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ABSTRACT

The performance of machine learning (ML) methods, including deep learning, for

classification and regression tasks applied to tabular datasets is sensitive to hyper-

parameters values. Therefore, finding the optimal values of these hyperparameters

is integral to improving the prediction accuracy of a machine learning algorithm and

the model selection. However, manually searching for the best configuration is a te-

dious task, and many AutoML (automated machine learning) frameworks have been

proposed recently to help practitioners solve this problem. Hyperparameters are the

values or configurations used to control the algorithm’s behavior while building the

model. Hyperparameter optimization is the guided process of finding the best combi-

nation of hyperparameters that delivers the best performance on the data and task at

hand in a reasonable amount of time. In this work, the performance of two frequently

used AutoML hyperparameter optimization frameworks, Optuna and HyperOpt, are

compared on popular OpenML tabular datasets to identify the best framework for

tabular data. The results of the experiments show that the performance score of

Optuna is better than that of HyperOpt, while HyperOpt is the fastest for hyperpa-

rameter optimization.
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1 Introduction

Machine learning (ML) is a rapidly growing field that has the potential to revo-

lutionize industries. Its ability to learn and process large amounts of data quickly and

accurately and make predictions has made it a powerful tool for solving a wide range

of problems. ML has been rapidly applied in various real-world scenarios, including

customer service, fraud detection, and medical diagnosis. Studies have demonstrated

that an optimal set of hyperparameters enhances the model’s performance. [2] [3]

However, if an ML model’s performance is subpar, it can result in significant

negative impacts on people’s lives, particularly in areas like medical diagnosis or fraud

detection. The performance of ML for classification and regression tasks applied to

tabular datasets is sensitive to hyperparameter values. Hyperparameters are used to

control the behavior of the algorithms while building the model. And hyperparam-

eter optimization aims to determine the optimal combination of hyperparameters to

deliver optimal performance on the data in a reasonable amount of time. Finding

the optimal values of these hyperparameters is integral to improving the prediction

accuracy of an ML algorithm and the model selection process. However, manually

searching for the best configuration is a tedious task, and many AutoML (automated

machine learning) frameworks have been proposed recently to help practitioners solve

this problem.

The comparative study of hyperparameter optimization frameworks is crucial

for society and the world, as it has far-reaching implications for various industries and

applications. Improved ML models can lead to better and quicker decision-making

and outcomes in areas such as healthcare, finance, and transportation. For exam-

ple, a well-tuned ML model can help diagnose diseases more accurately, leading to
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better patient outcomes. However, optimizing the performance of machine learning

algorithms by searching for the best hyperparameter sets takes time and computing

resources. Performing this process by hand is convoluted and time-consuming. By

automating the parameter search, data scientists can focus on feature engineering and

interpreting the results. For users who lack ML expertise, finding the best combina-

tion of hyperparameters requires trial-and-error methods, which is a very tedious task.

The idea of automated machine learning hyperparameter optimization has evolved in

recent years due to efforts to automate hyperparameter optimization steps in the ML

workflow due to the surge in the number of non-specialists using ML. This problem

is solved by AutoML, which speeds up the process of determining the best values

for the model’s hyperparameters and enables data scientists to focus on algorithm

development and performance enhancement.

1.1 Definition of Hyperparameters

In machine learning, "hyperparameters" are settings or variables that can be

tweaked and adjusted to enhance the model’s efficiency. They are predefined or

set by the user before training, rather than being learned when a model is being

trained. Because model values are fixed during training, hyperparameters are said

to be "external to the model." Nonetheless, individuals can choose the values of the

model hyperparameters, which can affect how a learning algorithm learns. The size

of the training batch, the number of hidden layers in a neural network, the learning

rate of an optimization technique, and other training-related factors are all regulated

by these hyperparameters. During the training of the learning algorithm, several

hyperparameters are utilized; however, these are not incorporated into the resultant
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model. After the learning process is complete, the trained model parameters, also

known as models, are acquired. The hyperparameters used during training are not

included in this model. Some of the common hyperparameters are learning rate, batch

size, k in k-nearest neighbors, number of iterations, etc.

On the other hand, parameters are values that are iteratively changed after the

model learns them during the training phase in order to lower the loss function. The

weights and biases of each neuron in a neural network, for example, are parameters

that are learned during training.

