
Applying Computational Resources to the Down-Arrow Problem

by

Johnathan Koch

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Mathematics

Program

YOUNGSTOWN STATE UNIVERSITY

May, 2023

Applying Computational Resources to the Down Arrow Problem

Johnathan Koch

I hereby release this thesis to the public. I understand that this thesis will be made available from the

OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the

University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Johnathan Koch, Student May 2023

Approvals:

Dr. Alexis Byers, Thesis Advisor May 2023

Dr. Alina Lazar, Committee Member May 2023

Dr. Anita O’Mellan, Committee Member May 2023

Dr. Salvatore A. Sanders, Dean of Graduate Studies May 2023

Abstract

A graph G is said to arrow a graph H if every red-blue edge coloring of G presents a monochromatic H, and

is written G → H. The down-arrow Ramsey set reports all subgraphs H of a graph G for which G → H.

Formally, the down-arrow Ramsey set is a graph G is ↓ G := {H ⊆ G : G → H}. Calculating this set by

way of scientific computing is computationally prohibitive with the resources commonly available to graph

theorists and other academics. Using existing research into complete graphs, the down-arrow Ramsey sets

for small complete graphs (Kn for 2 ≤ n ≤ 7) can be generated quickly. For larger complete graphs (Kn

for 8 ≤ n ≤ 11) specific pre-processing steps are leveraged to speed up calculations in addition to existing

data sets. Presented is work on the development of a Python script to generate the down-arrow Ramsey set

of a graph through efficient memory management and parallel computing methodologies. The down-arrow

generator is used to report new results on complete graphs as well as complete bipartite graphs, and assorted

other graphs.

iii

Table Of Contents

Page

Abstract iii

Introduction 1

1.1 Introduction to Ramsey Theory . 1

1.2 Introduction to Graph Theory . 2

1.3 Introduction to Graph Theoretic Ramsey Theory . 7

1.4 Introduction to Python . 9

The Down-Arrow Problem 11

2.5 Statement . 11

2.6 Exhaustive Procedure . 14

The Down-Arrow Generator 17

3.7 Making the Subgraphs . 17

3.8 Making the Poset . 18

3.9 Making the Down-Arrow Ramsey Set . 20

3.10 Reporting the Ideals . 20

Results 22

4.11 Complete Graph Results . 23

4.11.1 Down-Arrow Ramsey Sets of Complete Graphs . 23

iv

4.11.2 Graphs G with R(G,G) ≤ 9 . 24

4.12 Complete Bipartite Graph Results . 27

4.13 Complete k-partite graphs . 31

4.14 Friendship Graph results . 33

4.15 Miscellaneous Graphs . 35

Conclusion 38

5.16 Limitations and Use Cases for the Down Arrow Generator . 38

5.17 Future work . 38

v

Introduction

Computers have no doubt transformed much of research today. Presented by Appel, Haken, and Koch,

[1, 2], the proof that “every planar map is four colorable” in 1976 was a leap forward in research as the

first computer-assisted mathematical proof accepted by most. In their paper, they present the reduction of

“every planar graph” to a finite number of cases, each of which likely requiring the computational power

of computers to determine four colorability. Many of those who doubt the proof of the four color problem

follow Tymoczko who argues that the four color problem cannot be called a theorem due to the philosophical

ramifications. Additionally, Tymoczko states “no mathematician has seen a proof to the [four color theorem]”

due to the reliance on computer calculations [23].

This paper presents both calculations and proofs. Computers are used to provide insight into conjectures.

By the use of rigorous error checking and many tests of viability, the down-arrow Ramsey sets reported by

the down arrow generator are highly likely to be correct.

1.1 Introduction to Ramsey Theory

Graham and Butler put it quite cleanly: “Ramsey theory is that branch of combinatorics which deals with

structure which is preserved under partitions” [13]. Classic theorems in Ramsey theory are:

Theorem 1.1.1 (Van Der Waerden). In any partition of the integers into finitely many classes, some class

always contains arbitrarily long arithmetic progressions.

Theorem 1.1.2 (Ramsey). For any partition of the k-element subsets of an infinite set S into finitely many

classes, there is always an infinite subset of S with all its k-elements subsets in a single class.

Both of these theorems take a mathematical object (integers or sets) and inspect what kinds of substruc-

tures must always remain in at least one of the classes after arbitrary partitioning.

A classical example of Ramsey theory in motion is the following statement [14]:

1

Theorem 1.1.3. In any collection of six people, there will be either three mutual acquaintances, or three

mutual strangers.

It should be noted here that “being an acquaintance” in this regard is binary (“jib” is either an acquain-

tance or not an acquaintance of “jab”), symmetric (if “jib” is an acquaintance of “jab”, then “jab” is an

acquaintance of “jib”), but not transitive (if “jib” is an acquaintance of “jab” and “jab” is an acquaintance

of “jeb” then “jib” is not necessarily an acquaintance of “jeb”).

Proof. Following the structure of Graham et. al [14], let us fix one person, say person A. By the pigeonhole

principle, person A must either be acquaintances with or strangers with at least three other people, say

persons B,C, and D. Without loss of generality, suppose person A is acquaintances with each of persons

B,C, and D. If one of persons B,C, or D is acquaintances with another of persons B,C, or D, then

they would form a group of three mutual acquaintances with person A. If none of persons B,C, or D are

acquaintances, then they form a group of three mutual strangers.

This theorem has a direct translation into a graph theoretic problem that will be discussed later, once

we build the fundamental definitions required.

1.2 Introduction to Graph Theory

Let us begin with some preliminary structure to graph theory. A graph G is two sets: a vertex set V (G)

and an edge set E(G). For a simple, undirected graph, an edge is an unordered tuple of distinct vertices.

For a simple, directed graph, an edge is an ordered tuple of distinct vertices. For vertices u and v, the edge

between them can be written as (u, v) or more simply uv. In this way, edges are sometimes said to live in

the set V (G)× V (G) where order may or may not matter, depending on directedness.

The order of a graph G is the number of vertices in V (G). The size of a graph G is the number of edges

in E(G). Two vertices are adjacent to one another when there exists an edge between them. The degree of

a vertex is the number of other vertices adjacent to it. A vertex is isolated if it has degree 0. An edge is

indicent to the vertices it contains. For example, please refer to Fig. 1.1, pictured is the Zim graph, a simple

undirected graph of order 11 and size 15 with no isolated vertices. Vertex i is adjacent to vertices e, f, g, j,

and k. Edge ab is incident to the vertices a and b.

The adjacency matrix of a graph G of order n is an n×n matrix encoding vertex adjacency. This matrix

2

a b c

gfe

i

j k

hd

Figure 1.1: The Zim graph

is defined entry-by-entry as follows [11]:

aij =

1 if vivj ∈ E(G)

0 if vivj 6∈ E(G)

Importantly, multiple adjacency matrices can represent the same graph by ordering the vertices differently.

Consider the two matrices in Fig. 1.2 that both represent the Zim graph G in Fig. 1.1. Highlighted in these

two matrices are where vertices d and h are transposed. Also of note is that for simple, undirected graphs

the adjacency matrix representation is symmetric about the main diagonal–which contains only zeros. This

fact will be leveraged later to efficiently store a simple, undirected graph in computer memory.

The complement of a graph G, written as G, is given by the graph where V
(
G
)
= V (G) and E

(
G
)
=

E(G). We are using that E(G) resides in V (G) × V (G), so E(G) is the set of edges not in E(G). In other

words: vertices u and v are adjacent in G if and only if u and v are not adjacent in G. Fig. 1.3 shows a

graph G and its complement G.

A graph G is a path on n vertices if V (G) can be written as {v1, v2, ..., vn} and E(G) = {vivi+1 : 1 ≤

i ≤ n − 1}. In this way, a path on n vertices can be written as Pn or v1v2...vn. A graph G is a cycle on n

vertices if V (G) can be written as {v1, v2, ..., vn}, v1v2...vn is a path P , and E(G) = E(P) ∪ {v1vn}. The

notation Cn or v1v2...vnv1 is used for cycles on n vertices. The complete graph on n vertices, Kn, is given by

a vertex set with n vertices and uv ∈ E(Kn) if and only if u, v ∈ V (Kn) are distinct. A complete bipartite

graph is a graph G where V (G) can be partitioned into two disjoint sets S and T where uv ∈ E(G) if and

only if u ∈ S and v ∈ T . To denote the size of each partition, we use Ks,t for complete bipartite graphs with

underlying partite sets of order s and t respectively. Refer to Fig. 1.4 for some examples of these classes of

graphs. This paper investigates the properties of complete and complete bipartite graphs, while recognizing

the analysis already done on paths and cycles.

