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Abstract

This thesis investigates a topological quotient space (R/ ∼) where R typically

carries the usual topology and the equivalence relation ∼ stipulates x ∼ y ⇐⇒

t(x) = t(y) where t is Thomae’s function from Thomae’s 1875 work, Einleitung in

die Theorie der bestimmten Integrale [1]. Various topological properties of (R/ ∼)

were examined, including compactness, separation axioms, and countability ax-

ioms. Under a few popular real-line topologies, the quotient space was often no

more separable than T0. The thesis devotes much of its attention toward a con-

jecture that postulates whether every real number can be the limit of a sequence

of simplest form fractions with non-decreasing denominator. Despite many efforts

and trials, a proof of the conjecture was not produced; instead, proofs of various

propositions involving prime decomposition of integers were produced. Once this

closer inspection of prime decomposition of integers was completed, a weaker form

of the conjecture was proven and thereafter applied in a topological context. The

thesis closes this topic by asserting observations about the space (R/ ∼) that would

follow if the conjecture could be proven true.
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Chapter One

Introduction

1. Quotient Spaces

To introduce the thesis, we begin with a collection of widely known definitions

in the topological world, most of which comprise elementary concepts regarding

quotient topologies, quotient spaces, and the like thereof.

Definition 1.1. Let X be a set and ∼ be an equivalence relation on X. Then the

equivalence class [x] of an element x ∈ X is

[x] = {y ∈ X : x ∼ y}

Definition 1.2. Let X be a set and ∼ be an equivalence relation on X. Then the

set of all equivalence classes of X, denoted (X/ ∼), is called the quotient set of

X.

Definition 1.3. Let X be a set and ∼ be an equivalence relation on X. A function

q : X → (X/ ∼) given by q(x) = [x] is called a quotient map of X.

Definition 1.4. Let (X,T)f be a topological space. A subset U ⊂ (X/ ∼) is open

in (X/ ∼) if and only if
⋃

[x]∈U

[x] is open in X. Alternatively, we may also state

that U is open in (X/ ∼) ⇐⇒ q←(U) is open in X.

Definition 1.5. The topology induced by q is called the quotient topology T on

(X/ ∼) induced by q and explicitly is given by T = {U ⊂ (X/ ∼) : q←(U) is open in X}.
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2. Thomae’s Function

Carl Johannes Thomae was a German mathematician during the nineteenth cen-

tury who designed the real-valued function that mapped all simplest form fractions

of denominator n > 0 to 1
n
, mapped all irrationals to 0, and mapped 0 to 1. It has

sometimes been referred to as the popcorn function since, when graphed on a grid,

the graph visually resembles the activity of popcorn kernels in a microwave. For

the purposes of this endeavor, we will call such a function Thomae’s function, t.

Definition 2.1. Define Thomae’s function t : R→ R via the rule

t(x) =



1 if x = 0

1
n

if x = m
n
,m ∈ Z, n ∈ N, gcd(m,n) = 1

0 if x 6∈ Q

Thomae’s function [1] possesses some interesting properties, the most useful

of which for this thesis is that it is periodic with period 1. Another interesting

observations is that t is continuous on R \ Q and discontinuous at every point of

Q, assuming R has the Euclidean topology. Though these latter two observations

are potent, their influence did not affect the endeavors undertaken in this thesis.

3. The Purposes of the Thesis

Now that we have introduced quotient spaces and Thomae’s function to the

reader, we may introduce the purpose of the thesis. The goal and mission is

as follows: Consider the real line R with some topology and endow R with the
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equivalence relation ∼ so that for each x, y ∈ R, x ∼ y ⇐⇒ t(x) = t(y).

Thus, if a
n

and b
n

are simplest form with n ∈ N, then t( a
n
) = t( b

n
) = 1

n
. Hence,

a
n
, b
n
∈ [ 1

n
]. Similarly, if i1, i2 are irrational, then t(i1) = t(i2) = 0; as such, we write

i1, i2 ∈ [
√

2]. Thus, (R/ ∼) is the collection of equivalence classes induced by ∼.

This set is equipped with the quotient topology, i.e. the topology satisfying U ⊂

(R/ ∼) is open ⇐⇒ q←(U) is open in R. From here, the endeavor undertaken

was to investigate the topological properties of such a space. For the majority of

this thesis, R is granted the usual topology; for the section on separation properties,

however, four different topologies on R were tested.
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Chapter Two

Separation Properties in (R/ ∼)

In this section, we investigate which topological separation axioms (R/ ∼) will

satisfy. This section is unique in that R was endowed with various topologies and

the separation of (R/ ∼) was investigated for each topology with which R was

endowed. Before the results for separation are given, as a means of introduction

to this topic, some examination of each [ 1
n
] is undertaken.