The key difference between hyperparameters and parameters is that hyperpa-

rameters are set by the user and remain constant throughout the training process,

while parameters are learned by the model and change during training. The choice

of hyperparameters can significantly influence the model’s output, and finding good

hyperparameters is often a crucial aspect of the machine-learning process.

1.2 Types of Hyperparameters

Based on their representation, hyperparameters can be categorized into two

main types: ordered and categorical. Additionally, the ordered hyperparameters can

be further divided into two subcategories: discrete, which is denoted by integers, and

continuous, which is denoted by real numbers. Although it is possible to have ordinal

variables that do not correspond directly to integers, they can usually be converted

into integers using their index without losing any significant amount of information.

The type of hyperparameter can significantly impact the performance of hyper-

parameter optimization algorithms. Some hyperparameter optimization algorithms

can natively handle all types of variables, whereas others mandate that all variables
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be converted to real numbers before execution. Performing transformations such as

converting categorical variables into real numbers can lead to some loss of informa-

tion, and it is essential to execute an appropriate transformation to obtain optimal

results. When multiple categorical variables are present, algorithms that do not han-

dle categorical variables may demonstrate relatively inferior performance. As a result,

it is vital to consider this factor when comparing algorithms, both theoretically and

experimentally.

1.3 Definition of Hyperparameter Optimization

Hyperparameter optimization is the process of selecting the best hyperparam-

eters for a machine learning model to maximize its performance. Optimizing the

hyperparameters of a machine learning algorithm is a critical part of the model-

building procedure that is commonly accepted as standard practice [4]. Finding the

best hyperparameters for a model can significantly improve its performance, as sub-

optimal hyperparameters can lead to overfitting or underfitting, resulting in poor

generalization. The goal of most machine learning algorithms is to develop a function

between input and output that minimizes some loss. The algorithm learns this func-

tion by minimizing the loss of its predictions on a training dataset by modifying a set

of parameters. Parameter formulation in the model is essential to the optimization

process, whereas pre-training hyperparameter setting determines how the learning

process will behave. Linear regression, a type of regression model with the following

formulation, can be used to illustrate this idea:

y = β0 + β1 ∗ x1 + β2 ∗ x2 + ...βn ∗ xn (1)
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In linear regression, the value to be predicted is denoted by y, while xi represents

the feature i and βi is associated with the coefficient i. Linear regression coeffi-

cients are the model’s hidden parameters that are adjusted during training to reduce

discrepancies between the y values predicted by the model and their corresponding

characteristics in the training data. Before beginning the learning process, there are

a few decisions to be made, such as which iterative algorithms to use to optimize the

coefficients, how many iterations can be performed before the algorithms converge,

and which type and degree of regularization will be used to improve generalization

to new data. It’s also important to note that the intercept component β0 is optional

in the model formulation. The basic purpose of machine learning algorithms is to

minimize the loss on the validation dataset, and these hyperparameters are a major

factor in doing so.

These hyperparameters have a major impact on the final loss on the dataset

used for validation, so it’s crucial to find the optimal values for them. Since there is

no meaningful information on how the loss varies with respect to the hyperparam-

eters, they cannot be automatically improved in the same way that the parameters

of a learning algorithm can be. Therefore, different learning strategies need to be

employed.

λ∗ = argminλϵΛ(L(Xvalidation, Aλ(Xtrain))) (2)

The optimization task is formally defined in Equation (2), which aims to find

the optimal values of hyperparameters λ. The space of possible hyperparameter val-

ues is represented by Λ, and the loss function L takes in the dataset for validation

Xvalidation along with the function Aλ(Xtrain) estimated by algorithm A with hyperpa-
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rameters λ after training on the training dataset Xtrain. The loss function is computed

by comparing the results of the Aλ(Xvalidation) to the results of the Xvalidation.

The optimization of hyperparameters is different from that of a learning algo-

rithm’s parameters because it cannot be done automatically. This is due to the fact

that there is no helpful data showing how the loss varies across the training and vali-

dation datasets as a function of the hyperparameters. Consequently, it is not possible

to use the same learning strategies as with the algorithm’s parameters because there

is no differentiation of hyperparameters in relation to the datapoints.

