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ABSTRACT 

Climate change due to anthropogenic influences such as greenhouse gas emissions has 

been a pressing problem for the existing water resource infrastructure. The intensity and 

frequency of extreme precipitation have increased across various parts of the world and are 

expected to increase further by the end of the 21st century. Consequently, more frequent 

storm sewer flooding is likely to be experienced in future decades, leading to property 

damage, disrupting transportation and other services, and putting inhabitants at risk of 

flooding. Since heavy rains can trigger flash floods, there is a critical need to account for 

these anticipated shifts in precipitation patterns when planning for flood risk management 

and building resilient infrastructure in the Town of Willoughby (Hydrologic Unit Code, 

HUC-12) of the Lake Erie Basin.  

The goal of this research is to derive insightful information on the potential impacts of 

climate change on the Town of Willoughby's water resources to take mitigation measures 

and minimize such impacts. The study employed observed historical data from Hopkins 

International Airport and the output of regional climate models (RCMs) and general 

circulation models (GCMs) from the Coupled Model Intercomparison Projects (CMIPs) 

Phases 5 and 6. The quantile mapping method was utilized to correct for biases in the CMIP 

data, and the Gumbel Extreme Value Type-I distribution was used to reflect the excessive 

rainfall occurrences for the Town of Willoughby. From CMIP5, three models were used in 

the analysis, and only one scenario, Representative Concentration Pathways (RCP) 8.5, 

was considered. For CMIP6, three models were selected, and four different scenarios were 

incorporated into the study, namely, Shared Socioeconomic Pathways (SSP), ssp126, 

ssp245, ssp370, and ssp585. Finally, intensity duration frequency (IDF) curves were 
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developed using various climate models and scenarios, analyzing them for a series of 

durations and return periods to investigate the impacts of changes in the climate on 

precipitation patterns. 

The findings showed that even for 2-year return periods, the worst-case scenario for both 

RCP8.5 and SSP585 under CMIP Phase 5 and Phase 6, respectively, could have an impact 

on the current water management system with an increase in hourly precipitation intensity 

ranging from 9 to 26%, whereas the 100-year return period showed an increase in the range 

of 16 to 46%. The multi-model ensemble (MME) approach of both CMIP models for the 

worst-case scenario, i.e., RCP8.5 and SSP585, showed a rise in precipitation intensity of 

9% to 39% in the near future (2020-2059) and 20% to 55% in the far future (2060-2099), 

depending on the various rainfall durations and return periods. The RCP8.5 scenario under 

CMIP5 models predicted a higher intensity of rainfall (up to 28% depending on the return 

period and rainfall durations) than the scenario SSP585 under CMIP6 models. The analysis 

of the various SSP scenarios (SSP126, SSP245, and SSP370) from CMIP6 has predicted 

an increase of 2-22% in the near future and 6-40% in the far future, with SSP126 showing 

the lowest increase and SSP245 and SSP370 following the increasing order.  

This finding highlights the risk of extreme precipitation and recommends coordinated 

efforts by policymakers and planners to determine the most comprehensive approach to 

water management and infrastructure. This is critical to endure and adapt to the effects of 

climate change and ensure resilient infrastructure for future extreme rainfall events. In 

conclusion, this study focuses on the need for revised IDF curves to better manage the risks 

connected with climate change and its possible effects on the Town of Willoughby’s water 

resources. Engineers, policymakers, and any other individuals might use the future IDF 



V 
 

curves generated in this study as a vital tool in mitigating the risks associated with extreme 

precipitation events. 

 

 

Keywords: General Circulation Models (GCMs); Coupled Model Inter-Comparison 

Project (CMIP); Quantile Mapping; Bias Correct; Gumbel Extreme Value Type-I 

Distribution 
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Chapter 1: Introduction 

Over the last few decades, climate change studies have become a topic of research interest 

for water resources engineers and climatologists. The frequency of extreme precipitation 

occurrences has indicated an increasing frequency globally (Du et al., 2022; Martel & 

Mailhot, 2018) and regionally (Berg et al., 2013; Groisman et al., 2005a; Kourtis & 

Tsihrintzis, 2022a; Madsen et al., 2009a). More frequent extreme rainfall occurrences have 

been documented in numerous studies in the United States (Gershunov & Cayan, 2003; 

Karl et al., 1995; Karl & Knight, 1998), Australia (Sun et al., 2014; Westra et al., 2015), 

India (R. Zhang & Delworth, 2006), Europe (Cioffi et al., 2015), and China (Zhai et al., 

2005). Ground-based observations conducted in the U.S. reveal a substantial surge in 

extreme rainfall events over the course of the last century (Degaetano, 2009; Hao et al., 

2013; Kunkel et al., 2013; Thomas R. Karl et al., 2009). The Intergovernmental Panel on 

Climate Change (IPCC) Assessment Report (IPCC, 2007) found that trends in extreme 

precipitation are very likely to maintain an upward trajectory after using a range of general 

circulation models (GCMs) to estimate future climate with different emission scenarios.  