We now have the foundational definitions to begin discussing how graphs relate to each other. Like many

mathematical objects, there is a concept of isomorphism for graphs. A graph isomorphism between graphs G

3

vertex a b c d e f g h i j k
a 0 1 0 0 1 0 0 0 0 0 0
b 1 0 1 0 0 1 0 0 0 0 0
c 0 1 0 0 0 0 1 0 0 0 0
d 0 0 0 0 1 0 0 0 0 0 0
e 1 0 0 1 0 1 0 0 1 0 0
f 0 1 0 0 1 0 1 0 1 0 0
g 0 0 1 0 0 1 0 1 1 0 0
h 0 0 0 0 0 0 1 0 0 0 0
i 0 0 0 0 1 1 1 0 0 1 1
j 0 0 0 0 0 0 0 0 1 0 1
k 0 0 0 0 0 0 0 0 1 1 0

(a) Vertices ordered lexicographically

vertex a b c h e f g d i j k
a 0 1 0 0 1 0 0 0 0 0 0
b 1 0 1 0 0 1 0 0 0 0 0
c 0 1 0 0 0 0 1 0 0 0 0
h 0 0 0 0 0 0 1 0 0 0 0
e 1 0 0 0 0 1 0 1 1 0 0
f 0 1 0 0 1 0 1 0 1 0 0
g 0 0 1 1 0 1 0 0 1 0 0
d 0 0 0 0 1 0 0 0 0 0 0
i 0 0 0 0 1 1 1 0 0 1 1
j 0 0 0 0 0 0 0 0 1 0 1
k 0 0 0 0 0 0 0 0 1 1 0

(b) Vertices d and h are transposed

Figure 1.2: Two adjacency matrices for graph G in Fig. 1.1

a

c

b

d

(a) G

a

c

b

d

(b) G

Figure 1.3: A graph G and its complement G

4

(a) P4 (b) C8 (c) K5 (d) K2,3

Figure 1.4: Four classes of graphs

1

0 2

3

4

(a) G

a

*

bc

d

(b) H

Figure 1.5: Isomorphic graphs G and H

and H is a bijective function f : V (G)→ V (H) where uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We write

G is isomorphic to H as G ∼= H. For the purposes of this paper, graphs will be unique up to isomorphism.

Also of note is how “up to isomorphism” allows differing graph drawings to represent the same graph. In

particular, without the inherent “up to isomorphism”, graph G and graph H in Fig. 1.5 would be distinct,

though for all intents within this paper they are treated as the same graph.

A graph H is a subgraph of another graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), and we write H ⊆ G.

An induced subgraph H of G is written as H = G[I] where I ⊆ V (G) ∪E(G). In this way, I is the inducing

set and is allowed to contain any number of vertices or edges. The resulting graph H has all vertices in I,

all vertices incident to an edge in I, and all edges in I.

There are two special cases of an induced subgraph. When I contains only edges, G[I] is an edge-induced

subgraph. A vertex-induced subgraph H is a special type of induced subgraph of G where I contains only

vertices, but E(H) contains all edges in G incident to two vertices in I. Fig. 1.6 shows a graph G with

three subgraphs, one of each type of induced subgraph. Graph H1 is an induced subgraph of G[I] where

I = {d, ac, bc}. Graph H2 is the vertex-induced subgraph G[I] where I = {a, b, c, d}. Graph H3 is the

edge-induced subgraph G[I] where I = {ac, bc, cd}.

This marks one of the recurring themes of the development of the down arrow generator: software

developers use different implied terminology than graph theorists. Software developers use the shorthand

5

d

a

c

b

e

(a) G

a

c

b

d

(b) H1 ⊆ G

a

c

b

d

(c) H2 ⊆ G

a

c

b

d

(d) H3 ⊆ G

Figure 1.6: A graph G and three subgraphs

(a) K0 (b) P2 (c) P3

(d) P4 (e) 2P2 (f) K2,2

Figure 1.7: 〈K2,2〉

“subgraph” to refer to vertex-induced subgraphs while graph theorists use the shorthand to refer to edge-

induced subgraphs. This paper will be diligent to make the distinction in every place where a subgraph,

induced subgraph, vertex-induced subgraph, or edge-induced subgraph are needed. As this paper has roots

more in graph theory than computer science, edge-induced subgraphs will be the most prolific type of

subgraph discussed.

Consider “is a subgraph” to be a relation on graphs. It falls quickly from the underlying set operations

that “is a subgraph” satisfies reflexivity, antisymmetry, and transitivity. Hence we may view “is a subgraph”

as a partial ordering on a set of graphs. In a similar manner, all three forms of induced subgraphs provide

a partial ordering on a set of graphs. For our purposes, the poset of a graph G is given to be the set of

edge-induced subgraphs of G with the partial ordering “is an edge-induced subgraph of”. We denote the

poset of G under this relation with 〈G〉.

Definition 1.2.1. 〈G〉 = {G[A] : A ⊆ E(G)}

Only to point out the different terminology between graph theorists and computer scientists, “is an

edge-induced subgraph of” translates to “is subgraph monomorphic to” in the computer science literature

[15].

Fig. 1.7 shows the poset 〈K2,2〉 to contain, up to isomorphism, the 6 graphs K0, P2, P3, P4, 2P2, and K2,2.

As a note, prefacing a graph H with a positive integer indicates how many distinct copies of H are present

as subgraphs of the reported graph. This is to say that there are two distinct copies of P2 in 2P2.

6

This formulation of 〈G〉 is a slight departure from work done by Byers and Olejniczak as the poset of a

graph in their paper uses the relation “is a subgraph” [5, 6]. The key distinction is that graphs with isolated

vertices are elements in a graph’s poset for Byers and Olejniczak , whereas they are omitted in work done in

this paper. This is done as a run-time optimization for the down arrow generator program because adding

isolated vertices to a graph does not change the structure red-blue edge colorings. To translate posets from

this paper into posets as Byers and Olejniczak use, use the following process:

For 1 ≤ i ≤ |V (G)|, for H ∈ 〈G〉 where |V (H)|+ i = |V (G)|: add a copy of H with i isolated vertices to 〈G〉.

1.3 Introduction to Graph Theoretic Ramsey Theory

One of the special cases of Theorem 1.1.2 applicable in graph theory is as follows [11]:

Theorem 1.3.1 (Ramsey 1930). For every r ∈ N there exists an n ∈ N such that every graph of order at

least n contains either Kr or Kr as an edge-induced subgraph.

The common way to approach this is not to look at all possible graphs on n vertices, but instead to

inspect the complete graph on n vertices and consider all possible red-blue edge colorings of Kn. A red-blue

edge coloring C of a graph G is the assignment of either “red” or “blue” to each edge of G.

Definition 1.3.2. For a graph G, a red-blue edge coloring is C : E(G)→ {“red”, “blue”}.

There is no restriction to which edges are colored red or blue in red-blue edge colorings. The special case

of a graph where all edges are assigned the same color is a monochromatic graph. A red-blue edge coloring

C of a graph G induces two monochromatic edge-induced subgraphs:

• Cr = G[C←(“red”)]–the edge-induced subgraph of G given by red edges.

• Cb = G[C←(“blue”)]–the edge-induced subgraph of G given by blue edges.

Superscripts will be used to index red-blue edge colorings when multiple are being considered. A red (blue)

graph is simply a monochromatic red (blue) graph where every edge is colored red (blue). Two colorings are

isomorphic if they induce isomorphic red and blue monochromatic edge-induced subgraphs. See Fig. 1.8 for

a particular red-blue edge coloring of K5 with Cr and Cb explicitly shown.

We can then restate Theorem 1.1.2 in the context of red-blue edge colorings.

Theorem 1.3.3. For any r ∈ N, there exists some n ∈ N such that whenever m ≥ n, every red-blue edge

coloring of Km induces a monochromatic Kr.