1.4 Importance of Hyperparameter Optimization

Hyperparameter optimization helps to find the most suitable set of hyperpa-

rameters for a machine learning model, resulting in improved accuracy, precision,

recall, and other performance metrics. A common issue in machine learning is over-

fitting, and hyperparameter optimization helps to avoid it by ensuring the model

generalizes well on unseen data. Optimizing hyperparameters can lead to faster

model training times by lowering the number of iterations required to attain conver-

gence. Hyperparameter optimization can help reduce model complexity by selecting

the most important hyperparameters and removing insignificant hyperparameters.

Hyperparameter optimization can help create more robust models by ensuring that

they perform well across a range of datasets. Hyperparameter optimization can give

businesses a competitive advantage by creating more accurate and efficient machine

learning models than their competitors. Hyperparameter optimization can help im-

prove the machine learning models’ scalability by ensuring that they can handle larger

datasets and compute resources.
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Mantovani et al. [5] investigated the significance of hyperparameter optimiza-

tion, where the authors predicted whether hyperparameter optimization would result

in improved outcomes compared to models built using default hyperparameters us-

ing meta-features, which are properties of the learning task. Furthermore, Lavesson

and Davidsson [6] demonstrated that optimization hyperparameters are frequently

more important than selecting a machine learning algorithm. Van Rijn and Hutter [7]

investigated the significance of specific hyperparameters as well as the interactions

between hyperparameters. Important hyperparameters are defined by the authors as

parameters that explain the majority of the variation in performance across several

datasets. A functional ANOVA framework is used to determine the explained vari-

ance. The results of this method do not directly convert into suggestions for which

hyperparameters to modify, which is one of its limitations. For instance, a hyperpa-

rameter that has a single setting that consistently produces good results is crucial

since it describes performance variance. However, substantial optimization is not

necessary for such a value. Instead, it can be tuned to a setting that consistently pro-

duces positive outcomes. Needless to say, it is a critical step in any machine learning

project because it leads to optimal model results.

1.5 Types of Hyperparameter Optimization

There are two approaches to optimizing the hyperparameters of machine learn-

ing models:
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1.5.1 Manual Hyperparameter Optimization

Manual hyperparameter optimization entails manually experimenting with dif-

ferent sets of hyperparameters using intuition, experience, and the trial-and-error

method. Manual hyperparameter optimization involves selecting a set of hyperpa-

rameters to test, training the model with those hyperparameters, and then evaluating

the performance of the resulting model. This process is repeated with various sets

of hyperparameters until the best combination is found. One can start by selecting

a set of hyperparameters that one believes will work well based on their experience

or knowledge of the problem domain. They can then train the model with those hy-

perparameters and evaluate its performance. If the performance is not satisfactory,

one can adjust the hyperparameters and repeat the process until one finds the best

combination.

Although manual hyperparameter optimization can enhance a machine learn-

ing model’s performance, it can also be time-consuming due to the need to test

numerous alternative combinations of hyperparameters and the high level of skill re-

quired. For manual hyperparameter optimization, a machine learning practitioner

does not require a special library; instead, they must test various hyperparameter

combinations for the model and choose the one that performs the best. Because

there are so many trials to keep track of, manual optimization takes a lot of time and

money. When there are fewer hyperparameters available, manual hyperparameter

optimization is simple and quick to conduct, but it becomes extremely challenging

and impractical when there are many hyperparameters to take into account. Hyper-

parameter optimization can be aided by automated tools and algorithms, which can

speed up the process and enhance a model’s functionality.
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1.5.2 Automated Hyperparameter Optimization

Automated hyperparameter optimization is the process of using automated al-

gorithms to determine the appropriate hyperparameters for a given machine learning

model. Automated hyperparameter optimization involves selecting a range of hyper-

parameters to test and using an automated algorithm to search the hyperparameter

space to find the best combination. The automated algorithm iteratively tests dif-

ferent combinations of hyperparameters and evaluates the machine learning model’s

performance. The procedure is repeated until the ideal set of hyperparameters is

identified. For automated hyperparameter optimization, a user must define a set of

hyperparameters and the values of those hyperparameters beforehand. The algorithm

will then do the heavy lifting for you. It runs those trials and returns the best set of

hyperparameters for optimal results.

