
Evaluating Join Query Estimation Accuracy in

AQP using Bootstrap Sampling on Correlated

Datasets

by

Sabin Maharjan

A thesis submitted to Youngstown State University in partial fulfillment of the

requirements for the degree of

Master of Computer and Information Systems

YOUNGSTOWN STATE UNIVERSITY

Fall, 2023

Evaluating Join Query Estimation Accuracy in AQP using Bootstrap Sampling on

Correlated Datasets

Sabin Maharjan

I hereby release this thesis to the public. I understand that this thesis will be made

available from the OhioLINK ETD Center and the Maag Library Circulation Desk

for public access. I also authorize the University or other individuals to make copies

of this thesis as needed for scholarly research.

Signature:

Sabin Maharjan, Student Date

Approvals:

Dr. Feng Yu, Thesis Advisor Date

Dr. Alina Lazar, Committee Member Date

Dr. John R. Sullins, Committee Member Date

Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

Abstract

Approximate query processing (AQP) is a promising approach for processing queries

on big data. However, the accuracy of AQP is difficult to evaluate, especially for

join queries. This thesis investigates the use of bootstrap sampling to assess the

estimation errors of join queries processed by AQP.

A correlated sampling scheme is used to generate join-preserving samples from base

relations. Bootstrap replicates derived from the correlated samples are leveraged to

construct confidence intervals that quantify the estimation errors. A prototype

system is implemented with Rust to realize the methodology.

Extensive experiments conducted on TPC-H benchmark datasets demonstrate the

feasibility of using bootstrap sampling in conjunction with correlated sampling to

evaluate the accuracy of join query estimations in large-scale AQP systems. The

results show that the proposed approach can significantly improve the estimation

efficiency and accuracy compared to naive sampling.

iii

Acknowledgments

I am deeply grateful to my advisor, Dr. Feng Yu, for his patience, guidance, and

support throughout this research project. His expertise, patience, and

encouragement have been invaluable to me. I am also grateful to the members of

my thesis evaluation committee, Dr. Alina Lazar, and Dr. John R. Sullins for their

thoughtful feedback and suggestions.

I would also like to thank my family for their love and support. My parents, Sanu

Kaji Maharjan and Sanu Maiya Maharjan have always been there for me, and I am

so grateful for their sacrifices and encouragement. I would also like to thank my

siblings and my wife for their love and support.

Finally, I would like to thank all of the other people who have helped me along the

way, including my friends, colleagues, and mentors. I am truly grateful for their

support.

This thesis would not have been possible without the help of all of these fantastic

people. I am deeply indebted to them.

iv

Contents

1 Introduction 1

2 Background 3

2.1 Approximate Query Processing . 3

2.2 Correlated Sampling . 3

2.3 Bootstrap Sampling . 5

3 Correlated Sampling For Query Estimation 5

3.1 Implementation . 6

4 Bootstrap for Join Query Error Estimation 8

4.1 Methodology . 8

4.2 Confidence Interval for Selection AQP 9

4.3 Implementation . 10

5 Experiment and Evaluation 11

5.1 Experiment Setup . 11

5.2 Accuracy Evaluation . 13

5.2.1 Effect of Bootstrap Sample Size 15

5.2.2 Effect of Sample Size . 15

v

5.2.3 Effect of Dataset Size . 15

6 Conclusion 17

References 19

Appendix A Test Queries for First Join 21

Appendix B Test Queries for Second Join 23

Appendix C Test Queries for Third Join 25

Appendix D Test Queries for Fourth Join 28

vi

List of Figures

1 Correlated Sampling CS2 . 4

2 Join Graph for correlated sampling 7

3 Prototype AQP System . 11

4 Hit percentage for 100 MB data set with different bootstrap samples . 14

5 Hit percentage for 1GB data set with different bootstrap samples . . 14

6 Hit percentage for 10GB data set with different bootstrap samples . . 14

7 Hit percentage for 0.1% sample size and different data sizes 16

8 Hit percentage for 0.5% sample size and different data sizes 16

9 Hit percentage for 1% sample size and different data sizes 16

10 Line Graph for Different data sizes for sample size =0.1 17

11 Line Graph for Different data sizes for sample size =0.5 17

12 Line Graph for Different data sizes for sample size =1.0 17

vii

1 Introduction

Big data refers to large, complex data sets that are difficult to manage using tradi-

tional data processing software which encompasses the volume, velocity, and variety

of information. In 2020, every human created at least 1.7MB of data per second as

we created 2.5 quintillion data bytes daily[1]. With the increase of people who have

internet access, it is estimated that we will generate 463 exabytes of data each day

by 2025[1]. The explosive growth of big data with the rise in the number of people

online has presented both opportunities and challenges for organizations seeking to

extract valuable insights.