Urban drainage design entirely relies on the intensity duration frequency (IDF) curve as a 

fundamental tool for managing precipitation and flooding (Guo & Asce, 2006a). IDF 

curves are often used in the engineering design fields of municipal stormwater management 

and other areas across the world (Endreny & Imbeah, 2009; Haddad et al., 2011; Madsen 

et al., 2002, 2009b; Willems, 2013a). Therefore, it is critical to review and update rainfall 

characteristics for future climate scenarios (Cook et al., 2020a; L. Liu, 2023a; Martel et al., 

2021a; Mirhosseini et al., 2013). Statistical evaluations of historical data have traditionally 

been used in the development of drainage systems with the assumption that the intensity 
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and frequency of past events are a fair representation of what could occur in the future 

(Grum et al., 2006; He et al., 2006; Papa et al., 2004). Since climate change is projected to 

affect the frequency and intensity of extreme precipitation events, it is important to 

examine this hypothesis and adjust during the design of the drainage infrastructure 

(Mailhot et al., 2006). Several efforts have been made to promote the design of hydraulic 

infrastructure that is resilient to climate change and to consider nonstationary factors in the 

analysis of IDF curves (Cheng & Aghakouchak, 2014a; Noor et al., 2018, 2022; Ouarda et 

al., 2019; Yan et al., 2019; Yilmaz & Perera, 2014).  

The evaluation of precipitation data is essential for the management of water resources, 

flood forecasting, and informed decision-making processes for operational warnings, as 

rainfall is a significant climate factor that impacts the spatial and temporal distribution of 

water availability (Debbage & Marshall Shepherd, 2019; S. Liu et al., 2018; Tiwari et al., 

2020; Weldegerima et al., 2018). Due to the limitation of sub-daily data, most research 

evaluating the impact of extreme events in the US relies on the analysis of daily rainfall 

data (Cook et al., 2020b; Z. Li et al., 2019; Moraglia et al., 2022; Sohoulande Djebou et 

al., 2021; Sowby & Capener, 2023; Statkewicz et al., 2021; Weathers et al., 2023; N. Zhang 

et al., 2019). Daily resolution is still extensively used for monitoring precipitation, although 

it is not ideal for measuring alterations in extreme occurrences because most of these 

occurrences last on a sub-daily and sub-hourly scale (Barbero et al., 2019; Meira et al., 

2022; Morrison et al., 2019; Pui et al., 2012). Because the peak inundation value heavily 

relies on the temporal precision of the storm input, flood simulation models benefit from 

the use of sub-daily rainfall data as opposed to daily data (Bruni et al., 2015; Hou et al., 

2020; Huang et al., 2019), and sub-daily data has a higher resolution, unique statistical 
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traits and displays different spatial and temporal patterns of variability when compared to 

data that is aggregated on a daily basis (Trenberth & Zhang, 2018).  

Despite the growing concern, there has been limited research on evaluating changes in 

precipitation intensity, duration, and frequency in a nonstationary climate, particularly in 

the great lake regions, especially on an hourly scale, where the lake effect leads to unique 

precipitation patterns and variations.  

Climate models and scenarios 

The increase in greenhouse gas emissions into the Earth’s atmosphere, such as carbon 

dioxide (CO2) and methane (CH4), is the main cause of climate change. These emissions 

come from various human activities, including the burning of fossil fuels for energy, 

deforestation, and industrial processes. The accumulation of these greenhouse gases traps 

heat in the atmosphere, leading to a rise in global temperatures and changes in climate 

patterns. To understand and project the impacts of climate change, the IPCC plays a vital 

role.  