7

(a) C (b) Cr (c) Cb

Figure 1.8: A red-blue edge coloring of K5

In this way we can view the red subgraph to be the Kr and the blue subgraph to be the Ks (or vice

versa) in Theorem 1.1.2. This allows the inspection of a single graph instead of all graphs on n vertices

because considering all red-blue edge colorings does this implicitly. As every red-blue edge coloring of Kn is

considered, the red subgraph (and the blue subgraph) ranges over every graph on n vertices.

Now, stating Theorem 1.1.3 in a graph theoretic framework results in:

Theorem 1.3.4. Any red-blue edge coloring of K6 must induce a monochromatic K3

We see that the gathering of six people in Theorem 1.1.3 correlates to K6 in Theorem 1.3.4, and being an

acquaintance or a stranger in Theorem 1.1.3 correlates to an edge being colored red or blue respectively in a

red-blue edge coloring in Theorem 1.3.4. In fact, proofs of Theorem 1.3.4 follow directly that of Theorem 1.1.3

with appropriate translation of terminology [7].

The Ramsey number R(s, t) = n for integers s and t is given to be the minimum n for which all red-blue

edge colorings C of Kn induce a subgraph of Cr that is isomorphic to Ks or a subgraph of Cb that is isomorphic

to Kt [7]. Proofs of Ramsey numbers come in two pieces–first it must be shown that every coloring of Kn

induces a red Ks or a blue Kt, and second a coloring of Kn−1 must demonstrate neither a red Ks nor a blue

Kt. Fig. 1.8 shows a coloring of K5 that does not contain a monochromatic K3, hence showing R(3, 3) ≥ 6.

Fig. 1.8 in combination with Theorem 1.3.4 constitute a proof that R(3, 3) = 6, one of the most famous

Ramsey numbers.

Ramsey numbers extend to graphs as inputs as well, where R(F,H) = n is the smallest n for which every

red-blue edge coloring C of Kn induces a subgraph of Cr isomorphic to F or a subgraph of Cb isomorphic to

H. R(F,H) is referred to as the graph Ramsey number. Looking at R(F,H) = n from the perspective of the

graph being colored, it is said that Kn arrows graphs F and H and is written Kn → (F,H) for n = R(F,H)

[4]. When F and H are isomorphic, we say simply that Kn → H. Of special interest to work in this paper

is determining what certain graphs G, that are not Kn, arrow. In effect: we will determine for a fixed graph

8

G, all edge-induced subgraphs H that satisfy G→ H.

1.4 Introduction to Python

Before discussing Python specifically, it must be mentioned the widespread use of network analysis tools on

computers. The igraph tool [10] is available in R, Python, Mathematica, and C/C# and is readily updated.

The JgraphT library [18] is a java specific implementation of many network analytic tools initially released

in 2020. There is also the standalone implementation SageMath [21] that many graph theorists will be

immediately familiar with. SageMath, or Sage for short, is used not only for graph theory however, as it

was initially developed for number theory. As with many open-source projects, Sage has grown in scope as

its user base has assisted with its development [22].

These predominantly researcher-focused languages and environments are excellent places to start if you

are not familiar with any particular programming language as they all have their own syntax flavor. This

paper uses Python and the package NetworkX for better control over the underlying computational resources

[15]. While NetworkX is available for Sage, the flexibility of Python’s multiprocessing capabilities was more

useful than writing in Sage. The NetworkX package allows all of the required functions for graphs: reading

and writing graphs, determining graph isomorphisms [9], and even the NP-complete problem of determining

if a graph H is a subgraph of another graph G [8].

With the language and package selected, next is a short discussion on the many ways in which to store

graphs on a computer. Easily accessible are markup-style formats (GEXF, GraphML), serialized-object-style

formats (like JSON), and most notably the standalone formats GML and graph6/sparsegraph6. The down

arrow generator utilizes both the graph6 and the GML formats for their specialized functionality.

The GML (Graph Modeling Language) format can store directed graphs by storing each vertex and each

edge separately [16]. It also allows for the storing of vertex labels so long as they can be converted to an

ACII string. This will be quite useful in the creation of the poset of a graph, because the node labels will

be graphs themselves and the edges will be the “is a subgraph of” relation in the GML file.

The graph6/sparsegraph6 formats are quite similar, though for the types of graphs used in this paper

the graph6 format was used as recommended by the documentation [16]. The graph6 format also includes

a useful feature that not many other formats allow for, it can store multiple graphs within a single file, and

NetworkX will read them in one by one. This uniquely qualifies the graph6 format for storing sets of graphs.

The way a graph G is converted into the graph6 representation is by encoding the upper triangle1 of

the graph’s adjacency matrix into bytes and interpreting these as ASCII printable characters. This is how
1The upper triangle of a matrix being the entries of a matrix, read left to right, that are above the main diagonal.

9

a graph is stored as a node in the poset GML, but comes with the downside that only simple undirected

graphs may be stored with no edge or vertex labels. Another complication to the graph6 format is that

one graph may have multiple graph6 representations because of the ambiguity in selecting an ordering on

V (G) to generate the adjacency matrix. This is shown in the two different adjacency matrices Fig. 1.2a

and Fig. 1.2b. The table in Fig. 1.2a correlates to the graph6 string: “JqWX@WC?OA ” while the table in

Fig. 1.2b correlates to the graph6 string: “JqWWHW ?OA ”. Both of these graph6 strings decode to the

Zim graph in Fig. 1.1.

The final observation is noticing that calculating ↓ G for a graph G is highly parallelizable. Because all

of the possible colorings of G must be considered, each of these processes can be done simultaneously. In

essence, the set of all colorings is broken up into as many pieces as the computer can process at once, and

each of those pieces are processed simultaneously. Once the disparate pieces are analyzed a final pass to

merge all the results is completed.

Due to the limitations of the Python global interpreter lock (GIL) [3], the multiprocessing package must

be used to run these tasks concurrently. Unlike many languages, Python is both compiled and interpreted. If

Python were simply compiled, then there would be no need for a lock of the interpreter because there would

be no global interpreter required to execute individual instructions. The interpreter must be replicated for

each process that is to be parallelized, which the multiprocessing package implements.

10

The Down-Arrow Problem

2.5 Statement

The down-arrow problem, as laid out by Byers and Olejniczak is as follows [6]: for a fixed graph G, determine

all edge-induced subgraphs H of G for which G→ H. The set of all such H is given to be ↓ G, and is called

the down-arrow Ramsey set of a graph.

Definition 2.5.1. ↓ G := {H ⊆ G : G→ H}

For a particular coloring C of G, the posets 〈Cr〉 and 〈Cb〉 contain all of (and perhaps more than) the

elements in ↓ G. This is formalized by Proposition 2.5.2.

Proposition 2.5.2. For a graph G, ↓ G ⊆ 〈Cr〉 ∪ 〈Cb〉 for a red-blue edge coloring C.

Consider the graph G in Fig. 2.9. Now consider the two red-blue edge colorings C1 and C2 in Fig. 2.9.

In the case of C1, calculating 〈C1r 〉 ∪ 〈C1b 〉 falls quickly since Cr ∼= Cb, so 〈C1r 〉 ∪ 〈C1b 〉 = 〈C1r 〉. This extends

to anytime where Cr ⊆ Cb or vice versa, as 〈Cr〉 ∪ 〈Cb〉 = 〈Cb〉 or vice versa.

In the case of C2, neither Cr nor Cb is a subgraph of the other, hence the union of their posets must be

listed out explicitly as

〈C2r 〉 ∪ 〈C2b 〉 = {K0, P2, P3,K1,3,K1,4} ∪ {K0, P2, 2P2, P3, P4, C4} = {K0, P2, 2P2, P3, P4, C4,K1,3,K1,4}.

But C1 does not present with neither a monochromatic C4 nor does C2 present a monochromatic K1,4! So

both 〈C1r 〉 ∪ 〈C1b 〉 and 〈C2r 〉 ∪ 〈C2b 〉 have more edge-induced subgraphs than are truly present in ↓ G.

The finesse to the work done by Byers and Olejniczak was finding particular colorings of the fixed G

that heavily restrict ↓ G. In particular, the coloring C of K6 shown in Fig. 2.10 is used to show that the

K2,3 is excluded in ↓ K6 [6]. Many of the colorings emphasized in Byers’ and Olejniczak’s work were either

symmetric or extremal.