Approximate query processing (AQP) is one of the ways to tackle big data. It

provides approximate answers to queries on big data in a shorter time than traditional

query processing systems. This can be achieved by sampling the data and using

statistical methods to estimate the results of the query. However, when working with

complex join queries the AQP can be inaccurate. Join queries involve combining

data from multiple tables and requires samples that have preserved join relationship

between tables for accurate estimates of the query results. Simple random sampling

creates samples independently for each table and joining the samples that have been

created independently will lose its join relationship. Using these samples can result

in inaccurate estimations.

This paper extends the work of Cal [2], who proposed an optimized bootstrap

sampling for error estimations. The work done by Cal was on simple queries for a

1

single table while this thesis addresses the complex join query error estimation. The

work done by Cal[2] focused on estimating errors for simple queries where the AQP

was only used on a single table. In order to address the complex join query we use

correlated sampling [9] to generate join preserving samples for accurate estimations

of join queries. We utilize the optimized bootstrap sampling [2] to estimate the error.

The remainder of the thesis is organized as follows: Section 2 provides rel-

evant background. Section 3 discusses correlated sampling for join tables. Section

4 details using Bootstrap for query estimation. Section 5 presents experiments and

evaluations. Finally, Section 6 concludes the thesis.

2

2 Background

2.1 Approximate Query Processing

Approximate Query Processing is a technique that returns approximate answers to

queries in less time using fewer resources than when getting the exact answer. Exe-

cuting queries on big data can be time-consuming and resource-intensive. AQP helps

to address these issues and one of the key focuses of this paper is Selection AQP

(σ-AQP), as explored in the work by Cal et al [2]. Selection queries are a type of

query that filters rows based on certain conditions. In the context of σ-AQP, rather

than executing a selection query directly on the entire dataset, a different approach is

taken. A random sample without replacement (SRSWOR) is drawn from the dataset,

denoted as S. Then we use the Correlated sampling technique to create samples that

have a join-relationship preserved. After the samples are created we run the join

query on the correlated samples to get the query result Ys.

2.2 Correlated Sampling

Correlated Sampling is a statistical technique for generating a sample of tuples from

a database that preserves the relationship between tuples in different relations. As

explored by Wilson [9], it is used in addition to simple random samples without

replacement to generate samples that preserve the joined relationship between tuples

and their relations. The main objective of CS2 is to create an unbiased, fast, and

3

Figure 1: Correlated Sampling CS2

precise estimation for queries that involve all types of joins and selections [9]. Using

only SRSWOR to create a sample and joining each sample to create join samples

results in loss of join relationships. Figure 1 illustrates the process of creating a sample

once the source relation and sample path are determined. Once the source relation is

defined, Simple random sampling without replacement (SRSWOR) is performed on

the source relation denoted as R1 which results in a sample relation denoted as S∗
1 .

To create the second sample S2, we join the S∗
1 with the relation R2 preserving the

join relationship. S2 is joined with R3 to create S3. The example only consists of a

single edge, in case of multiple edges to multiple relations we should exhaust all the

possibilities.

4

2.3 Bootstrap Sampling

The bootstrap sampling method is one of the widely used resampling techniques in

modern statistical inference [5] introduced by Bradley Efron in 1979 [6], to measure

the quality of various statistical estimators. It provides a powerful technique to

estimate the properties of an estimator such as standard error, and confidence interval

without requiring distributional assumptions. Bootstrap sampling or bootstrapping is

the concept of pulling oneself by one’s bootstrap [4]. The key concept of bootstrapping

is to approximate the sampling distribution of an estimator by resampling from the

original dataset. Given the original data sample n, bootstrapping involves resampling

the original sample using a simple random sample with replacement of the same size

n, as the original sample. The statistics of interest like mean, standard error, and

confidence intervals are computed on each bootstrap sample, generating a vector of

bootstrap statistics. This vector forms an approximation of the sampling distribution

of the statistics [6] which is used for the estimation of error for our join selection query.