1. The Equivalence Classes Examined

Here, we investigate the equivalence classes of R more closely. Consider, for

example, the class [1
3
]. This class contains all irreducible, relatively prime multiples

of 1
3
. Note that in terms of modular arithmetic, every numerator is equal to 0, 1,

or 2 mod 3. Explicitly, this means

[1

3

]
=
{3m+ 1

3
: m ∈ Z

}
∪
{3m+ 2

3
: m ∈ Z

}
We can generalize this further for any denominator n ∈ N. Observe that for any

n ∈ N, the class [ 1
n
] can be written in the following way

[ 1

n

]
=

⋃
gcd(k,n)=1
1≤k<n

{n ·m+ k

n
: m ∈ Z

}
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2. Finding Separation

Below are the investigations into the separation of (R/ ∼) under four well known

real-line topologies. These topologies are as follows: the usual/Euclidean topology,

the Michael line, the Sorgenfrey line, and the Discrete Rational Extension. For the

first three topologies mentioned, it was discovered that (R/ ∼) was only T0. For

the Discrete Rational Extension, Hausdorff (T2) is achieved.

2.1. Usual/Euclidean Topology. Recall that the usual topology TR is generated

by the basis comprised of all nonempty open intervals on the real line B = {(a, b) :

a, b ∈ R}.

To investigate separability under the usual topology, we first need to investigate

the open neighborhoods of the quotient space. We frequently utilize the fact that

U ⊂ (R/ ∼) is open ⇐⇒
⋃

[x]∈U

[x] is open in R. It follows as a corollary that

U ⊂ (R/ ∼) is closed ⇐⇒
⋃

[x]∈U

[x] is closed in R. We first investigate T0.

Proposition 2.1. If R has the usual topology, (R/ ∼) is T0.

Proof.

To see that (R/ ∼) is T0, let [x], [y] ∈ (R/ ∼) be nonequal. Then at least one of

[x] or [y] is [ 1
n
] for some n ∈ N. WLOG, [x] = [ 1

n
], then [y] ∈ (R/ ∼) \ {[ 1

n
]} which

is open in (R/ ∼) since the union of its classes is open in R. Thus, (R/ ∼) is T0.

�
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However, (R/ ∼) is not T1. A popular characterization of T1 is that all singletons

are closed. Note, however, that {[
√

2]} is not closed in (R/ ∼) since ∪[
√

2] = R\Q

is not closed in R under the usual topology. Thus, (R/ ∼) is T0 and not T1 under

the usual topology.

2.2. Michael Line. Recall that the Michael Line topology TM on R is given by

TM = {U ∪ I : U ∈ TR, I ⊂ R \Q}

Proposition 2.2. If R has the Michael Line topology, (R/ ∼) is T0.

Proof.

Case 1: Consider [ 1
m

], [ 1
n
] ∈ (R/ ∼) with m,n ∈ N. Then

[ 1

n

]
∈ (R/ ∼) \

{[ 1

m

]}
and

[ 1

m

]
6∈ (R/ ∼) \

{[ 1

m

]}
Case 2: Let [ 1

m
], [
√

2] ∈ (R/ ∼) for some m ∈ N. Then [
√

2] ∈ {[
√

2]} which is

open since ∪[
√

2] is open in R; also, [ 1
m

] 6∈ {[
√

2]}.

In either case, we have shown (R/ ∼) is T0. �

As with the usual topology, (R/ ∼) will not be T1 when R is endowed with the

Michael topology. Note that set {[
√

2]} is open in (R/ ∼) since the union of its

members is open in the Michael line. Note that

⋃
[x]∈{[

√
2]}C

[x] =
⋃
n∈N

[ 1

n

]
= Q
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which is not open in the Michael line. Thus, [
√

2] = R \ Q is not closed in the

Michael line and so {[
√

2]} is not closed. Therefore, (R/ ∼) is not T1.

2.3. Discrete Rational Extension. The discrete rational extension is a

topology TQ on R given by

TQ = {U ∪Q : U ∈ TR, Q ⊂ Q}

Proposition 2.3. If R is endowed with the discrete rational extension, (R/ ∼)

will be T2.

Proof.

Case 1: Consider [ 1
m

] and [ 1
n
] for some m,n ∈ N. Then {[ 1

m
]} and {[ 1

n
]} contain

[ 1
m

] and [ 1
n
] respectively and they are disjoint.