The IPCC assesses scientific research and provides comprehensive reports on the state of 

the climate system, potential risks, and possible mitigation strategies. The IPCC relies on 

GCMs to simulate future climate scenarios. Two major phases of these models are CMIP 

(Coupled Model Intercomparison Project), Phase 5, and Phase 6. CMIP5 and CMIP6 

involve a collection of climate models that simulate the Earth's climate system. CMIP5 

used Representative Concentration Pathways (RCPs) to estimate future greenhouse gas 

concentrations, while CMIP6 incorporates Shared Socioeconomic Pathways (SSPs) 
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alongside RCP scenarios. The IPCC utilizes these models and scenarios to project the rise 

in global temperatures under different emission pathways.  

CMIP6 improves upon CMIP5 by including SSPs in addition to the RCPs utilized in 

CMIP5. CMIP5 relied on four RCPs to define future greenhouse gas concentration 

scenarios, while CMIP6 integrates qualitative and quantitative components through SSPs, 

considering factors such as demographics, human development, policies, and natural 

resources. This evolution enhances the robustness and significance of future climate 

projections, providing a more comprehensive understanding of potential climate 

conditions. Overall, CMIP6 is an extension and enhancement of the modeling strategy that 

makes climate models more accurate and practical. CMIP6’s SSPs cover a wide variety of 

potential futures. SSP126 represents a sustainability-focused pathway with strong 

mitigation efforts aiming to limit global warming to well below 2 degrees Celsius by the 

end of the century. SSP245 represents an intermediate emissions pathway with moderate 

socio-economic development and emission reduction efforts. SSP370 portrays a scenario 

of fragmented global development where regions prioritize their own interests, resulting in 

higher greenhouse gas emissions. Lastly, SSP585 illustrates a high-emission route, 

showing a prolonged dependence on fossil fuels and inadequate climate mitigation 

initiatives. These diverse scenarios capture a spectrum of possible future trajectories, 

allowing for a comprehensive assessment of the potential impacts of different socio-

economic and emission pathways on climate change.  

Therefore, this study aimed to assess the effect of climate change on IDF curves and the 

occurrence of extremes using the latest CMIP Phase 6 as well as the preceding version, 

Phase 5, on a sub-daily scale. Since the comparison of both CMIP5 and CMIP6 models for 
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IDF curve development has been limited, specifically exploring this aspect in the US or 

the Lake Erie basin has not been reported. Additionally, the comparison of the IDF curve 

from the output of CMIP Phase 5 and 6 models using various emissions has been reported. 

Scope and objectives 

The following are the key objectives of this research study: 

I. To estimate the IDF curve for the Town of Willoughby (HUC-12) using both 

CMIP5 and CMIP6 models under various climate change scenarios. 

II. To compare and assess the differences in the anticipated precipitation IDF curves 

between CMIP5 RCP8.5 and CMIP6 SSP585. 

Methodology for Objective I 

a) Collect hourly climate data, including historical observations from the National 

Oceanic and Atmospheric Administration (NOAA) and climate models using 

CMIP 5 and 6;  

b) Correct the bias of the climate data obtained from the climate models using the 

observed historical data using the Climate Data Bias Corrector (CDBC); 

c) Compute the extreme precipitation for different hours (1-hour, 2-hour, 6-hour, 12-

hour, and 24-hour); 

d) Develop the IDF curve using the extreme precipitation data for a range of durations 

and return periods. 

Methodology for Objective II 
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The steps for Objective I (a, b, and c) also apply to Objective II. The additional steps for 

Objective II are as follows: 

a) Construct the IDF curve using the extreme precipitation data for various durations 

and return periods for CMIP5 RCP8.5 and CMIP6 SSP585; 

b) Analysis of the IDF curves of both CMIP models and identify and report the 

disparities.  

Thesis Structure 

This thesis is structured into three chapters, with Chapter 1 providing an overview of the 

background, scope, and objectives of the thesis. Chapter 2 focuses on the bias correction 

of the climate data obtained from the climate models using the CDBC and calculates the 

extreme precipitation events for different hours using the Gumbel Extreme Value Type-I 

distribution. This chapter also explains in detail the theoretical background of the climate 

models, the quantile mapping methodology for bias correction, and the Gumbel Extreme 