3 Correlated Sampling For Query Estimation

There are two ways for query estimations using Correlated sampling, they are source

query estimations and no source query estimations. As the name suggests source

query estimation is to estimate the result size which involves the initially sampled

source relation S∗
1 . As illustrated in fig 1 we have the source relation R1 and then we

sample it using SRSWOR to create an unbiased sample S∗
1 . For example join relation

5

between S∗
1 and S2 is considered a source query which can be used to estimate the the

join query estimation between R1 and R2. The following formula is used to estimate

the query result

Ŷ source = N1

n1

n1∑

i=1
yi (1)

where Ŷ source is the estimated result size of the source query. N1 is the total number

of tuples in the source relation R1 and n1 is the number of tuples from sample S∗
1 . yi

is the number of results tuples produced by the ith tuple in S1* when joined with the

other sample relations.

No source query estimation as the name suggests is about estimating query

results using samples that do not include source relation. As illustrated in fig 1 R1 is

the source relation and S∗
1 is the sample from the source. A join can be considered

no source when the join does not have S∗
1 . For example, a join of S2 and S3 is a

no-source query. Since there is no direct sample from the source, additional steps are

required to derive unbiased result size estimates for such queries. This is achieved

using a precomputed Joinable Tuple Sampled Ratio or JR that links each tuple to

the source sampling rate.

3.1 Implementation

In this research we have used the dataset generated using TPC-H benchmark [8].

The benchmark provides us with 8 tables as we see in the figure 2. The first thing

to do for creating correlated samples is to choose the source table. As the Lineitem

6

Figure 2: Join Graph for correlated sampling

table holds the most many-to-one relationship it is selected as source relations. In

this paper, we only look at source query estimations. So the chosen join graph is

Lineitem -> Orders, Orders->Customer, Customer->Nation, Nation->Region

. First, We use Simple random sampling without replacement (SRSWOR) on the

source table Lineitem table to create the S∗
1 . We then join the S∗

1 with the Order

table to create the second sample S2. To create the S3 we join S2 with the Customer

table and we create S4 by joining S3 with Nation. In the end, we create S5 by joining

S4 with the Region table to completely create all the required correlated samples for

our experiment.

7

4 Bootstrap for Join Query Error Estimation

4.1 Methodology

In AQP, a sample of a dataset is taken and queries are run on the sample to get the

approximate results faster. There have been research on numerous query selection

method [7], but in this paper, we focus on the join selection query listed below:

SELECT Aggregation(attribute collection) FROM Table1, Table2 ,...

where join_condition and filter_conditions

The Sample S is taken from the dataset and then the query is run on

each sample tuple producing query result yi based on the aggregation functions like

COUNT, SUM, AVG, etc. One of the aggregation functions, COUNT is used to get

the estimation of the number of rows in the sample data. The regular bootstrapping

method resamples all the attributes of the sample data but the optimized bootstrap-

ping method proposed in [2] takes a step before resampling to make the overhead of

bootstrap sampling less. Instead of resampling the sample and running the query on

each resample, we run the query against the sample S and get the result yi based on

the selection conditions. If the selection condition satisfies yi will be 1 and if it does

not satisfy it will be 0. Then the query result Ys is calculated by using the following

formula:

Ys =
n∑

i=1
yi

8

where n is the sample size. We can also estimate the query result ground truth using

the following formula:

Ŷ = Ys

f
(2)

where f = n
N

is the sample fraction. The query results in Ys are then saved in an

array for bootstrap sampling.

After the sample query result, SQ is obtained by executing the query Q on

the sample relation S, then the bootstrap samples can be generated for error estimates.

To calculate an estimation of bootstrap samples we use the following formula:

Ŷj = Yj

f
(3)

where Yj is the query result of the jth bootstrap sample and f is the sample ratio.

4.2 Confidence Interval for Selection AQP

There are different methods to calculate confidence interval [3] such as percentile

method, normal approximation method, bias-corrected percentile, etc. In this paper,

we look at the standard method of calculating confidence intervals. For every boot-

strap sample, we find the desired statistics like mean, and median, and we find the

standard deviation which will be the error of estimates.

9

4.3 Implementation

As proposed in the paper [2] we have a prototype AQP system with the ability to

generate error estimations using bootstrap sampling. The system consists of a simple

query processor, and a sampler that implements correlated sampling to create join

preserved samples. Bootstrap sampler which is used for error estimation. In this

paper, we look at the following query formula:

SELECT Aggregation(attribute)

FROM table1, table2 ...