Case 2: Consider [ 1
n
] and [

√
2] for some n ∈ N. Now, we can choose U = {[ 1

n
]}

and V = {[ 1
n
]}C . U is open by the topology TQ and V is open for the same reason.

Clearly, U and V are disjoint. Thus, (R/ ∼) is T2. �

2.4. Sorgenfrey Line / Lower Limit Topology. Recall that the Sorgenfrey

Line or Lower Limit Topology TS on R is the topology generated by the basis

B = {[a, b) : a, b ∈ R}, i.e. the topology generated by unions of all “half-open”

intervals of R. When the real line has the Lower Limit Topology, let us write RS.

Proposition 2.4. Consider the space RS. then (RS/ ∼) is T0.

Proof.
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To see this, let [a], [b] ∈ (RS/ ∼) be non-equal. Then at least one of [a] or [b] is

equal to [ 1
n
] for some n ∈ N. WLOG, suppose [a] = [ 1

n
]. Then [b] ∈ (R/ ∼) \ {[ 1

n
]}.

Observe that (RS/ ∼)\{[ 1
n
]} is open in (RS/ ∼) and [a] 6∈ (RS/ ∼)\{[ 1

n
]}. Hence,

(RS/ ∼) is T0. �

However, (RS/ ∼) is not T1. Observe [
√

2] = R \ Q. Now, {[
√

2]} is closed in

(R/ ∼) if and only if
⋃

[x]∈{[
√
2]}

[x] is closed in R. Observe that
⋃

[
√

2] = R \ Q is

not closed in RS. Thus, {[
√

2]} is not closed in (RS/ ∼). Therefore, (RS/ ∼) is

not T1.
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Chapter Three

Compactness in (R/ ∼)

4. Investigations of Compactness

It is certainly interesting to determine whether (R/ ∼) is compact. This, of

course, may depend upon the topology that R is granted. In keeping with this, for

the findings undertaken in this section, it will be assumed that R is endowed with

the usual topology. The section is introduced by providing proofs of propositions

related to compactness. Of exceptional wonder is the notion that [
√

2] is contained

in every nonempty open set of (R/ ∼).

Proposition 4.1. Every nonempty open set U ⊂ (R/ ∼) contains [
√

2].

Proof.

To see this, suppose not. Suppose U ⊂ (R/ ∼) does not contain [
√

2] and is

nonempty. Then for some A ⊂ N,

U =
{[ 1

n

]
: n ∈ A

}
Since U is open, by definition of the quotient topology, q←(U) is open in R. By

definition, then the union

⋃
[x]∈U

[x] =
⋃
n∈A

[ 1

n

]
is open in R. But note that for each n ∈ A, [ 1

n
] ⊂ Q. This implies
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⋃
k∈A

[ 1

n

]
⊂ Q

which is not open in R. But this contradicts the fact that U is open. Thus, U

contains [
√

2].

�

Proposition 4.1 provides the groundwork for what will later be a proof of com-

pactness of the quotient space. The significance of the ubiquity of the class [
√

2]

cannot be overstated as it grants insight into the structure of the open sets of

(R/ ∼). Equally as insightful into such structure is the notion that open subsets

of (R/ ∼) must be infinite.

Proposition 4.2. Let A ⊂ (R/ ∼) be nonempty. If A is open, then A is infinite.

Proof.

Proceed by contraposition. Let A be a nonempty, finite subset of (R/ ∼).

Case 1: [
√

2] ∈ A

If [
√

2] ∈ A, we write

A =
{

[
√

2],
[ 1

n1

]
,
[ 1

n2

]
, . . . ,

[ 1

nk

]}
where k ∈ N∪{0} (k = 0 ⇐⇒ A contains no [ 1

ni
] classes). Note that A is open

in (R/ ∼) if and only if ∪A is open in R. Note that
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∪A =
⋃{

[
√

2],
[ 1

n1

]
,
[ 1

n2

]
, . . . ,

[ 1

nk

]}
which is not open in R.

Case 2: [
√

2] 6∈ A

If [
√

2] 6∈ A, we write

A =
{[ 1

n1

]
,
[ 1

n2

]
, . . . ,

[ 1

nk

]}
Similarly to the previous case, it is observed that

∪A =
⋃{[ 1

n1

]
,
[ 1

n2

]
, . . . ,

[ 1

nk

]}
is closed and not open in R. In either case, A is not open.

�

Proposition 4.2 is essential in understanding the structure of the basic open sets

as it places a constraint on set cardinality, although this is not necessary for showing

compactness. We now present an essential proposition for showing compactness.