Value Type-I distribution to accurately represent the extreme rainfall events in the Town 

of Willoughby. Additionally, it develops the IDF curves that take climate change into 

account and emphasizes the importance of IDF curves for engineers, who can use them to 

more accurately predict the peak flow and volumes of runoff that drainage structures will 

need to manage in various climate change scenarios. Furthermore, it describes the 

development of the hourly IDF curve for the Town of Willoughby under various scenarios, 

durations, and return periods, which is crucial for estimating the probability of precipitation 

events with varying intensity and duration.  
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In Chapter 3, the conclusions drawn from this study and the recommendations for future 

research to enhance the development of IDF curves under climate change for more 

effective and resilient drainage structures have been discussed. Chapter 2 has been 

structured in journal paper format and will be developed into a full-length article after 

incorporating additional work in the future. As a journal article should be self-contained 

and provide adequate background information, readers may encounter some repetitive 

content in this chapter.  
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Chapter 2: Climate Change Effects on Rainfall Intensity-Duration-Frequency (IDF) 

Curves for the Town of Willoughby (HUC-12) Watershed Using Various Climate 

Models 

Abstract 

Changes in precipitation patterns due to climate change are projected to have profound 

effects on several hydrological processes. The anticipated shifts in the intensity-duration-

frequency (IDF) relationship have an impact on the design of water infrastructure as well. 

Consequently, it is crucial to understand the potential changes to the IDF to manage and 

adapt to climate change's implications on water resources. This study delves into the 

analysis of hourly observed as well as future precipitation data in the Town of Willoughby 

(HUC-12) to examine the variations in IDF relationships over the 21st century. To 

accomplish this, several regional climate models (RCMs) and general circulation models 

(GCMs) from the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 were 

used. The study evaluated three RCMs with historical and Representative Concentration 

Pathway (RCP) 8.5 scenarios for each CMIP5 and three GCMs with historical and Shared 

Socioeconomic Pathways (SSP) (126, 245, 370, and 585) scenarios for each CMIP6. The 

quantile mapping methodology was used to adjust the biases in the data extracted from the 

CMIP models, while the Gumbel Extreme Value Type-I distribution was chosen to 

accurately represent the extreme rainfall events in the Town of Willoughby. The results 

suggest that the Town of Willoughby will experience an increase of 9–46% in the hourly 

precipitation intensity under the worst-case scenarios of RCP8.5 for CMIP5 and SSP585 

for CMIP6. This increase is expected to occur in both the near (2020–2059) and far future 

(2060–2099), with a return period as low as 2 years and as high as 100 years when 
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compared to the baseline period (1980–2019). The analysis suggests an increase range of 

9–39% in the near future and 20–55% in the far future across various scenarios, return 

periods, and rainfall durations for CMIP5 RCP8.5 and CMIP6 SSP585. In contrast to 

CMIP6 SSP585 models, CMIP5 models predict rainfall with an intensity value that is up 

to 28% higher, both for return periods and rainfall duration. Furthermore, the findings 

demonstrate that under different scenarios of SSP126, SSP245, and SSP370 under CMIP6 

models, rainfall intensity is predicted to increase with a range of 2–22% in the near future 

and 6–40% in the far future as compared to the baseline period. The findings of this study 

are expected to be helpful for the planning and design of hydraulic structures and urban 

water resource infrastructures in the context of a changing climate by utilizing the updated 

IDF relationships. 

 

 

Key Words: General Circulation Models (GCM); Coupled Model Inter-Comparison 

Project (CMIP); Quantile Mapping; Bias Correct; Gumbel Extreme Value Type-I 

Distribution 
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Introduction 

Future intensification of extreme precipitation events due to greenhouse gas emissions will 

result in an increase in the frequency and length of rainfall events worldwide (IPCC, 2021). 

Several studies have reported a significant rise in both total annual precipitation and the 

frequency of extreme events (Allen & Ingram, 2002; Swain et al., 2020; Tabari, 2020; 

Trenberth et al., 2003). More specifically, shorter-duration precipitation events are 

expected to increase significantly across the world (Haerter & Berg, 2009; Lenderink & 

Van Meijgaard, 2008). For example, hourly extreme precipitation events (Westra et al., 

2014) are expected to advance up to 400% in North America (Prein et al., 2017). Similar 

trends can also be observed in the United States (Easterling et al., 2000; Groisman et al., 

2005b, 2012; Kourtis & Tsihrintzis, 2022b). The Intergovernmental Panel on Climate 

Change (IPCC, 2014) also projects that over the 21st century, heavy precipitation will occur 

in this area more frequently and with greater intensity. 