Automated hyperparameter optimization can save time and improve the per-

formance of a machine learning model compared to manual hyperparameter optimiza-

tion. Automated hyperparameter optimization algorithms can explore a large hyper-

parameter space quickly and efficiently, saving valuable time and effort compared

to manual optimization. Automated algorithms can find hyperparameters that may

be difficult or impossible to discover manually, resulting in improved model perfor-

mance. Manual hyperparameter optimization may be influenced by the user’s bias or

subjective opinions, whereas automated optimization is based purely on data-driven

optimization, reducing the risk of bias. Automated hyperparameter optimization can

be easily scaled to accommodate large datasets and complex models, which may not

be feasible in manual optimization. Automated hyperparameter optimization enables

the same hyperparameters to be used consistently across different experiments, lead-
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ing to greater reproducibility of results. Automated hyperparameter optimization

reduces the risk of human error, such as typos or incorrect parameter settings, which

can adversely affect model performance.

There are several algorithms available for automated hyperparameter opti-

mization, including grid search, random search, and Bayesian optimization. Grid

search involves testing all possible combinations of hyperparameters in a grid-like

pattern. The random search samples the hyperparameters from a predefined range in

a random fashion. Bayesian optimization involves creating a probabilistic model of

the model’s performance based on previous evaluations and utilizing it to select the

most promising hyperparameters to test next.

A more detailed overview of algorithms that perform automated hyperparam-

eter optimization (HPO) is as follows:

A. Grid Search : HPO has traditionally utilized grid search, which involves

exhaustively searching through a manually chosen subset of a learning algorithm’s

hyperparameter space. Nonetheless, this method is susceptible to the curse of di-

mensionality. It implies that the number of evaluations required for each additional

hyperparameter or dimension in the search space grows exponentially. Consequently,

this approach may become prohibitively computationally expensive, particularly for

models with many hyperparameters that significantly impact performance. Despite

its computational inefficiency, this strategy has traditionally been the preferred way

for optimizing hyperparameters in both real-world applications and the field of ma-

chine learning research. Consider the results of a survey of all NIPS 2014 approved

papers, which found that grid search was used in 82 of 86 instances where automatic

hyperparameter search was used.
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B. Random Search : A second straightforward strategy is to generate a grid of

points, randomly assign trials to each cell in the grid, and then observe the results.

The user does not specify a set of values for each hyperparameter but rather a range

from which to draw search results, generally by randomly sampling within that range.

A less expensive approach than grid search that randomly samples the search space

to evaluate only a limited number of models, this technique is not only suitable for

discrete settings but also extends to continuous and mixed spaces. Particularly when

only a few hyperparameters have a major impact on the ML algorithm’s final perfor-

mance, it can outperform grid search. Random search can be a useful option when

the lengths of the value vectors representing the hyperparameters that constitute the

search space vary significantly. This means that certain hyperparameters have a vast

number of potential values to experiment with, while others have only a few.

Figure 1 depicts an illustration of the preceding observation. In this two-

dimensional example, one of the hyperparameters has a far larger impact on the

outcome. The marginal distribution of the metric in relation to the hyperparameters

is shown on the sides. In contrast to the three trial values for the significant hyperpa-

rameter that evenly spaced grid search generates out of a total of nine trials, random

search generates nine trial values for it, helping us focus on a greater potential value

for that dimension and, by extension, the overall hyperparameter settings.

C. Gaussian Processes : When it comes to Bayesian optimization, Gaussian

processes (GPs) are frequently used as the default. By nature, they are non-parametric

and are able to approximate complex functions. GPs establish a prior distribution

over a set of functions (i.e., probability distributions with respect to the search space).

During each iteration, the GP samples values from the search space as training data
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Figure 1: Grid Search vs Random Search (Bergstra and Bengio [1])

and applies a kernel function—one of several types—to obtain a posterior distribu-

tion. Gaussian distributions have the desirable property of being able to determine

the joint probability of several variables, or hyperparameters, and the conditional

probability of one hyperparameter given any other hyperparameter.