Proposition 4.3. The sequence {[ 1
n
]} : n ∈ N} converges to [1], i.e. every open

nbhd of [1] contains all but finitely many [ 1
n
] classes.

Proof.



14

Let U ⊂ (R/ ∼) be an open nbhd of [1]. Then since q(0) = [1], it follows that

0 ∈ q←({[1]}) . Since U is open, then q←(U) is open in R; thus, there is ε > 0 so

that 0 ∈ (−ε, ε) ⊂ q←(U). Now, by the Archimedean Property, there exists some

M ∈ N so that 0 < 1
M
< ε. Then 1

M
∈ (−ε, ε). Similarly, if n ≥ M , it’s true that

1
n
≤ 1

M
< ε; hence,

(1) ∀n ≥M,
1

n
∈ (−ε, ε) ⊂ q←(U)

This implies that

(2) q
( 1

n

)
=
[ 1

n

]
∈ q→[(−ε, ε)] ⊂ q→(q←(U)) ⊂ U

Thus, {[ 1
n
]}n∈N converges to [1]. Moreover, (1) implies that

∀n ∈ N, 1 < n < M,
1

n
6∈ (−ε, ε) ⊂ q←(U)

Since ε was arbitrary, then when n < M , 1
n
6∈ q←(U) which means [ 1

n
] 6∈ U .

Thus, U contains all but finitely many [ 1
n
] classes.

�

With the completion of the previous three propositions, we are now ready to

show compactness of (R/ ∼).

Theorem 4.1. The space (R/ ∼) is compact.
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Proof.

Let U be an open cover of (R/ ∼). Since [1] ∈ (R/ ∼), and U is an open cover,

there is U ∈ U so that [1] ∈ U . By Proposition 4.3, UC is finite. Again, since U

covers the space, for each [x] ∈ UC , there is Ux ∈ U so that [x] ∈ Ux. Let V be

given by

V = {U} ∪ {Ux : [x] ∈ UC}

Then V is a finite subcover of U . Hence, (R/ ∼) is compact.

�

Following the proof of compactness, the reader need be wary not to confuse the

topology on (R/ ∼) for the cofinite topology. It should be noted that not all subsets

of (R/ ∼) with finite complement are open. For example, Consider {[ 1
n
] : n ∈ N}.

Observe that

{[ 1

n

]
: n ∈ N

}c
= {[
√

2]}

which, by earlier findings, is not closed; hence {[ 1
n
] : n ∈ N} is not open.

5. The Convergence Conjecture

The previous section suggests the question of the convergence of sequences in

(R/ ∼). In particular, the work above begged the question of whether the space

(R/ ∼), when ordered as a sequence, converges to every one of its members. To

investigate this, we pose the Conjecture 5.1 which is formalized below.
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Conjecture 5.1. Let x ∈ R and ε > 0. Then

∃M ∈ N, ∀n ≥M, ∃ k ∈ Z, gcd(k, n) = 1,
k

n
∈ (x− ε, x+ ε)

In simpler terms, the conjecture states that for any real number x, there is a

sequence of simplest form fractions with non-decreasing denominator so that such a

sequence converges to x. Verification of this conjecture would yield several results.

Many of these results will be discussed in a later section. For the time being, turn

attention to the notion that the verification of such a conjecture would imply that

a sequence in (R/ ∼) ordered by non-decreasing denominator, converges to every

point of (R/ ∼). To investigate such a conjecture, some understanding of number

theory is required.

6. Filtering N by Coprimeness to the First k Primes

Since the conjecture includes an implication about all natural numbers n greater

than or equal to some natural M and whether a relatively prime k can be found

so that k
n

is arbitrarily close to x, inspection of the prime decomposition of natural

numbers is appropriate.

As one moves along a natural number line, it is observed that natural numbers

which are divisible by small primes such as 2, 3, and 5 are abundant. Therefore, it

is significant to examine the distribution of the numbers not divisible by the first

m primes; that is, we examine the set of numbers relatively prime to p1p2 . . . pr

where p1p2 . . . pr is the product of the first r primes.
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As the first prime is 2, the natural numbers relatively prime to 2 are the odd

numbers:

1 3 5 7 9 . . .

Observe that the distance between two consecutive numbers in this sequence is

no more than 2. Next, the natural numbers relatively prime to 2 · 3 = 6 begin as

1 5 7 11 13 17 . . .

where it is observed that the distance between two consecutive numbers in this

sequence is no greater than 4. As a final example, the numbers relatively prime to

2 · 3 · 5 = 30 begin as

1 7 11 13 17 23 29 . . .

where it can be observed that the distance between two consecutive numbers in

this sequence is no greater than 23 = 8.