Future high-intensity rainfalls triggered by climate change will have a more detrimental 

effect on urban stormwater systems (Cook et al., 2020c; Thakali et al., 2016). Since rainfall 

characteristics, such as intensity-duration-frequency (IDF) curves, are frequently utilized 

to design water infrastructures, it is essential to gain a comprehensive understanding of the 

alterations in extreme precipitation and subsequently revise the IDF curves in the future 

(Guo & Asce, 2006b; L. Liu, 2023b; Martel et al., 2021b; Mirhosseini et al., 2013). The 

IDF curve has been extensively used across the world for the design of hydraulic structures 

including urban drainage, culverts, road bridges, and storm sewer systems (Abdulrasheed 

Mohammed et al., 2021; Elsebaie, 2012a; Kundwa, 2019; Rashid et al., 2012). 
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The pressing need to reexamine the IDF curve arises from potential changes in intense 

rainfall exacerbated by climate change (Singh et al., 2016). Some studies suggest that 

proactively anticipating design modifications for hydraulic structures would decrease the 

risk of future issues and uncertainties, resulting in successful and versatile project outcomes 

(Prodanovic & Simonovic, 2007; Srivastav et al., 2014). Many scientists and professionals 

have advocated for better knowledge of the possible change in the severity, frequency, and 

volume of intense rainfall due to climate change (Hess et al., 2008; Hosseinzadehtalaei et 

al., 2020; Peck et al., 2012a; Rodríguez et al., 2014; Trenberth, 2011). This understanding 

is necessary since the existing drainage systems and hydraulic infrastructures are built to 

handle historical rainfall time series data on the basis that past extremes can be used to 

describe future extremes. This presumption is incorrect given the shifting frequency and 

amount of intense rainfall triggered by changing climatic variables (Shrestha et al., 2017). 

With these changes, historic IDF curves cannot be used to accurately represent future 

climatic conditions. Therefore, a changing climate may result in an increase in demand that 

water management infrastructure built to previous IDF norms may not be able to 

accommodate (Peck et al., 2012b). Climate models that integrate greenhouse gas emissions 

have become increasingly accessible and within reach to foresee future changes in the IDF 

curve (Cook et al., 2020; Ghasemi Tousi et al., 2021; Lopez-Cantu et al., 2020).  

To date, the climate models are the primary and most effective tools for past and future 

climate simulations (Chen et al., 2020). However, the prediction of the future climate is 

location-specific and varies depending on the type of general circulation models (GCMs) 

and the scenario chosen. For example, according to Coupled Model Intercomparison 

Project (CMIP) Phase 5 projections, the distribution of temperature and precipitation 
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indices in the north-eastern US will undergo significant changes between 2041 and 2070 

(Thibeault & Seth, 2014). Ragno et al. (2018) found that densely populated places may 

experience up to 20% more intense and twice as frequent extreme precipitation events. 

Cheng & Aghakouchak (2014) found that the assumption of extreme precipitation in a 

stationary climate may lead to an underestimation of extreme precipitation of up to 60%. 

Coelho et al. (2022) conducted a study using CMIP6 projections to assess the impact of 

changing extreme precipitation on flood engineering design across the US. By 2100, the 

northern region is predicted to experience an increase of 10–40% and the southern region, 

20–80%. The study showed a meridional dipole-like pattern in the geographical 

distribution of precipitation changes, with an increase of 10–30% over the US (Almazroui 

et al., 2021). The results from the CMIP6 models at Tucson, Arizona, show the likely threat 

of future extreme events being disregarded in stationary-based design frameworks could 

pose a significant risk to both safety and economy by more than 300% (Ghasemi Tousi et 

al., 2021).  

Limited studies have been conducted using predicted precipitation from CMIP6 models in 

the US, and no future IDF curve has been developed in the Lake Erie Basin using CMIP5 

and CMIP6 climate models. As the precipitation pattern of the Lake Erie basin is complex 

due to lake-enhanced precipitation and rainfall after the snowfall, the future IDF curve due 

to climate change impacts is crucial in the Lake Erie basin to safely design urban drainage 

infrastructure and other hydraulic structures. Since climate change effects are region-

specific, site-specific evaluations are required to boost local resilience to future extreme 

precipitation events. As a result, the clear differences in the future IDF curve compared to 

the existing IDF curve developed based on the historical observed data are needed in order 
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to incorporate such information in urban drainage systems to design climate-resilient 

infrastructures to mitigate the possible hazardous impact of climate change on 

infrastructure. Therefore, the objective of this paper is twofold: i) to derive the future IDF 

curve for the Town of Willoughby (HUC-12) using both CMIP5 and CMIP6 models; and 

ii) to compare and evaluate the differences in the projected precipitation IDF curves 

between the two sets of models. The purpose of this paper is to give a thorough 

understanding of the vulnerabilities associated with future changes in precipitation patterns 

in the Town of Willoughby.  