D. Tree Parzen Estimator (TPE): The TPE search algorithm is a Bayesian op-

timization algorithm used for hyperparameter optimization. It is an improvement over

the original Parzen estimator method and was proposed by [2]. The TPE technique

is used to optimize quantization hyperparameters to obtain the highest potential la-

tency improvement and an estimated accuracy objective. TPE is an iterative process

that constructs a probabilistic model based on past evaluations of hyperparameters

and employs it to recommend the subsequent set of hyperparameters to evaluate. The

TPE uses the Bayes method to calculate P(x|y) and P(y), where x stands for the re-

lated quality score and y for the hyperparameters. By altering the generative process
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of hyperparameters and substituting non-parametric densities for the configuration

prior’s distributions, P(x|y) is modeled. The key idea behind TPE is to use a tree

structure to model the relationship between hyperparameters and performance. At

each iteration, the algorithm uses the tree to select a new set of hyperparameters to

evaluate based on the performance of previous evaluations. The tree structure allows

TPE to quickly identify promising regions of the hyperparameter space and focus its

search on those regions. It is particularly useful for high-dimensional hyperparameter

spaces where an exhaustive search is infeasible.

2 Methods

In the present day, numerous AutoML hyperparameter optimization tools are

available that incorporate advanced hyperparameter searching methods for finding

hyperparameters for machine learning algorithms such as gradient boosting algo-

rithms [8] [9] [10] [11] (Xgboost, Catboost, etc.). Among them, notable names

include Raytune [12], Optuna [13], HyperOpt [14], SMAC [15], Spearmint [16], and

many more. For this study, two of the most popular AutoML hyperparameter op-

timization tools, Optuna and HyperOPT, are utilized and compared based on their

computational time and accuracy scores. In the comparison study, four popular

OpenML datasets were utilized, including eye movement [17], gas concentration [18],

gesture phase [19], and airline delay [20]. This section briefly describes the tools that

were used.

15



2.1 Optuna

Optuna is a popular open-source framework for hyperparameter optimization

that is widely employed in machine learning tasks. It’s meant to be a versatile, user-

friendly, and scalable toolkit for fine-tuning ML models’ hyperparameters. Optuna

utilizes a range of samplers, including grid search, random search, Bayesian opti-

mization, and evolutionary algorithms, to automatically identify the most effective

hyperparameter values. Optuna uses a variant of the TPE algorithm to search for the

optimal hyperparameters for a particular machine learning model. The framework

provides a flexible Application Programming Interface (API) that enables developers

to define the search space of hyperparameters and the objective function to be opti-

mized. Users can also set constraints on the hyperparameters and specify the type of

optimization (minimization or maximization).

One of the key advantages of Optuna is its ability to efficiently handle high-

dimensional search spaces. The framework uses a pruning technique to discard un-

promising trials and focus on more promising ones, which reduces the computational

resources required for hyperparameter optimization. The intermediate objective val-

ues are monitored for this purpose, and values that do not comply with defined

criteria are stopped, which is allowed by an asynchronous successive halving algo-

rithm. Optuna also provides built-in visualization tools that allow users to monitor

the optimization process and analyze the results.

Optuna is developed to interface quickly with a variety of popular machine

learning frameworks, including TensorFlow, PyTorch, and Scikit-Learn. To assist

customers in analyzing and comprehending the results of optimization, it also offers a

variety of visualization tools. Because of its extreme flexibility, Optuna enables users
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to design intricate search areas, restrictions, and conditional parameter distributions

with just a few lines of code. Finding the best hyperparameters in complicated models

may become simpler as a result. Moreover, Optuna offers distributed optimization,

enabling customers to execute simultaneous hyperparameter optimization on many

workstations, greatly accelerating the process. The framework also offers a number of

customization options, including trial storage, pruning techniques, and user-defined

search engines.

To assist customers in analyzing and comprehending the results of optimiza-

tion, it also offers a variety of visualization tools. Because of its extreme flexibility,

Optuna enables users to design intricate search areas, restrictions, and conditional pa-

rameter distributions with just a few lines of code. Finding the best hyperparameters

in complicated models may become simpler as a result. Moreover, Optuna offers dis-

tributed optimization, enabling customers to execute simultaneous hyperparameter

optimization on many workstations, greatly accelerating the process. The frame-

work also offers a number of customization options, including trial storage, pruning

techniques, and user-defined search engines.

2.2 HyperOpt

HyperOpt is a free and open-source Python library for optimizing hyperpa-

rameters. It can deal with both continuous and discrete hyperparameters and a wide

variety of optimization tasks. HyperOpt offers other optimization techniques in ad-

dition to TPE, adaptive TPE, and random search. One of HyperOpt’s important

advantages is its support for distributed computing, which enables concurrent hyper-

parameter searches across numerous Central Processing Unit (CPU) cores or even
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machines. This drastically cuts down on the amount of time needed to find the best

hyperparameters, especially for complex models or large-scale datasets.