WHERE join conditions and selection conditions

The simple query processor reads the query structure from a plain text file and based

on the join conditions it chooses the sample created using Correlated sampling. Usu-

ally after selecting the sample, we would use bootstrap sampling on the sample which

will replicate B number of resamples. As all the attributes of the sample are resam-

pled using a simple random sample with replacement (SRSWR), it can cause huge

overhead so we utilize the optimized bootstrap sampling method proposed in Cal’s

paper [2]. In this optimized approach we run the Query Q on the sample S to gener-

ate the Sample Query Result SQ. The query processor will read the query structure

and based on the join conditions select the sample and then check each row of the

sample to see if the row satisfies the selection condition or not. If the row satisfies

the condition then 1 is added to an array and if it does not satisfy the condition 0

is added. This way we will not have to resample whole attributes of the sample and

10

can just resample the array containing 0 and 1. After resampling the array for B a

number of times we calculate the statistics of the bootstrap. First, we find the mean

of the bootstrap sample. Then we calculate the standard deviation to calculate the

Confidence Interval. In this experiment, we use a confidence interval of 95% with

the z value of 1.96. Then we calculate the hit ratio to calculate the accuracy of the

bootstrap.

5 Experiment and Evaluation

5.1 Experiment Setup

Figure 3: Prototype AQP System

The experiment was performed on the virtual machine with an Intel(R)

11

Core(TM) i7-10710U CPU which operates at a base frequency of 1.10GHz. The

system is equipped with 21GB of RAM which runs on Ubuntu 22.04.2 LTS. The

experiment code is written in Rust and Python Language.

The data sets used for experiments are generated using the TPC-H bench-

mark [8]. We selected different sizes of data sets including 100MB, 1GB, and 10GB.

We have chosen four join relationships 3.1. For each join relationship, we have 10

test queries which will be run 10 times each. Testing queries for each join are located

in the Appendix part of this paper. We use the sampling fraction of 0.1%, 0.5%,

and 1.0%. The experimental program checks if the ground truth that we get from

running the query on the original database is between the upper and lower confidence

interval. If the ground truth of the original database is between the upper and lower

bound then it is a hit otherwise a miss. This was done for each query for each join.

Figure 3 is the prototype AQP system implemented in Rust which consists

of four main components: a database, a CS2 sampler, a bootstrap sampler, and

a query processor. The CS2 sampler uses the rusqlite crate to interact with the

database and create join preserved correlated samples, which is used to calculate the

sample estimate. Then the bootstrap sampler selects CS2 samples from the database

based on the join conditions and uses the optimized bootstrap method [2] to create

bootstrap samples, which are used to calculate the confidence interval and hit ratio.

The query processor takes in the query and helps to select CS2 samples based on join

conditions and calculate optimized bootstrap samples.

12

The AQP system works first by parsing the query and creating a plan for

execution. Then the CS2 sampler creates correlated samples and returns them to

the query processor which forwards the correlated samples to the bootstrap sampler.

The bootstrap sampler uses the correlated samples and uses the optimized bootstrap

method to create bootstrap samples. The AQP system calculates mean, standard

deviation, and confidence interval to estimate the accuracy.

5.2 Accuracy Evaluation

The accuracy evaluation of the experiment is done by calculating the hit ratio. We

calculate the hit ratio by the following formula:

hit ratio = times(CI hits)
times(Total experiments) × 100% (4)

We run the experiment on TPC-H benchmark datasets of three different

sizes 100MB, 1GB, and 10 GB. Four different join queries were tested, each with 10

different selection predicates as listed in the Appendix. For each join query, correlated

samples were generated at sample sizes 0.1%, 0.5%, and 1.0% of the base data. The

query was executed on these samples to obtain the sample query results.

Bootstrap sampling was then performed on the samples to calculate the

confidence interval and hit ratio. Two bootstrap samples were tested, 200 and 2000

replicates. Each experiment consisted of running 10 different selection queries for each

13

join query 10 times on a dataset at a specific sample size and bootstrap replicate.

(a) 100MB, B=200 (b) 100MB, B=2000

Figure 4: Hit percentage for 100 MB data set with different bootstrap samples

(a) 1GB, B=200 (b) 1GB, B=2000

Figure 5: Hit percentage for 1GB data set with different bootstrap samples

(a) 10GB, B=200 (b) 10GB, B=2000

Figure 6: Hit percentage for 10GB data set with different bootstrap samples

14

5.2.1 Effect of Bootstrap Sample Size

Figure 4, 5, and 6 compare the hit ratio for 200 vs 2000 bootstrap sample size across

the different dataset sizes and sample percentages. The results demonstrate that using

a larger number of bootstrap samples improves the accuracy of the estimation. The

hit ratio increases from 200 to 2000 bootstrap samples in nearly all cases. This aligns

with the expectation, as more bootstrap samples provide a better approximation of

the result distribution.