As one continues this process, it might be postulated that the maximum dis-

tance between two numbers relatively prime to p1 . . . pm and are consecutive in

this manner is 2m. A result similar to this one has been formulated already. Let pi

be the ith prime when ordered and suppose Pk is the product of the first k primes.

There is a function h(k) called Jacobstahl’s function. Now, the value h(k) is the
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smallest number m so that every sequence of m consecutive integers contains an

integer relatively prime to Pk [2]. H.J. Kanold proved that h(k) ≤ 2k in 1967.

Formally, we state this as

Proposition 6.1. Let m ∈ N be the smallest number so that the sequence of con-

secutive integers 〈z1, z2, . . . , zm〉 contains an integer relatively prime to Pk. Then

m ≤ 2k [3].

From this result, it follows as a corollary then that

Corollary 6.1. If p1 . . . pk is a product of the first k primes and r and s are

consecutive in that both r and s are relatively prime to p1 . . . pn, then |r−s| ≤ 2k. [2]

Kanold’s findings are convenient for this investigation as his findings put some

constraints on where numbers relatively prime to p1p2 . . . pr are guaranteed to be

found.

Suppose there are a, b ∈ N relatively prime to p1p2 . . . pm such that a and b are

consecutive in this manner. If |a− b| < √p1p2 . . . pr how large does r have to be?

Examine the finding below:



√
p1p2 . . . pr MAX GAP

√
2 ≈ 1.4 2

√
2 · 3 ≈ 2.5 4

√
2 · 3 · 5 ≈ 5.5 8

√
2 · 3 · 5 · 7 ≈ 14.5 16

√
2 · 3 · 5 · 7 · 11 ≈ 48.0 32


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Consider the table above. Select some natural m on the natural number line and

consider the naturals that are greater than m but less than m +
√

2 · 3 · 5 · 7 · 11.

From this range, suppose one wanted to find some k so that k is relatively prime

to 2 · 3 · 5 · 7 · 11. Then, we note that k is less than m + 32 by Kanold’s findings.

Following this, since
√

2 · 3 · 5 · 7 · 11 ≈ 48, such a k is guaranteed to exist in this

range. It is noted that the square root of the first n primes will grow much more

quickly than 2n; as such, n ≥ 2310 are of particular interest in the context of

proving Conjecture 6.1 below. Formalized, the conjecture reads:

Conjecture 6.1. If n ≥ 2310, then there is k ∈ N so that if m ∈ N, we have

m < k < m+
√
n such that gcd(n, k) = 1.

We prove the case of n = 2310 in its own proposition.

Proposition 6.2. If m ∈ N, then there is k ∈ N so that m < k < m+
√

2310 with

gcd(2310, k) = 1.

Proof.

Suppose m ∈ N and consider the natural numbers x satisfying m < x < m +

√
2310. Note that 48 <

√
2310 < 49. Thus, if we define A as

A := {x ∈ N : m < x < m+
√

2310}

Then, in fact

A = {m+ 1,m+ 2,m+ 3, . . . ,m+ 48}
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Observe that 2310 = 2 · 3 · 5 · 7 · 11 = p1p2p3p4p5. By Proposition 6.1, if

j, k ∈ N are relatively prime to p1p2p3p4p5 and are consecutive in this manner,

then |j − k| ≤ 25 = 32. Since max(A) − min(A) = 48 > 32, then A contains at

least one of j or k. WLOG, suppose k ∈ A. Then k satisfies

m < k < m+
√

2310 gcd(2310, k) = 1

�

It has been shown that proposition above holds for n = 2310. Ideally, it would

be desirable to show that the proposition holds for n ≥ 2310, i.e. the assertion

of Conjecture 6.1, although doing so has proven to be difficult. Instead, a weaker

variant of the case for n ≥ 2310 was proven − given in Proposition 6.3 below.

Proposition 6.3. Let m ∈ N. If n = pα ≥ 23 where p is prime and α ∈ N, then

there is k ∈ N so that m < k < m+
√
n and k is relatively prime to n. Moreover,

if n0 is such an n, then nα0 also satisfies the proposition for α ∈ N.

Proof.

Let m ∈ N and let n = pα ≥ 23 where p is prime and α ∈ N. Consider the set

A = {x ∈ N : m < x < m+
√
n}

Since n ≥ 23, we can choose a ∈ A for a 6= max(A). If gcd(a, n) = 1, then we’re

done. So suppose gcd(a, n) 6= 1. By the choice of n, gcd(a, n) ≥ p.
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Now, p ≥ 2. Thus, if a0 > a such that gcd(a0, n) ≥ p is minimal, then |a0−a| ≥ 2.