Additionally, HyperOpt offers advanced features such as early stopping, which

can help terminate the optimization process early if it is not making progress. Hy-

perOpt also supports various integration options with popular machine learning li-

braries, including Scikit-Learn, Keras, and PyTorch. HyperOpt provides an intuitive

and user-friendly interface for visualizing the results of hyperparameter searches and

for selecting the best set of hyperparameters. Another important feature of HyperOpt

is its ability to handle noisy or stochastic objective functions, which are common in

machine learning. It uses Bayesian optimization to model the objective function and

its noise and then uses the model to guide the search for optimal hyperparameters.

The core elements of HyperOpt are an objective function, a search domain,

and an optimization method. Since the search domain can be specified by continuous,

ordinal, or categorical variables, it offers more flexibility during the optimization

process. An objective function can be any Python function defined by the user that

takes in a set of variables and returns a loss function for that set of variables.

3 Datasets

In this study, four popular OpenML [21] tabular datasets, Eye Movement, Gas

Concentrations, Gesture Phase, and Airline Delay, were used. Tabular datasets are

collections of rows and columns, where columns represent the features and rows are

the actual values. The datasets contain mixed-type data, which is a combination of

both categorical and numerical data types. The numerical data type is the type of
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data that is expressed in terms of numbers rather than categorical descriptions, for

example, age, weight, height, etc. On the other hand, a categorical data type is a type

of data that can be stored into groups or categories, for example, ethnicity, gender,

hair color, etc. More details, such as the number of target classes, size of the dataset,

number of numerical features, and categorical features of the datasets, are described

in Table 1.

Table 1: Dataset Details

Dataset Classes Size Num. Cat.
Feat. Feat.

Eye movement 4 10.9k 24 4
Gas concentration 6 13.9k 129 1
Gesture phase 9 9.8k 32 1
Airlines Delay 2 539k 3 5

3.1 Eye Movement

Eye movement has attributes such as lineNo, assgNo, prevFixDur, firstfixDur,

etc. The data is organized in a tabular format where features are represented as

columns and feature vectors are represented as rows. Each time sequence is comprised

of 22-dimensional feature vectors. This dataset consists of a number of assignments,

each of which is made up of a question and ten sentences (news item titles). Five

of the statements are unrelated to question (I), while just one of them is the right

response to question (C). Although they don’t directly address the question (R), four

of the statements are related to it. The objective of the task is to make predictions

on the classification labels (I, R, and C).
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3.2 Gas Concentration

The data for gas concentration comes from sixteen chemical sensors subjected

to six gases at varying concentrations. The concentration level to which the sensors

were subjected for each measurement is included in this supplementary dataset to

the Gas Sensor Array Drift Dataset. The objective of the challenge is to classify six

gases at varying concentrations.

3.3 Gesture Phase

The gesture phase is composed of features taken from seven videos of people

gesticulating. This dataset was created to study the task of gesture phase segmenta-

tion, which involves identifying the different phases within a gesture, such as prepa-

ration, stroke, and retraction. The gestures were chosen to be representative of a

range of common human movements, including pointing, waving, and swiping. The

objective is to classify phases as follows: D (rest position), H (hold), P (preparation),

R (retraction), and S (stroke).

3.4 Airline Delay

Airlines include features such as airline, flight, airport, etc., and the task is to

forecast whether a particular flight will be delayed based on the scheduled departure

details. The target variable is the delay status of the flight, which is represented as a

binary variable indicating whether the flight was delayed or not.
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4 Experiments and Results

Table 2: Default Model Accuracy

Dataset Xgboost Catboost
Accuracy Accuracy

Eye movement 0.7249 0.6970
Gas concentration 0.9957 0.9946
Gesture phase 0.9418 0.9170
Airlines Delay 0.6937 0.7048

In this study, two experiments were conducted to investigate the effect of differ-

ent ways of dividing the dataset on the performance of hyperparameter optimization.