5.2.2 Effect of Sample Size

As seen in figures 7, 8, and 9 the hit ration improves as the sample size increases

from 0.1% to 1.0% of the base data. The increase in sample size captures more of the

characteristics of the full data leading to more accurate estimates and error bounds.

5.2.3 Effect of Dataset Size

Figures 10, 11, and 12 plot the hit ratios for the 100 MB, 1 GB, and 10 GB dataset

sizes across the different joins. The results reveal that the accuracy remains reason-

ably stable even for the small dataset of 100 MB. However, we see slight improvement

for the larger dataset of 10 GB. So while larger datasets do improve accuracy, the

bootstrap approach maintains robust performance even for the smallest datasets.

Overall, The hit ratio consistently stays above 90% validating that using

15

(a) 100 MB S=0.1% (b) 1 GB S=0.1% (c) 10GB S=0.1%

Figure 7: Hit percentage for 0.1% sample size and different data sizes

(a) 100 MB S=0.5% (b) 1 GB S=0.5% (c) 10GB S=0.5%

Figure 8: Hit percentage for 0.5% sample size and different data sizes

(a) 100 MB S=1.0% (b) 1 GB S=1.0% (c) 10GB S=1.0%

Figure 9: Hit percentage for 1% sample size and different data sizes

bootstrap sampling with correlated sampling can successfully estimate errors for join

queries in the AQP system. The accuracy evaluation shows that correlated bootstrap

sampling works well across varied sample sizes, dataset sizes, and bootstrap numbers.

16

(a) B=200 and S=0.1% (b) B=2000 and S=0.1%

Figure 10: Line Graph for Different data sizes for sample size =0.1

(a) B=200 and S=0.5% (b) B=2000 and S=0.5%

Figure 11: Line Graph for Different data sizes for sample size =0.5

(a) B=200 and S=1.0% (b) B=2000 and S=1.0%

Figure 12: Line Graph for Different data sizes for sample size =1.0

6 Conclusion

The experiment evaluated the accuracy of approximate query processing (AQP) sys-

tems for join queries using correlated sampling with bootstrap techniques. The results

17

on TPC-H benchmark data confirm the efficacy of this approach for producing join-

preserving samples and accurate error estimates.

The graphs highlight how the bootstrap hit percentage, measuring how often

the true statistic falls within the bootstrap confidence interval, improves with larger

sample sizes, data sets, and number of replicates. However, accuracy remains reason-

ably high even for smaller sample sizes and datasets, with hit percentages consistently

above 90%.

Overall, the high hit percentages demonstrate the robust performance of

the bootstrap approach across varied conditions. The graphs validate that correlated

sampling coupled with bootstrap resampling can successfully estimate join query

result distributions and error bounds. These techniques show promise for enabling

accurate approximate query processing on complex joins. Future research can be

based on evaluating this methodology for more complicated join queries with multiple

selection conditions.

18

References

[1] Barrett, S. How much data is produced every day in 2022. TECHTREND

(April 2021).

[2] Cal, S., Cheng, E., and Yu, F. Optimized bootstrap sampling for σ-aqp

error estimation: A pilot study. In SEDE (2021).

[3] Campbell, M. K., and Torgerson, D. J. Bootstrapping: estimating confi-

dence intervals for cost-effectiveness ratios. QJM 92, 3 (1999), 177–82.

[4] Chernick, M. R., and LaBudde, R. A. An introduction to bootstrap methods

with applications to R. John Wiley & Sons, 2014.

[5] Efron, B. Bootstrap methods: another look at the jackknife. The Annals of

Statistics (1979), 1–26.

[6] Efron, B., and Tibshirani, R. J. An Introduction to the Bootstrap. CRC

Press, 1994.

[7] Markovic, J., and Taylor, J. Bootstrap inference after using multiple queries

for model selection. arXiv preprint arXiv:1612.07811 (2017).

[8] (TPC), T. P. P. C. Tpc benchmark™ h (decision support) standard specifi-

cation. Tech. rep., Transaction Processing Performance Council, Presidio of San

Francisco Building 572B Ruger St. (surface) P.O. Box 29920 (mail) San Francisco,

CA 94129-0920, 2014. Revision 2.17.1.