11

(a) G

(b) C1 (c) C1
r (d) C1

b

(e) C2 (f) C2
r (g) C2

b

Figure 2.9: A graph G and two colorings C1 and C2.

(a) C (b) Cr (c) Cb

Figure 2.10: A coloring C of K6

12

(a) C1 (b) Cr (c) Cb

Figure 2.11: C1 of K2,3

(a) K1,3 (b) P3 (c) P2 (d) K0

Figure 2.12: 〈K1,3〉

When a coloring is symmetric, Cr ∼= Cb. We see these kinds of colorings pop up in classical Ramsey

numbers as well— as with Fig. 1.8 where Cr ∼= Cb ∼= C5. With symmetric colorings like these, we have

〈Cr〉 = 〈Cb〉, so ↓ G ⊆ 〈Cr〉 ∪ 〈Cb〉 reduces quickly to ↓ G ⊆ 〈Cr〉. A similar reduction occurs when Cr ⊆ Cb or

vice versa, leading to the use of these types of colorings as well.

For extremal colorings, these are on a case-by-case basis because they are constructed so as to remove

particular graphs from the down-arrow Ramsey set. Constructions such as these have the flavor of forbidden

subgraph problems. Extremal colorings are like C2 in Fig. 2.9 where Cb and Cr are very different from each

other.

For a small example, let us walk through determining ↓ K2,3.

Theorem 2.5.3. ↓ K2,3 = 〈P3〉.

Proof. Consider the symmetric coloring C1 as in Fig. 2.11. In this case, we see that C1r ∼= C1b ∼= K1,3. Hence

〈C1r 〉 ∪ 〈C1b 〉 = 〈K1,3〉, so ↓ K2,3 ⊆ 〈K1,3〉. Considering 〈K1,3〉 in Fig. 2.12, we search for other colorings to

determine if all 4 of these graphs are present in those as well. The coloring C2 in Fig. 2.13 does not present

with a monochromatic K1,3, but does present with monochromatic P3, P2, and K0. Hence K1,3 6∈ ↓ K2,3,

and ↓ K2,3 ⊆ {P3, P2,K0}. Now observe that {P3, P2,K0} = 〈P3〉, so ↓ K2,3 ⊆ 〈P3〉.

What remains to show is that every coloring C of K2,3 must present some K0, P2, or P3. Since K0 ⊆ P2 ⊆

P3, we can simply show that every coloring C must present some P3. We do this by a classical Ramsey-like

argument. Consider V (K2,3) = {u1, u2, v1, v2, v3} with the obvious bipartite sets. Now, let us inspect the

13

(a) C2 (b) Cr (c) Cb

Figure 2.13: C2 of K2,3

edges incident to u1 in an arbitrary red-blue edge coloring C. By the pigeonhole principle, u1 is connected

to two of {v1, v2, v3} by edges of the same color. Without loss of generality, u1 is connected to v1 and v2 by

edges of the same color. Hence C presents with a monochromatic P3 since the path v1u1v2 is monochromatic.

Thus ↓ K2,3 = 〈P3〉.

Theorem 2.5.3 concurs with the down-arrow Ramsey set of K2,t, once observing that P3
∼= K1,2, presented

by Byers and Olejniczak [5]:

↓ K2,t = 〈K1,d t
2 e〉

2.6 Exhaustive Procedure

To go about determining the down-arrow Ramsey set for more complicated graphs, we need to talk about

what is going on under the hood of all examples up until now.

For a particular coloring C1, the posets 〈C1r 〉 and 〈C1b 〉 are combined into some superset of ↓ G as this

represents all possible monochromatic subgraphs of G that are present under C1. We are leveraging set

theory here by treating 〈C1r 〉 and 〈C1b 〉 as the underlying sets, and simply performing set union. Next,

another coloring C2 is considered yielding another superset of ↓ G, namely 〈C2r 〉 ∪ 〈C2b 〉. With both of these

supersets containing ↓ G, it must be that ↓ G resides in their intersection. From this perspective arises

another formulation of the down-arrow Ramsey set definition in Theorem 2.6.1 [6].

Theorem 2.6.1. For a graph G, ↓ G =
⋂
C

(
〈Cr〉 ∪ 〈Cb〉

)
for all red-blue edge colorings C.

This formulation of the down-arrow Ramsey set yields insight into how to automate the calculation for

an arbitrary graph G. If we were able to iteratively generate the unique red-blue edge colorings of G then

we could calculate the down-arrow Ramsey set by way of Theorem 2.6.1. In fact, we have already discussed

such an iterative procedure. We can induce all unique red-blue edge colorings of G by considering 〈G〉.

14

(a) H0 (b) H1 (c) H2 (d) H3 (e) H4 (f) H5

Figure 2.14: 〈K2,2〉

Coloring Ci Cir Cib 〈Cir〉 ∪ 〈Cib〉
C1 H0 H5 〈H5〉
C2 H1 H4 〈H4〉
C3 H2 H2 〈H2〉
C4 H3 H3 〈H3〉
C5 H4 H1 〈H4〉
C6 H5 H0 〈H5〉

Figure 2.15: All red-blue edge colorings C of K2,2

Theorem 2.6.2. The set C = {C : ∃H ∈ 〈G〉 with Cr ∼= H} contains all unique red-blue edge colorings of a

graph G.

This falls directly from Definition 1.3.2. By way of example, let us calculate ↓ K2,2 in an exhaustive

manner by way of Theorem 2.6.1 and Theorem 2.6.2.

Theorem 2.6.3. ↓ K2,2 = 〈P2〉.

Proof. Fig. 2.14 shows 〈K2,2〉, and more importantly it gives the basis for all possible colorings of K2,2.

Consider coloring each edge-induced subgraph of K2,2 red, and consequently coloring the remaining edges

blue. This is shown in Fig. 2.15, along with 〈Cr〉 ∪ 〈Cb〉 for each coloring. This constitutes all possible

red-blue edge colorings of K2,2. Consider each coloring Ci in turn:

1. Case C1: C1r is an edge-induced subgraph of C1b , so 〈C1r 〉 ∪ 〈C1b 〉 = 〈C1b 〉

2. Case C2: C2r is an edge-induced subgraph of C2b , so 〈C2r 〉 ∪ 〈C2b 〉 = 〈C2b 〉

3. Case C3: C3r ∼= C3b , so 〈C3r 〉 ∪ 〈C3b 〉 = 〈C3r 〉

4. Case C4: C4b ∼= C4b , so 〈C4r 〉 ∪ 〈C4b 〉 = 〈C4r 〉

5. Case C5: C5b is an edge-induced subgraph of C5r , so 〈C5r 〉 ∪ 〈C5b 〉 = 〈C5r 〉

6. Case C6: C6b is an edge-induced subgraph of C6r , so 〈C6r 〉 ∪ 〈C6b 〉 = 〈C6r 〉

15

Now, ↓ K2,2 is as follows:

↓ K2,2 =
(
〈C1r 〉 ∪ 〈C1b 〉

)
∩
(
〈C2r 〉 ∪ 〈C2b 〉

)
∩
(
〈C3r 〉 ∪ 〈C3b 〉

)
∩
(
〈C4r 〉 ∪ 〈C4b 〉

)
∩
(
〈C5r 〉 ∪ 〈C5b 〉

)
∩
(
〈C6r 〉 ∪ 〈C6b 〉

)
=

(
〈H5〉

)
∩
(
〈H4〉

)
∩
(
〈H2〉

)
∩
(
〈H3〉

)
∩
(
〈H4〉

)
∩
(
〈H5〉

)
=

(
〈H5〉 ∩ 〈H5〉

)
∩
(
〈H4〉 ∩ 〈H4〉

)
∩
(
〈H2〉 ∩ 〈H3〉

)
by associativity

=
(
〈H5〉

)
∩
(
〈H4〉

)
∩
(
〈H2〉

)
∩
(
〈H3〉

)
by identity

=
(
〈H5〉 ∩ 〈H4〉

)
∩
(
〈H2〉

)
∩
(
〈H3〉

)
by associativity

=
(
〈H4〉

)
∩
(
〈H2〉

)
∩
(
〈H3〉

)
by H4 ⊆ H5

=
(
〈H4〉 ∩ 〈H2〉

)
∩
(
〈H3〉

)
by associativity

=
(
〈H2〉

)
∩
(
〈H3〉

)
by H2 ⊆ H4

What is left is to calculate 〈H2〉 ∩ 〈H3〉. Figs. 2.16 and 2.17 show explicitly 〈H2〉 and 〈H3〉. By observation,

〈H2〉 ∩ 〈H3〉 = {P2,K0}. Now observe that 〈P2〉 = {P2,K0}. Hence 〈H2〉 ∩ 〈H3〉 = 〈P2〉, and moreover

↓ K2,2 = 〈P2〉.