Hence,

gcd(a+ 1, n) = 1

Choose k = a+ 1. Since a 6= max(A), then k = a+ 1 ∈ A, i.e.

m < k < m+
√
n and gcd(k, n) = 1

Finally, suppose n0 is such an n that satisfies the proposition. Then there is

k ∈ N so that

m < k < m+
√
n0 gcd(k, n0) = 1

Then

m < k < m+
√
n0 < m+

√
nα0 α ∈ N

Again, gcd(k, n0) = 1 =⇒ gcd(k, nα0 ) = 1.

�

Now that the above proposition has been proven, it can be used to finally in-

vestigate Conjecture 5.1. Recall that Conjecture 5.1 asks whether the following is

true:
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∀ x ∈ R, ∀ ε > 0, ∃M ∈ N, ∀n ≥M, ∃ k ∈ N, gcd(k, n) = 1,
k

n
∈ (x− ε, x+ ε)

Now, it was shown Conjecture 6.1 holds for specific natural numbers, particu-

larly, naturals which are powers of primes, i.e. n = pα (i.e. Proposition 6.3). Since

Conjecture 5.1 depends upon Conjecture 6.1, in this investigation, it was shown

that Conjecture 5.1 holds for powers of primes n = pα. As such, the conjecture

had to be weakened as formalized in the next section.

7. Proving a Weaker Version of Conjecture 5.1

Theorem 7.1. Let x ∈ R and let ε > 0. Then

∃ 〈ni〉i∈N ⊂ N, ∀ i ∈ N, ∃ k ∈ Z, gcd(k, ni) = 1,
k

ni
∈ (x− ε, x+ ε)

Proof.

Let x ∈ R with ε > 0.

Case 1: Suppose x− ε > 0.

Let m
n

be simplest form with m ∈ Z and with n = pα ≥ 23 (p prime, α ∈ N)

large enough so that

(1)
(m
n
,
m+

√
n

n

)
⊂ (x− ε, x+ ε)

Now, since x− ε > 0 and m
n
∈ (x− ε, x+ ε), then m > 0. Thus, by Proposition

6.3, there is k ∈ N so that
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(2) m < k < m+
√
n gcd(n, k) = 1

which implies that

(3)
m

n
<
k

n
<
m+

√
n

n

Thus,

(4)
k

n
∈
(m
n
,
m+

√
n

n

)
⊂ (x− ε, x+ ε)

Moreover, by (2), k
n

is simplest form.

Case 2: Suppose x− ε < 0.

Let T ∈ N satisfy (x− ε) + T > 0. By Proposition 6.3, there is k ∈ N so that

(5)
k

n
∈ (x− ε+ T, x+ ε+ T ) gcd(k, n) = 1

Observe also that since k
n
∈ (x− ε+ T, x+ ε+ T ), then

(6)
∣∣∣x+ T − k

n

∣∣∣ < ε ⇐⇒
∣∣∣x− (k

n
− T

)∣∣∣ =
∣∣∣x− k − Tn

n

∣∣∣ < ε

Now, since Thomae’s function t is periodic with period 1 and T ∈ N, then

(7) t
(k
n

)
=

1

n
=⇒ t

(k − Tn
n

)
=

1

n

Hence, gcd(k − Tn, n) = 1.



24

This concludes the demonstration of the existence of k so that k
n

is within ε of

x for some n ∈ N. From here, a sequence may be built.

Recall that n = pα for p is prime and α ∈ N. Let n1 = pα1
1 be minimal so that

(1) holds. Then by Proposition 6.3, we can choose n2 = pα2
2 > n1 so that (1) also

holds. Proceeding in this manner, since N is unbounded above, we construct the

sequence 〈ni〉i∈N. Explicitly,

(8) 〈ni〉i∈N =
{
n = pα, p prime, α ∈ N : ∃ k ∈ N, gcd(k, n) = 1,

∣∣∣x− k

n

∣∣∣ < ε
}

For each i ∈ N, by choice of ni, conclusions (1) through (7) will hold for ni.

Thus, for every x ∈ R and every ε > 0, we have found a sequence 〈ni〉i∈N of

natural numbers so that for each i ∈ N, there is a k ∈ Z so that k
ni

is simplest form

and k
ni
∈ (x− ε, x+ ε).