19

[9] Wilson D., S. Hou, W. C., and F., Y. Scalable correlated sampling for join

query estimations on big data. SEDE 64 (2019), 41–50.

20

Appendix A Test Queries for First Join

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND L_LINENUMBER < 3 AND L_LINENUMBER > 0;

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND L_LINENUMBER < 5 AND L_LINENUMBER > 2;

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND L_DISCOUNT < .07 AND L_DISCOUNT > .02;

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND L_EXTENDEDPRICE < 100000.00 AND L_EXTENDEDPRICE > 20000.00;

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND L_DISCOUNT < .04 AND L_DISCOUNT > 0.0;

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND L_QUANTITY < 20 AND L_QUANTITY > 10;

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND L_DISCOUNT < .05 AND L_DISCOUNT > .02;

21

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND L_EXTENDEDPRICE < 15000.00 AND L_EXTENDEDPRICE > 0.0;

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND o_totalprice < 120000 AND o_totalprice > 60000;

SELECT count(*) FROM lineitem, orders WHERE l_orderkey = o_orderkey

AND o_totalprice < 180000 AND o_totalprice > 100000;

22

Appendix B Test Queries for Second Join

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND L_LINENUMBER < 3 AND L_LINENUMBER > 0;

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND L_DISCOUNT < .07 AND L_DISCOUNT > .02;

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND L_EXTENDEDPRICE < 100000.00 AND

L_EXTENDEDPRICE > 20000.00;

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND L_DISCOUNT < .04 AND L_DISCOUNT> 0.0;

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND L_QUANTITY < 20 AND L_QUANTITY > 10;

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND L_EXTENDEDPRICE < 15000.00 AND

L_EXTENDEDPRICE > 0.0;

23

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND o_totalprice < 120000 AND o_totalprice > 60000;

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND o_totalprice < 180000 AND o_totalprice > 100000;

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND c_acctbal < 5000 AND c_acctbal > 2000;

SELECT count(*) FROM lineitem, orders, customer WHERE l_orderkey = o_orderkey

AND o_custkey = c_custkey AND c_acctbal < 10000 AND c_acctbal > 5000;

24

Appendix C Test Queries for Third Join

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND L_LINENUMBER < 3 AND L_LINENUMBER > 0;

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND L_DISCOUNT < .07 AND L_DISCOUNT > .02;

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND L_EXTENDEDPRICE < 100000.00

AND L_EXTENDEDPRICE > 20000.00;

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND L_DISCOUNT < .04

AND L_DISCOUNT> 0.0;

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND L_QUANTITY < 20

25

AND L_QUANTITY > 10;

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND L_EXTENDEDPRICE < 15000.00

AND L_EXTENDEDPRICE > 0.0;

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND o_totalprice < 120000

AND o_totalprice > 60000;

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND o_totalprice < 180000

AND o_totalprice > 100000;

SELECT count(*) FROM lineitem, orders, customer, nation

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND c_acctbal < 5000

AND c_acctbal > 2000;

SELECT count(*) FROM lineitem, orders, customer, nation

26

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND c_acctbal < 10000

AND c_acctbal > 5000;

27

Appendix D Test Queries for Fourth Join

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND L_LINENUMBER < 3 AND L_LINENUMBER > 0;

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND L_DISCOUNT < .07 AND L_DISCOUNT > .02;

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND L_EXTENDEDPRICE < 100000.00 AND L_EXTENDEDPRICE > 20000.00;

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND L_DISCOUNT < .04 AND L_DISCOUNT> 0.0;

28

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND L_QUANTITY < 20 AND L_QUANTITY > 10;

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND L_EXTENDEDPRICE < 15000.00 AND L_EXTENDEDPRICE > 0.0;

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND o_totalprice < 120000 AND o_totalprice > 60000;

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND o_totalprice < 180000 AND o_totalprice > 100000;

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

29

AND c_acctbal < 5000 AND c_acctbal > 2000;

SELECT count(*) FROM lineitem, orders, customer, nation, region

WHERE l_orderkey = o_orderkey AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND n_regionkey = r_regionkey

AND c_acctbal < 10000 AND c_acctbal > 5000;

30

		2023-11-20T15:28:31-0500
	Youngstown State Univesity