(a) K0 (b) P2 (c) K1,2

Figure 2.16: 〈H2〉

(a) K0 (b) P2 (c) 2P2

Figure 2.17: 〈H3〉

This exhaustive procedure, taking each coloring of an input graph G, is what the down arrow generator

uses to ensure that the correct down-arrow Ramsey set is returned.

16

The Down-Arrow Generator

At the highest level, the down arrow generator is precisely what is depicted in Algorithm 1. The nuances

come in exactly how 〈G〉 is calculated. Generating the entire poset structure as a pre-processing step allows

redundant work to be eliminated when 〈H〉 and 〈H〉 are computed. Constructing the underlying set of

edge-induced subgraphs of G is step one, and calls on the VF2 algorithm to determine graph isomorphisms.

Identifying the “is an edge-induced subgraph” relationship is arguably the hardest step in generating 〈G〉

since it is NP-complete.

Algorithm 1 High-level overview of the down-arrow generator
1: procedure down-arrow generator(G)
2: D ← 〈G〉 . Initialize the down-arrow set
3: for H ∈ 〈G〉 do
4: S ← 〈H〉 ∪ 〈H〉 . Calculate the union of 〈Cr〉 and 〈Cb〉
5: D ← S ∩D . Remove the extraneous elements from ↓ G
6: end for
7: return D
8: end procedure

3.7 Making the Subgraphs

The first primary function of the down-arrow generator is the make subgraphs() function given in Fig. 3.18.

For now, the important piece is that make subgraphs() calls make subgraph part() function on line 6. This

in turn calls the subgraph generator() function shown in Fig. 3.19.

The key point of subgraph generator() is to be a special type of function in Python called a gener-

ator. On line 4 of subgraph generator(), the yield keyword is used so as to return the given value to

make subgraph part() while letting it know that there will be more values returned when the generator is

called again. This is a memory management optimization, so make subgraph part() only holds one item at

a time in memory. For larger graphs, this is necessary as all edge-induced subgraphs are generated requiring

a large amount of physical memory, not just the edge-induced subgraphs up to isomorphism.

17

1 def _make_subgraphs (Graph_name):
2 _make_graph_directory (Graph_name)
3 num_workers = max (1, multiprocessing . cpu_count () -1)
4 workers = []
5 for id in range (num_workers):
6 job = multiprocessing . Process (target = _make_part_subgraphs , args =(Graph_name ,id ,

num_workers))
7 job. start ()
8 workers . append (job)
9 for worker in workers :

10 worker .join ()
11 workers = []
12 for id in range (num_workers):
13 job = multiprocessing . Process (target = _filter_subgraphs , args =(Graph_name ,id ,

num_workers))
14 job. start ()
15 workers . append (job)
16 for worker in workers :
17 worker .join ()
18 _finish_subgraphs (Graph_name)
19 return

Figure 3.18: The make subgraphs() function

1 def _subgraph_generator (Graph):
2 for num_edges in range (Graph . number_of_edges () +1):
3 for edges in it. combinations (Graph . edges () , num_edges):
4 yield Graph . edge_subgraph (edges)

Figure 3.19: The subgraph generator() function

It isn’t until finish subgraphs() on line 18 of make subgraphs() shown in Fig. 3.18 that the subgraphs are

filtered so as to only report the unique edge-induced subgraphs.

The make subgraphs() function can be bypassed in the unique case of complete graphs. There is no

innovative workaround however; the edge-induced subgraphs of Kn have already been generated by McKay

[17] and is readily available in graph6 format. The data provided by McKay was used to construct the set

of edge-induced subgraphs of Kn for n ≤ 11.

3.8 Making the Poset

After generating the set of unique edge-induced subgraphs, the down-arrow generator calls the make poset()

function shown in Fig. 3.21. Because this is the first required step that is anticipated to take a long time for

large graphs, the implementation of parallel computing methodologies is highly important. Lines 6 through

9 of make poset() set up unique processes, each with their own Python interpreters, and task them with

determining different parts of 〈G〉 by way of make poset part shown in Fig. 3.22.

Line 3 of make poset part() shows the use of the most important generator for the down-arrow generator:

split work(). This is a simple generator that returns, one at a time, every n-th element of an input generator

18

1 def _finish_subgraphs (Graph_name):
2 unique_subgraphs = []
3 for file in os. listdir (f" Graphs /{ Graph_name }/ Parts / UniqueSubgraphs "):
4 if file . endswith (".g6"):
5 for subgraph in nx. read_graph6 (f" Graphs /{ Graph_name }/ Parts / UniqueSubgraphs /{ file

}"):
6 for unique_subgraph in unique_subgraphs :
7 if nx. is_isomorphic (subgraph , unique_subgraph):
8 break
9 else :

10 unique_subgraphs . append (subgraph)
11 with open (f" Graphs /{ Graph_name }/{ Graph_name }. Unique . Subgraphs .g6", "wb") as output_file :
12 [output_file . write (nx. to_graph6_bytes (subgraph , header = False)) for subgraph in

unique_subgraphs]
13 return

Figure 3.20: The finish subgraphs() function

1 def _make_poset (Graph_name):
2 if not os.path. exists (f" Graphs /{ Graph_name }/{ Graph_name }. Unique . Subgraphs .g6"):
3 _make_subgraphs (Graph_name)
4 num_workers = max (1, multiprocessing . cpu_count () -1)
5 workers = []
6 for id in range (num_workers):
7 job = multiprocessing . Process (target = _make_part_poset , args =(Graph_name ,id ,

num_workers))
8 job. start ()
9 workers . append (job)

10 for worker in workers :
11 worker .join ()
12 _finish_poset (Graph_name)
13 return

Figure 3.21: The make poset() function

1 def _make_poset_part (Graph_name , ID , Num_workers):
2 poset_graph = nx. empty_graph (create_using =nx. DiGraph)
3 for target in _split_work (nx. read_graph6 (f" Graphs /{ Graph_name }/{ Graph_name }. Unique .

Subgraphs .g6"), ID , Num_workers):
4 for source in nx. read_graph6 (f" Graphs /{ Graph_name }/{ Graph_name }. Unique . Subgraphs .g6"

):
5 if nx. algorithms . isomorphism . GraphMatcher (target , source).

subgraph_is_monomorphic ():
6 poset_graph . add_edge (f"{nx. to_graph6_bytes (source , header = False). strip ()}",

f"{nx. to_graph6_bytes (target , header = False). strip ()}")
7 nx. write_gml (poset_graph , f" Graphs /{ Graph_name }/ Parts / Poset / Poset .Part .{ ID }. gml")
8 return

Figure 3.22: The make poset part() function

19

1 def _split_work (Generator , ID , Num_workers):
2 for job_number ,job in enumerate (Generator):
3 if (job_number % Num_workers) == ID:
4 yield job
5 else :
6 continue

Figure 3.23: The split work() function

by way of the modular arithmetic on line 3 of Fig. 3.23. This is used to allocate elements of the input

generator in a round-robin manner to different processes.

Lastly we see how graphs can be used as vertex labels is used in the GML format on line 6 of make poset part().

The graph is first converted to its graph6 string, which is then converted into an ASCII string from the byte

string. As per the NetworkX documentation and the graph6 format [15, 16], the newline character and the

header must be omitted to store the raw graph6 string as the vertex label.

3.9 Making the Down-Arrow Ramsey Set

All the work the algorithm has done up to this point is to make the next function, make down arrow set(),

execute as fast as possible. In fact, this function takes on a similar order of runtime as make subgraphs.

This is due to leveraging the poset on lines 7 and 8 of make down arrow part() shown in Fig. 3.24. Because

the poset has been generated, constructing 〈Cr〉 and 〈Cb〉 are just a matter of finding the source vertices on

edges that terminate at Cr and Cb respectively.