�

Following the completion of the proof of Theorem 7.1, we now have a partial

result in the direction of answering the question begged by Conjecture 5.1. Recall

Conjecture 5.1 which says: let x ∈ R and ε > 0. Then

∃M ∈ N, ∀n ≥M, ∃ k ∈ N, gcd(k, n) = 1,
k

n
∈ (x− ε, x+ ε)

It is strongly suspected that this conjecture is true, but as mentioned previously,

proving so is difficult and was not achieved. Nevertheless, if it should be proven



25

eventually, below are some observations that would follow when regarding the space

(R/ ∼).

8. Observations if Conjecture 5.1 is True

Given the aforementioned suspicion that Conjecture 5.1 is true, it is worth in-

vestigating what results might come of the space (R/ ∼) if the conjecture holds.

8.1. A Basis for (R/ ∼). If the conjecture holds, then we are granted insight into

what a basis for (R/ ∼) might look like. Let us expand upon this idea. To this

end, if the conjecture holds, the first object of attention is that the quotient map

q : R→ (R/ ∼) is an open mapping. We state this formally:

Proposition 8.1. If Conjecture 5.1 holds, then the quotient map q is open.

Proof.

Suppose the conjecture is true and let q be the quotient map. Now, let U ⊂ R

be open. Since U is open, U is the union of open intervals, i.e.

(1) U =
⋃{

(aγ, bγ) : γ ∈ Γ, aγ, bγ ∈ R
}

By Conjecture 5.1,

(2) there is M ∈ N so that for all naturals n ≥M , there is a simplest form k
n

in

(aγ, bγ) for some γ ∈ Γ.

Now, examine q→(U). Recall that q(x) = [x], namely that q( k
n
) = [ 1

n
]. Then by

(2), q→(U) contains [ 1
n
] for all but finitely many n ∈ N. Also, since U is open, U
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contains irrationals; thus, [
√

2] ∈ q→(U).

By our findings,

(3) q→(U) =
{[ 1

n

]
: n ≥M

}
∪ {[
√

2]} = (R/ ∼) \
⋃
n<M

{[ 1

n

]}
which is open since the union of its members is open in R. Thus, q is an open

mapping.

�

Note that though q is open, q need not be closed. Note that {
√

2} is closed in

R but q→({
√

2}) = {[
√

2]} which is not closed in (R/ ∼). As such, q is not closed.
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The second observation that should be noted is one that results from the first −

particularly, that we can find a nice basis for (R/ ∼). To give context, we reference

a useful theorem for finding a basis for a given quotient space. The theorem asserts

the following:

Theorem 8.1. Let (X,T) be a topological space and let ∼ be an equivalence relation

on (X,T) with quotient map q. Then B = {q→(U) : U ∈ T} is a basis for the

quotient space (R/ ∼) if and only if q is open.

Recall that under the assumption of the conjecture, it was found that q was

open. Theorem 8.1 implies, therefore, that

B = {q→(U) : U is open in R}

is a basis for (R/ ∼); that is to say, the collection of images of R-open sets via

the map q is a basis for (R/ ∼).

8.1.1. Open Sets Have Finite Complements. An immediate corollary of the verifi-

cation of the conjecture is that open subsets would have finite complements.

Proposition 8.2. If Conjecture 5.1 holds, then if U ⊂ (R/ ∼) is open and

nonempty, then U c is finite.

Proof.
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Suppose the conjecture holds and let U ⊂ (R/ ∼) be open and nonempty. Since

U is open, [
√

2] ∈ U . Since U is open and nonempty, q←(U) is open in R and x ∈

q←(U) for some x. By openness, there is ε > 0 so that x ∈ (x− ε, x+ ε) ⊂ q←(U).

By the conjecture, there is M ∈ N so that

(1) ∀n ≥M, ∃ k ∈ Z, gcd(n, k) = 1,
k

n
∈ (x− ε, x+ ε) ⊂ q←(U)

Note that q( k
n
) = [ 1

n
]. Then by (1), k

n
∈ q←(U) for all n ≥M implies that

(2) ∀n ≥M,
[ 1

n

]
∈ U

Explicitly then, U is written

(3)
{

[
√

2],
[ 1

M

]
,
[ 1

M + 1

]
,
[ 1

M + 2

]
, . . .

}
And so

U c =
{

[1],
[1

2

]
,
[1

3

]
, . . . ,

[ 1

M − 1

]}
Thus, U c is finite.

�

8.2. Second Countability. If the conjecture holds, the space (R/ ∼) will be sec-

ond countable. Toward this end, recall that if a topological space is countable as a

set and is also first countable, then the space is second countable. We employ this
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method to illustrate second countability of the space (R/ ∼); as stated, though,

assumption of the conjecture is required. To lead into this, a lemma is posed.

