak’s 1983 paper.

Kubiak’s Lattice Valued Tietze Extension Theorem [6]. Let (X, τ) be a normal L-topological

and let A be a closed crisp set and f : (A, τA)→ [0, 1](L) be continuous. Then there exists a contin-

uous function F : (X, τ)→ [0, 1](L) such that F∣∣A = f [6].

Proof. Suppose (X, τ) is a normal L valued fuzzy topological space andA is a closed crisp subset of

X and f : (A, τA)→ [0, 1](L) is continuous.

Let [λi] be the element of [0, 1](L) determined by the function λi : R→ L where

λi(t) = 1, ∀t < i

λi(t) = 0, ∀t ≥ i.

Then define two functions h, g : X → [0, 1](L) by

g(x) = f(x), ∀x ∈ A

g(x) = [λ0], ∀x /∈ A
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h(x) = f(x), ∀x ∈ A

h(x) = [λ1], ∀x /∈ A.

We will first show that g is upper semicontinuous. Let t > 0. Then

g←L (Lt)(x) = f←L (Lt)(x), x ∈ A

g←L (Lt)(x) = 1, x /∈ A.

Now f←L (Lt) is open in (A, τA). So therefore f←L (Lt) is of the form Ut

∣∣Awith Ut ∈ τ . So we have

g←L (Lt) = Ut ∨A′

which is open in (X, τ) so g is upper semicontinuous. By a similar process we see

h←L (Rt) = Vt ∨A′, t < 1

h←L (Rt) = 0, t ≥ 1

with Vt ∈ τ such that f←L (Rt) = Vt
∣∣A. And thus h is lower semicontinuous with g ≤ h. Therefore,

by Kubiaks L-valued Katetov-Tong Insertion Lemma there is a continuous function F : (X, τ) →

[0, 1](L) with g(x) ≤ F (x) ≤ h(x), ∀x ∈ X . So ∀x ∈ A we get f(x) ≤ F (x) ≤ f(x) and thus the

theorem holds.
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