One point that was the cause of an early bug is seen on lines 4 and 15 of make down arrow part(). To

decode the graph6 string from the poset vertex label, one must recover any lost backslash characters that

Python omitted when converting from a string of bytes to a string of ASCII characters. This is done with

the “replace(b’////’,b’//’)” logic.

3.10 Reporting the Ideals

Once the down-arrow Ramsey set for an input graph is generated, the same mechanism to generate a poset

is used, because ideals are generated by maximal elements in the poset. Finally, images are generated to

show the down-arrow Ramsey set as well as the ideals.

At each part in the process, the down-arrow generator leaves all remnants of the generation process. This

is helpful in restarting the process from power-loss because for graphs larger than K6, runtime is expected

to be more than an hour. In particular, ↓ K7 takes about an hour, ↓ K8 takes about 3 days, and K5,5 takes

about 4 days to determine.

20

1 def _make_down_arrow_set_part (Graph_name , ID , Num_workers):
2 down_arrow_set = None
3 for red_subgraph_graph6_string in _split_work (_poset_iterator (Graph_name), ID ,

Num_workers):
4 red_subgraph = nx. from_graph6_bytes (bytes (red_subgraph_graph6_string [2: len(

red_subgraph_graph6_string) -1], "utf -8"). replace (b"\\\\ ",b"\\"))
5 blue_subgraph = _Complement (red_subgraph , _get_graph_from_name (Graph_name))
6 blue_subgraph_graph6_string = _find_in_poset (nx. to_graph6_bytes (blue_subgraph ,

header = False). strip () , Graph_name)
7 red_subgraphs = _subgraphs_of (red_subgraph_graph6_string , Graph_name)
8 blue_subgraphs = _subgraphs_of (blue_subgraph_graph6_string , Graph_name)
9 coloring_union = _union (red_subgraphs , blue_subgraphs)

10 if down_arrow_set == None:
11 down_arrow_set = coloring_union
12 else :
13 down_arrow_set = _intersection (down_arrow_set , coloring_union)
14 if not down_arrow_set == None:
15 down_arrow_set = [nx. from_graph6_bytes (bytes (subgraph_graph6_string [2: len(

subgraph_graph6_string) -1], "utf -8"). replace (b"\\\\ ",b"\\")) for subgraph_graph6_string
in down_arrow_set]

16 with open (f" Graphs /{ Graph_name }/ Parts / DownArrowSet /{ Graph_name }. Down . Arrow .Set.Part
.{ ID }. g6", "wb") as output_file :

17 [output_file . write (nx. to_graph6_bytes (subgraph , header = False)) for subgraph in
down_arrow_set]

18 return

Figure 3.24: The make down arrow part() function

21

Results

In this chapter, specific results are given by the down arrow generator. This list provides the output as

maximal ideals for many interesting input graphs. While paths, cycles, and complete bipartite graphs Ks,t

for s = 1, 2 have been completely classified [6], this chapter provides the foundation to begin developing

generalized patterns. We expand on complete graphs, complete bipartite graphs Ks,t for s, t ≤ 6, and some

favored miscellaneous graphs.

22

4.11 Complete Graph Results

For the complete graphs Kn with 1 ≤ n ≤ 8, the down arrow generator concurs with Byers and Olejniczak [6].

For the down-arrow Ramsey set of complete graphs, this has direct application to graph-theoretic Ramsey

theory. In particular, we need to define the diagonal graph Ramsey number. First, the graph Ramsey number

for simple, undirected, connected graphs G and H, R(G,H), is the minimum n where Kn → (G,H). Recall,

this means to say that every red-blue edge coloring of Kn admits a red G or a blue H. When G and H are

isomorphic, R(G,H) is simply put R(G,G) and denotes the diagonal graph Ramsey number. At this time,

there are few diagonal graph Ramsey numbers known, as catalogued by [20].

By the nature of down-arrow Ramsey sets, ↓ Kn classifies all graphs for which any red-blue edge coloring

admits a monochromatic subgraph. Hence the set ↓ Kn\ ↓ Km, ∀m < n classifies all graphs with diagonal

graph Ramsey number n.

4.11.1 Down-Arrow Ramsey Sets of Complete Graphs

Listed below are first ↓ Kn for 1 ≤ n ≤ 9 by way of reporting the poset of maximal ideals, then the entries

that extend the diagonal graph Ramsey numbers in the Atlas of Graphs [20].

Figure 4.25: ↓ K2 = 〈P2〉

Figure 4.26: ↓ K3 = 〈P3〉

Figure 4.27: ↓ K4 = 〈P3〉

Figure 4.28: ↓ K5 = 〈P4〉

(a) H1 (b) H2

Figure 4.29: ↓ K6 = 〈H1〉 ∪ 〈H2〉

23

(a) H1 (b) H2 (c) H3

Figure 4.30: ↓ K7 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

(a) H1 (b) H2 (c) H3

(d) H4 (e) H5 (f) H6

Figure 4.31: ↓ K8 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉 ∪ 〈H4〉 ∪ 〈H5〉 ∪ 〈H6〉

For the complete graph K9, this is novel and undiscovered before the use of the down-arrow generator.

Figure 4.32: ↓ K9 = still running

4.11.2 Graphs G with R(G,G) ≤ 9

Listed below are all graphs with at least one edge, no isolated vertices, and diagonal graph Ramsey number

less or equal to 9. These were determined by inspecting the down-arrow Ramsey sets of complete graphs.

Instead of naming the graphs individually, each of the following graphs are identified with their assigned

numbers as given by the graph atlas [20].

Graphs G with R(G,G) = 2:

Figure 4.33: G3

Graphs G with R(G,G) = 3:

Figure 4.34: G6

24

There are no graphs G with R(G,G) = 4.

Graphs G with R(G,G) = 5:

(a) G11 (b) G14

Graphs G with R(G,G) = 6:

(a) G7 (b) G13 (c) G16 (d) G26

(e) G30 (f) G31 (g) G37

25

Graphs G with R(G,G) = 7:

(a) G15 (b) G29 (c) G32 (d) G68

(e) G70 (f) G78 (g) G81 (h) G96

Graphs G with R(G,G) = 8:

(a) G61 (b) G69 (c) G79 (d) G80

(e) G82 (f) G83 (g) G84 (h) G85

(i) G98 (j) G99 (k) G103 (l) G105

(m) G128 (n) G245

26

4.12 Complete Bipartite Graph Results

For the complete bipartite graphs K1,t and K2,t with 1 ≤ t ≤ 6, the down arrow generator concurs with

Byers and Olejniczak [5].

(a) ↓ K1,1 = 〈K1,1〉 (b) ↓ K1,2 = 〈K1,1〉 (c) ↓ K1,3 = 〈K1,2〉

(d) ↓ K1,4 = 〈K1,2〉 (e) ↓ K1,5 = 〈K1,3〉 (f) ↓ K1,6 = 〈K1,3〉

Figure 4.39: ↓ K1,t for t ≤ 6

(a) ↓ K2,1 = 〈K1,1〉 (b) ↓ K2,2 = 〈K1,1〉 (c) ↓ K2,3 = 〈K1,2〉

(d) ↓ K2,4 = 〈K1,2〉 (e) ↓ K2,5 = 〈K1,3〉 (f) ↓ K2,6 = 〈K1,3〉

Figure 4.40: ↓ K2,t for t ≤ 6

For the complete bipartite graphs K3,t and K4,t with 1 ≤ t ≤ 6, the down arrow generator concurs with

Olejnizcak’s poster presented at the Fall Indiana MAA section meeting [19].

Figure 4.41: ↓ K3,1 = 〈K1,2〉

Figure 4.42: ↓ K3,2 = 〈K1,2〉

27

(a) H1 (b) H2

Figure 4.43: ↓ K3,3 = 〈H1〉 ∪ 〈H2〉

(a) H1 (b) H2

Figure 4.44: ↓ K3,4 = 〈H1〉 ∪ 〈H2〉

(a) H1 (b) H2 (c) H3

Figure 4.45: ↓ K3,5 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

(a) H1 (b) H2 (c) H3

Figure 4.46: ↓ K3,6 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

Figure 4.47: ↓ K4,1 = 〈K1,2〉

Figure 4.48: ↓ K4,2 = 〈K1,2〉

(a) H1 (b) H2

Figure 4.49: ↓ K4,3 = 〈H1〉 ∪ 〈H2〉

28

(a) H1 (b) H2

Figure 4.50: ↓ K4,4 = 〈H1〉 ∪ 〈H2〉

(a) H1 (b) H2 (c) H3

Figure 4.51: ↓ K4,5 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

For the complete bipartite graphs K5,t, these are novel and undiscovered before the use of the down

arrow generator.