Lemma 8.1. If Conjecture 5.1 holds and U ⊂ (R/ ∼) is open, then there is M ∈ N

so that

U =
{

[
√

2],
[ 1

M

]
,
[ 1

M + 1

]
, . . .

}
That is to say, U contains all [ 1

n
] classes when n ≥ M and does not contain all

[ 1
n
] classes with 0 < n < M .

Proof.

Let U ⊂ (R/ ∼) be open and nonempty. Since U is open, q←(U) is open and

nonempty, then for some x ∈ R, x ∈ q←(U). Since q←(U) is open, there is ε > 0

so that

x ∈ (x− ε, x+ ε) ⊂ q←(U)

By Conjecture 5.1, there is M ∈ N so that whenever n ≥ M , there is k ∈ Z so

that

k

n
∈ (x− ε, x+ ε) gcd(n, k) = 1

But this means
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∀n ≥M, q
(k
n

)
=
[ 1

n

]
∈ U

Thus, we may explicitly write

U =
{

[
√

2],
[ 1

M

]
,
[ 1

M + 1

]
, . . .

}

�

We are now ready to show that, under the assumption of the conjecture, (R/ ∼)

is first countable.

Proposition 8.3. If Conjecture 5.1 holds, then the space (R/ ∼) is first countable.

Proof.

Suppose the conjecture holds and let [x] ∈ (R/ ∼) with U is an open nbhd of

[x]. Since U is open, there are finitely many members of (R/ ∼) not contained in

U . Let B1 = U . Now, let B2 = B1 \{[y]} where [y] 6= [x]. Continue in this manner

so that

Bn = Bn−1 \ {[y]} where [y] ∈ Bn−1, [y] 6= [x]

Thus, B1 ⊃ B2 ⊃ B3 . . . and x ∈ Bi for every i ∈ N. Lastly, let V be any open

nbhd of [x]. By the conjecture and the previous lemma, there is M ∈ N so that

V =
{[ 1

M

]
,
[ 1

M + 1

]
, . . .

}
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Then if B2 = V \ {[y]} where [y] 6= [x], then [x] ∈ B2 ⊂ V . Hence, the collection

B = {Bn : n ∈ N}

is a countable local basis at [x]. Thus, (R/ ∼) is first countable.

�

Note now that the set (R/ ∼) is itself a countable set and is also a first countable

space. Thus, (R/ ∼) is second countable.
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Chapter Four

Topological Countability in (R/ ∼)

As seen in the previous section, it was noted that

(R/ ∼) = {[
√

2]} ∪
{[ 1

n

]}
n∈N

is itself a countable set. This is not sufficient to conclude that this space is

second countable or first countable.

1. Second Countability and Corollaries

Without verification of Conjecture 5.1, it is uncertain whether the space (R/ ∼)

is first or second countable. Under the assumption of the conjecture (as detailed

in the previous section), however, the space (R/ ∼) would be second countable.

2. Regarding Separability of the Space

Observe that (R/ ∼) is separable since it is countable. One could take (R/ ∼) as

a candidate for a countably dense subset of the space. More specifically, however

there is a proper subset which is also dense in the space. Consider the set N as

defined by

N =
{[ 1

n

]
: n ∈ N

}
By definition of closure,

N =
{

[x] ∈ (R/ ∼) : ∀ open U, [x] ∈ U,U ∩N 6= ∅
}
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Since N ⊂ N , then naturally [ 1
n
] ∈ N . Now, ∪N = Q which is neither

open nor closed in R under the usual topology. Hence, N 6= N , implying N is

properly contained in its closure. But this means [
√

2] ∈ N . Therefore,

N =
{

[
√

2], [1],
[1

2

]
,
[1

3

]
, . . .

}
= (R/ ∼)

And so N is countable and dense in (R/ ∼), illustrating the existence of such a

properly contained subset in (R/ ∼). Another, perhaps more obvious, example to

this end would be {[
√

2]}. This is dense in (R/ ∼) since [
√

2] is contained in every

nonempty open set.



34

Bibliography

[1] C.J. Thomae, Einleitung in die Theorie der bestimmten Integrale, Verlag von

Louis Norbert (1875), Halle a/S, p.14, §20.

[2] F. Costello, P. Watts, An Upper Bound On Jacobsthal’s Function, Mathe-

matics of Computation 84:293 (2014), 1389-1399.

[3] H.J. Kanold, Uber eine zahlentheoretische funktion von Jacobsthal, Math.

Annnalen 170(4) (1967), 314-326.


		2023-05-08T10:34:10-0400
	Youngstown State Univesity