4.1 Experiment 1

For the first experiment, the datasets were randomly split into a training set

(consisting of 80% of the data) and a testing set (consisting of 20% of the data) in a

stratified way to ensure a proportional representation of each class in the target vari-

able. The training set was used to train classifier models using the Python gradient

boosting packages XGBoost and CatBoost. For each model, 5-fold cross-validation

was applied to select the best hyperparameters from a predefined range of values.

Cross-validation is a valuable technique in machine learning that allows us to eval-

uate the performance of a model on a limited dataset and is particularly useful for

hyperparameter optimization. TPE and random search algorithms were utilized as

optimization algorithms for AutoML tools Optuna and HyperOpt, as both are in-

corporated in both tools. The best hyperparameters for the models were obtained

using this setup. After identifying the best hyperparameters, they were used for the
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final model training. The final training was performed using the entire initially split

training set, and then the performance of the models was evaluated on the corre-

sponding testing set using accuracy as the evaluation metric. This approach allowed

for the assessment of the model’s generalization ability and ensured its performance

on new, unseen data. Another performance metric evaluated in this study is the total

time taken for the optimization process, with the methods being assessed over 30

iterations.

4.2 Experiment 2

For the second experiment, each dataset was randomly split into three sets in

a stratified way: a training set containing 70% of the data, a validation set containing

10%, and a testing set containing 20%. The same two machine learning models from

Experiment 1 were selected for training and evaluation, using the same hyperparam-

eters, evaluation metrics, and iterations. An initial validation set was utilized as an

evaluation set during the training of the final model for evaluation purposes. The

final model was assessed on the testing set, while an evaluation set was employed

to monitor potential issues with overfitting or underfitting during the final training

process.

To ensure the fairness of the comparison between the two experiments, the

same machine learning algorithms, hyperparameter optimization algorithms, hyper-

parameters, and evaluation metrics were used in both experiments. Additionally, the

same data preprocessing steps were applied to the dataset in both experiments.

In addition, Hydra [22], an open-source Python framework that streamlines the

development of complex applications and research, was utilized in both experiments.
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Table 3: Experiment 1 Performance Result

Dataset Method Xgboost Catboost
Acc. Time(in min) Acc. Time(in min)

Eye movement
HyperOpt Random 0.7590 37.35 0.7367 39.96
HyperOpt TPE 0.7079 33.28 0.7550 24.56
Optuna Random 0.7660 35.28 0.7609 25.38
Optuna TPE 0.7568 38.31 0.7559 36.42

Gas concentration
HyperOpt Random 0.9960 74.02 0.9960 80.23
HyperOpt TPE 0.9957 61.68 0.9957 77.98
Optuna Random 0.9949 99.08 0.9960 79.27
Optuna TPE 0.9964 110.28 0.9964 82.46

Gesture phase
HyperOpt Random 0.9417 58.74 0.9367 52.78
HyperOpt TPE 0.9529 95.02 0.9387 49.48
Optuna Random 0.9417 66.14 0.9362 51.08
Optuna TPE 0.9448 84.61 0.9402 49.57

Airlines Delay
HyperOpt Random 0.7028 180.54 0.7070 75.49
HyperOpt TPE 0.7119 239.64 0.7075 74.73
Optuna Random 0.6927 140.44 0.7072 77.25
Optuna TPE 0.7096 265.98 0.7080 88.35

The primary advantage is its capability to generate a hierarchical configuration dy-

namically, which can be modified via configuration files and command-line overrides.

All the experiments were run using Simple Linux Utility for Resource Management

(SLURM) on the Ohio Supercomputer Center (OSC) Pitzer Cluster [23] which has

40 and 48-core CPU nodes of dual Intel Xeon 6148s Skylakes and dual Intel Xeon

8268s Cascade Lakes processors with 192GB of memory.