Figure 4.52: ↓ K5,1 = 〈K1,3〉

Figure 4.53: ↓ K5,2 = 〈K1,3〉

(a) H1 (b) H2 (c) H3

Figure 4.54: ↓ K5,3 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

(a) H1 (b) H2 (c) H3

Figure 4.55: ↓ K5,4 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

29

(a) H1 (b) H2 (c) H3

Figure 4.56: ↓ K5,5 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

30

4.13 Complete k-partite graphs

Complete bipartite graphs are a special case of k-partite graphs. The down-arrow Ramsey set of complete

k-partite graphs have yet to be investigated before the down-arrow generator. A complete k-partite graph

is a graph G where V (G) can be partitioned into k disjoint sets Ai each of size ai such that E(G) contains

uv if and only if u ∈ Ai and v 6∈ Ai. The notation Ka1,a2,...,ai is used to denote complete k-partite graphs.

Given below are the maximal ideals of the down-arrow Ramsey set for some complete k-partite graphs where

k ≥ 3.

Down-arrow Ramsey sets of complete 3-partite graphs:

Figure 4.57: ↓ K1,1,1 = 〈P3〉

Figure 4.58: ↓ K1,1,2 = 〈P3〉

Figure 4.59: ↓ K1,2,2 = 〈P4〉

Figure 4.60: ↓ K2,2,2 = 〈P5〉

Figure 4.61: ↓ K2,2,3 = 〈G81〉

Figure 4.62: ↓ K1,2,2 = 〈P4〉

Figure 4.63: ↓ K2,2,2 = 〈P5〉

31

(a) H1 (b) H2 (c) H3 (d) H4

Figure 4.64: ↓ K2,3,3 = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉 ∪ 〈H4〉

Down-arrow Ramsey sets of complete 4-partite graphs:

Figure 4.65: ↓ K1,1,1,1 = 〈P3〉

Figure 4.66: ↓ K1,1,1,2 = 〈P4〉

(a) H1 (b) H2

Figure 4.67: ↓ K1,1,2,2 = 〈H1〉 ∪ 〈H2〉

32

4.14 Friendship Graph results

A friendship graph, Fn, is a graph given by adjoining n copies of C3 at a single shared vertex. The down-

arrow Ramsey set of fan graphs have yet to be investigated before the down-arrow generator. Particular

colorings of Fn for 2 ≤ n ≤ 8 is given below in Fig. 4.68.

Theorem 4.14.1. ↓ Fn = 〈K1,n〉 ∪ 〈dn2 eP2〉

Proof. Let the vertex adjoining the n copies of C3 in Fn be called v.

Consider Fn as component pieces: the edge-induced subgraph H1 induced by edges incident to v, and the

edge-induced subgraph H2 induced by edges not incident to v. First observe that H1
∼= K1,2n, so K1,2n ⊆ Fn

and hence ↓ K1,2n = 〈K1,2dn2 e〉 ⊆↓ Fn. Now observe that H2
∼= nP2, half of which (dn2 e in the case that

n is odd) must be colored the same. Hence 〈dn2 ePn〉 ⊆ ↓ Fn. Combining both these ideas then yields

〈K1,2dn2 e〉 ∪ 〈d
n
2 eP2〉 ⊆ ↓ Fn.

The following color scheme achieves ↓ Fn ⊆ 〈K1,n〉 ∪ 〈dn2 eP2〉. Let C be given such that dn2 e of the C3

are colored with edges incident to v assigned red and the remaining blue. C then colors the remaining bn2 c

of the C3 with edges incident to v assigned blue and the remaining red. This leaves Cr ∼= K1,2dn2 e ∪ b
n
2 cP2

and Cb ∼= K1,2bn2 c ∪ d
n
2 eP2. For 2 ≤ n ≤ 8, this coloring C is given for Fn in Fig. 4.68. We then consider

〈Cr〉 ∪ 〈Cb〉 as follows:

(
〈Cr〉

)
∪
(
〈Cb〉

)
=

(
〈K1,2dn2 e ∪ b

n

2
cP2〉

)
∪
(
〈K1,2bn2 c ∪ d

n

2
eP2〉

)
=

(
〈K1,2dn2 e〉

)
∪
(
〈bn

2
cP2〉

)
∪
(
〈K1,2bn2 c〉

)
∪
(
〈dn

2
eP2〉

)
=

(
〈K1,2dn2 e〉 ∪ 〈K1,2bn2 c〉

)
∪
(
〈bn

2
cP2〉

)
∪
(
〈dn

2
eP2〉

)
by associativity

=
(
〈K1,2dn2 e〉

)
∪
(
〈bn

2
cP2〉

)
∪
(
〈dn

2
eP2〉

)
by K1,2bn2 c ⊆ K1,2dn2 e

=
(
〈K1,2dn2 e〉

)
∪
(
〈bn

2
cP2〉 ∪ 〈d

n

2
eP2〉

)
by associativity

=
(
〈K1,2dn2 e〉

)
∪
(
〈dn

2
eP2〉

)
by bn

2
cP2 ⊆ d

n

2
eP2

Hence ↓ Fn ⊆ 〈K1,2dn2 e〉 ∪ 〈d
n
2 eP2〉.

With both halves of set inclusion, we may conclude ↓ Fn = 〈K1,2dn2 e〉 ∪ 〈d
n
2 eP2〉.

33

(a) F2 (b) F3 (c) F4

(d) F5 (e) F6 (f) F7

(g) F8)

Figure 4.68: Red-blue edge colorings of Fn for 2 ≤ n ≤ 8.

34

4.15 Miscellaneous Graphs

The down-arrow Ramsey set of the following graphs have yet to be investigated before the down-arrow

generator. The primary reason for selecting these particular graphs primarily comes from previous work I

have done, or by one-off questions I have received during my work on this paper.

The Zim graph was created for the use in power domination, however it has become a kind of favorite

toy graph of mine.

Figure 4.69: The Zim graph

The down-arrow Ramsey set of the Zim graph is given below.

(a) H1 (b) H2 (c) H3

Figure 4.70: ↓ Zim graph = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

K4 snake was the focus of a year-long project of mine in π-Harmonious labelings that started my graph

theoretic research path.

Figure 4.71: K4 Snake

The down-arrow Ramsey set of K4 snake is given below.

35

(a) G11 (b) G13

Figure 4.72: ↓ K4 snake = 〈G11〉 ∪ 〈G13〉

The Petersen graph is named after Julius Petersen, and is used as a counterexample for many graph

properties.

1

2

34

5
1

2

34

5

Figure 4.73: The Petersen graph

The down-arrow Ramsey set of the Petersen graph is given below.

(a) H1 (b) H2 (c) H3

Figure 4.74: ↓ Petersen graph = 〈H1〉 ∪ 〈H2〉 ∪ 〈H3〉

The Barioli-Fallat tree is named after Francesco Barioli and Shaun Fallat, and was used as a “spectacular

counterexample” for the spectral arbitrariness of trees [12]. In power domination and zero-forcing, this graph

has come up as a counterexample for many conjectures.

Figure 4.75: The Barioli-Fallat tree

The down-arrow Ramsey set of the Barioli-Fallat tree is given below.

36

Figure 4.76: ↓ Barioli-Fallat tree = 〈G26〉

37

Conclusion

5.16 Limitations and Use Cases for the Down Arrow Generator

The calculations given by the down arrow generator are just that, calculations. They serve as the guiding

light to determining the down-arrow Ramsey set of a given graph. What remains for the mathematician to

do is to:

1. Prove that nothing outside of the reported down-arrow Ramsey set exists by locating red-blue edge

colorings of G that exclude larger graphs.

2. Prove that each of the reported maximal graph ideals are in every red-blue edge coloring of G.

To generate the results laid out in this paper, the down arrow generator was left to run on a dedicated machine

for over a month. If high performance computers are leveraged with a large amount of time dedicated to the

search, many more down-arrow Ramsey sets could be generated. The down-arrow Ramsey sets of complete

graphs are likely the easiest to compute because of the data set that supplies all of the unique edge-induced

subgraphs of Kn for n ≤ 11, which gives a stepping stone for the down arrow generator.

5.17 Future work

Current versions of the down arrow generator use more and more system memory as the input graph grows.

In fact, it requires very nearly 128 gigabytes of system RAM to inspect and report the down-arrow Ramsey

set of K8, and much more than that to inspect the structure of K9. Future efforts will be placed into a

dynamic memory management routine so systematically cache lists to system storage. A preliminary version

of this style of algorithm is available on my GitHub page: https://github.com/JibJibFlutterhousen/

Down-Arrow-Ramsey-Sets.

While brute-force calculations are elegant calculations in-and-of-themselves, we must only use them as

calculations and not proofs lest we fall into the trap that Tymoczko describes in the four color problem [23].

38

https://github.com/JibJibFlutterhousen/Down-Arrow-Ramsey-Sets
https://github.com/JibJibFlutterhousen/Down-Arrow-Ramsey-Sets

Further algorithms can be added to inspect each of the individual colorings to generate a list of graphs that

forbid certain graphs from the down-arrow Ramsey set, as in one-half of the proof in Theorem 2.5.3.

39

Bibliography

[1] Kenneth Appel and Wolfgang Haken. “Every planar map is four colorable. Part I: Discharging”. In:

Illinois Journal of Mathematics 21 (1977), pp. 429–490.

[2] Kenneth Appel, Wolfgang Haken, and Jürgen Koch. “Every planar map is four colorable. Part II:

Reducibility”. In: Illinois Journal of Mathematics 21 (1977), pp. 491–567.

[3] David Beazley. “Understanding the Python GIL”. In: PyCon US 2010. URL: https://archive.org/

details/pyvideo_353___understanding-the-python-gil-82. 2010.

[4] Stefan A. Burr. “On the Computational Complexity of Ramsey—Type Problems”. In: Mathematics of

Ramsey Theory. Ed. by Jaroslav Neetil and Vojtch Rödl. Berlin, Heidelberg: Springer Berlin Heidelberg,

1990, pp. 46–52. isbn: 978-3-642-72905-8. doi: 10 . 1007 / 978 - 3 - 642 - 72905 - 8 _ 5. url: https :

//doi.org/10.1007/978-3-642-72905-8_5.

[5] Alexis Byers and Drake Olejniczak. “The Down Arrow Ramsey Set”. In: 33rd Midwest Conference on

Combinatorics and Combinatorial Computing. 2019.

[6] Alexis Byers and Drake Olejniczak. “The Down-Arrow Ramsey Set of a Graph”. In: Journal of Com-

binatorial Mathematics and Combinatorial Computing (2020).

[7] G. Chartrand, L. Lesniak, and P. Zhang. Graphs & Digraphs. Discrete Mathematics and Its Applica-

tions Series. CRC Press, Taylor & Francis Group, 2016. isbn: 9781498735766. url: https://books.

google.com/books?id=vkQwjgEACAAJ.

[8] Stephen A. Cook. “The complexity of theorem-proving procedures”. In: Proceedings of the third annual

ACM symposium on Theory of computing - STOC ’71. ACM Press, 1971. doi: 10.1145/800157.

805047.

[9] L.P. Cordella et al. “A (sub)graph isomorphism algorithm for matching large graphs”. In: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 26.10 (2004), pp. 1367–1372. doi: 10.1109/

TPAMI.2004.75.

40

https://archive.org/details/pyvideo_353___understanding-the-python-gil-82
https://archive.org/details/pyvideo_353___understanding-the-python-gil-82
https://doi.org/10.1007/978-3-642-72905-8_5
https://doi.org/10.1007/978-3-642-72905-8_5
https://doi.org/10.1007/978-3-642-72905-8_5
https://books.google.com/books?id=vkQwjgEACAAJ
https://books.google.com/books?id=vkQwjgEACAAJ
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1109/TPAMI.2004.75

[10] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. 2006.

url: https://igraph.org.

[11] Reinhard Diestel. Graph Theory - Graduate Texts in Mathematics. Springer-Diestel, Jan. 2016. 444 pp.

isbn: 3961340056. url: https://www.ebook.de/de/product/26866671/reinhard_diestel_graph_

theory_graduate_texts_in_mathematics.html.

[12] Shaun M. Fallat et al. Spectral arbitrariness for trees fails spectacularly. 2023. doi: 10.48550/ARXIV.

2301.11073. url: https://arxiv.org/abs/2301.11073.

[13] R. Graham and S. Butler. Rudiments of Ramsey Theory. CBMS Regional Conference Series in Math-

ematics. Conference Board of the Mathematical Sciences, 2015. isbn: 9780821841563. url: https:

//books.google.com/books?id=WpelCgAAQBAJ.

[14] R.L. Graham, B.L. Rothschild, and J.H. Spencer. Ramsey Theory. Wiley Series in Discrete Mathemat-

ics and Optimization. Wiley, 1991. isbn: 9780471500469. url: https://books.google.com/books?

id=55oXT60dC54C.

[15] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure, Dynamics,

and Function using NetworkX”. In: Proceedings of the 7th Python in Science Conference. Ed. by Gaël

Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena, CA USA, 2008, pp. 11–15.

[16] Michael Himsolt. GML: A portable Graph File Format. url: http://www.fim.uni-passau.de/

fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf.

[17] Brendan McKay. “Graphs”. url: http://users.cecs.anu.edu.au/˜bdm/data/graphs.html.

[18] Dimitrios Michail et al. “JGraphT–A Java Library for Graph Data Structures and Algorithms”. In:

ACM Trans. Math. Softw. 46.2 (May 2020).

[19] Drake Olejniczak. “The down-arrow Ramsey set of a graph”. In: Fall MAA Indiana Section 2022. 2022.

[20] Ronald C. Read and Robin J. Wilson. An Atlas of Graphs. Oxford University Press, USA, 2005, p. 466.

isbn: 9780198526506.

[21] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.1). https://www.

sagemath.org. 2023.

[22] William Stein. “SAGE Days 4”. In: URL: https://web.archive.org/web/20070627235122/http:

//www.sagemath.org/why/stein-sd4.pdf. 2007.

[23] Thomas Tymoczko. “The Four-Color Problem and Its Philosophical Significance”. In: The Journal of

Philosophy 76.2 (Feb. 1979), p. 57. doi: 10.2307/2025976.

41

https://igraph.org
https://www.ebook.de/de/product/26866671/reinhard_diestel_graph_theory_graduate_texts_in_mathematics.html
https://www.ebook.de/de/product/26866671/reinhard_diestel_graph_theory_graduate_texts_in_mathematics.html
https://doi.org/10.48550/ARXIV.2301.11073
https://doi.org/10.48550/ARXIV.2301.11073
https://arxiv.org/abs/2301.11073
https://books.google.com/books?id=WpelCgAAQBAJ
https://books.google.com/books?id=WpelCgAAQBAJ
https://books.google.com/books?id=55oXT60dC54C
https://books.google.com/books?id=55oXT60dC54C
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://www.sagemath.org
https://www.sagemath.org
https://web.archive.org/web/20070627235122/http://www.sagemath.org/why/stein-sd4.pdf
https://web.archive.org/web/20070627235122/http://www.sagemath.org/why/stein-sd4.pdf
https://doi.org/10.2307/2025976

	Abstract
	Introduction
	Introduction to Ramsey Theory
	Introduction to Graph Theory
	Introduction to Graph Theoretic Ramsey Theory
	Introduction to Python

	The Down-Arrow Problem
	Statement
	Exhaustive Procedure

	The Down-Arrow Generator
	Making the Subgraphs
	Making the Poset
	Making the Down-Arrow Ramsey Set
	Reporting the Ideals

	Results
	Complete Graph Results
	Down-Arrow Ramsey Sets of Complete Graphs
	Graphs G with R(G,G)9

	Complete Bipartite Graph Results
	Complete k-partite graphs
	Friendship Graph results
	Miscellaneous Graphs

	Conclusion
	Limitations and Use Cases for the Down Arrow Generator
	Future work

		2023-04-26T10:08:06-0400
	Youngstown State Univesity