Based on the result of Experiment 1, Table 3, it is noticeable that, in terms of

accuracy, Xgboost performs better than Catboost on all four datasets, whereas Cat-

boost is faster in most cases. Among the hyperparameter optimization tools, Optuna

performs better than HyperOpt in terms of accuracy in almost all cases except in the
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Table 4: Experiment 2 Performance Result

Dataset Method Xgboost Catboost
Acc. Time(in min) Acc. Time(in min)

Eye movement
HyperOpt Random 0.7244 39.06 0.7262 44.12
HyperOpt TPE 0.7399 40.91 0.7299 43.42
Optuna Random 0.7522 43.24 0.7367 46.61
Optuna TPE 0.7313 44.73 0.7207 47.47

Gas concentration
HyperOpt Random 0.9953 91.76 0.9957 70.72
HyperOpt TPE 0.9957 77.92 0.9957 90.10
Optuna Random 0.9960 89.31 0.9967 80.07
Optuna TPE 0.9946 79.98 0.9960 72.80

Gesture phase
HyperOpt Random 0.9311 52.72 0.9271 53.00
HyperOpt TPE 0.9377 60.39 0.9240 40.25
Optuna Random 0.9382 57.87 0.9235 50.41
Optuna TPE 0.9448 103.3 0.9235 47.32

Airlines Delay
HyperOpt Random 0.6970 138.73 0.7059 76.55
HyperOpt TPE 0.7006 209.61 0.7075 74.73
Optuna Random 0.7009 251.75 0.7069 75.67
Optuna TPE 0.7038 302.78 0.7049 84.18
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case of Gesture phase Xgboost and Airlines Xgboost. In terms of time, HyperOpt is

the fastest tool for hyperparameter optimization on all four datasets, except in the

case of Airlines Xgboost. Also, Optuna with TPE and HyperOpt with TPE are effec-

tive combinations for achieving high accuracy and faster computation, respectively. In

the figure, Figure 2 the X-axis shows the number of trials used during hyperparameter

optimization for getting the best hyperparameters. The Y-axis shows the accuracy

as a performance metric on the validation set during hyperparameter optimization.

It is apparent from the figure that Optuna is more stable than HyperOpt.

From the data presented in Table 4, it can be observed that, while Catboost

is faster in terms of computational time, Xgboost outperforms it in terms of overall

accuracy. Among the hyperparameter optimization tools, Optuna performs better

than HyperOpt in terms of accuracy in almost all cases except in the case of the

Gesture phase Catboost and Airlines Catboost. In terms of time, HyperOpt is the

fastest tool for hyperparameter optimization on all four datasets. From the accuracy

vs. trials plot Figure 3, it is evident that Optuna is more stable than HyperOpt.

Overall, the experiments’ results show that Optuna produced more accurate

results than Hyperopt, while Hyperopt demonstrated faster computational times. De-

spite their differences, both frameworks succeeded in improving the machine learning

models’ performance, as demonstrated by the comparison between the default accu-

racy of models in Table 2 and the performance of optimized models.
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5 Conclusion

In conclusion, the results from both experiments indicated that Optuna and

HyperOpt are both effective hyperparameter optimization frameworks, although with

different strengths. Optuna performed well in terms of accuracy, while HyperOpt ex-

celled in terms of computational efficiency. Specifically, Optuna was found to produce

better accuracy results than HyperOpt, while HyperOpt demonstrated faster compu-

tational times. These findings suggest that the choice of hyperparameter optimization

framework should be based on the specific requirements of the task at hand, whether

it prioritizes accuracy or speed. Nonetheless, results showed that both frameworks

helped boost machine learning models’ efficiency.
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Hyperparameters and search spaces

CATBOOST

• Learning rate: Log-Uniform distribution [e−5, 1]

• Random strength: Discrete uniform distribution [1, 20]

• Max size: Discrete uniform distribution [0, 25]

• L2 leaf regularization: Log-Uniform distribution [1, 10]

• Bagging temperature: Uniform distribution [0, 1]

• Leaf estimation iterations: Discrete uniform distribution [1, 20]

XGBOOST
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• Number of estimators: Uniform distribution [100, 4000]

• Eta: Log-Uniform distribution [e−7, 1]

• Subsample: Uniform distribution [0.2, 1]

• Colsample bytree: Uniform distribution [0.2, 1]

• Colsample bylevel: Uniform distribution [0.2, 1]

• Max depth: Discrete uniform distribution [1, 10]

• Min child weight: Log-Uniform distribution [e−16, e5]

• Alpha: Uniform choice 0, Log-Uniform distribution [e−16, e1]

• Lambda: Uniform choice 0, Log-Uniform distribution [e−16, e1]

• Gamma: Uniform choice 0, Log-Uniform distribution [e−16, e1]
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Figure 2: Experiment 1 Trial vs Accuracy plots
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Figure 3: Experiment 2 Trial vs Accuracy plots
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