Theoretical Description 

CMIP5 Data Set 

Multiple Representative Concentration Pathways (RCP) experiments have been used with 

the North American Coordinated Regional Climate Downscaling Experiment (NA-

CORDEX) and CMIP5 model data to build various meteorological information at the 

regional scale (Lee et al., 2014). The major benefit of NA-CORDEX is that it uses general 

circulation models (GCMs) to drive simulations of various regional climate models 

(RCMs) at higher resolutions (e.g., 50 x 50 km) (Rummukainen, 2016). Such information 

is critical for accurately modeling the climate of regions with complicated topography and 

small-scale events. The limitations of GCMs, i.e., coarser resolution (100 x 100 km), are 

often resolved by regional climate model-based projections (Park et al., 2013), further 

substantiating the assertion that RCMs are frequently used to address the shortcomings of 

GCMs. Using the Western US as an example, Qian et al. (2010) demonstrated how the 
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RCM reflects the actual spatial variability in precipitation and snowfall using regional 

climate simulations at 40 km spatial resolution for the period (2040-2060).  

In places with complicated topography where small-scale phenomena are critical for 

accurately representing the region’s climate, NA-CORDEX’s use of GCMs to drive the 

simulations of several RCMs is a major advantage. The NA-CORDEX has provided 

simulated precipitation data for two periods, including historical (1980–2005) and future 

(2006–2099) for CMIP5. 

CMIP6 Data Set 

The primary objective of CMIP6 is to provide multi-model climate forecasts based on 

alternative scenarios that are influenced by a new set of emissions shared socioeconomic 

pathways (SSPs) and land use scenarios that are directly related to societal concerns about 

adaptation, mitigation, or the consequences of climate change (O’Neill et al., 2016). By 

standardizing socioeconomic and technical assumptions across models, this new paradigm 

closed crucial gaps in CMIP5's intermediate forcing levels and allowed for a more thorough 

examination of various pathways. The World Climate Research Program (WRCP) has 

provided simulated precipitation data for two periods, including historical (1980–2014) 

and future (2015–2099) for CMIP6.  

NA-CORDEX and WCRP both have the goal of improving our understanding of the 

Earth’s climate and its potential future changes (Giorgi et al., 2009; J. W. Gutowski et al., 

2016; McGinnis & Mearns, 2021). While NA-CORDEX focuses on producing high-

resolution climate projections specifically for North America, WCRP is broader in its 

focus, coordinating and conducting research on the fundamental science of the Earth’s 
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climate system and its interactions with the environment globally (W. J. Gutowski et al., 

2021; Kirtman & Pirani, 2009).  

In addition to retaining the CMIP5 emission trajectories RCP2.6, RCP4.5, RCP6.0, and 

RCP8.5, the CMIP6 data also contains three brand-new emission paths: RCP1.9, RCP3.4, 

and RCP7.0. As a result, the new scenarios combine SSP1, SSP2, SSP3, SSP4, and SSP5 

of five socioeconomic paths with various levels of emissions to form seven future SSP-

RCP scenarios, which include SSP1-1.9 (a very low range of scenarios) to SSP5-8.5 (a 

combination of high societal vulnerability and a high forcing level). The combination of 

RCPs and shared socioeconomic pathways (SSPs) is expected to make future scenarios 

more realistic.  

It is expected that CMIP6 simulations can reproduce historical climate variables, represent 

smaller biases in sea surface temperature, and be more skillful in capturing the precipitation 

pattern. The climate model simulations from CMIP6 seem to be more reliable than earlier 

CMIP5 in various aspects. Different scientists have reported the limitations of CMIP5, 

especially in various scenarios and GCM output, due to the large reduction in atmospheric 

aerosol emissions for RCP scenarios. Since more realistic results can be expected at various 

locations, especially for extreme precipitation, the application of the latest CMIP6 climate 

data is more crucial for storm sewer drainage systems. In addition, the multimodal median 

of CMIP6 (CMIP6-MMM) is expected to perform better than the individual model. 

Therefore, several models were used for IDF curve development.  

Bias Correction 
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Before any form of analysis, it is crucial to retrieve the data from climate models like RCMs 

and GCMs for a specific location based on latitude and longitude. Since it is not unusual 

for climate models to produce frequently skewed results, it is necessary to adjust the 

climate data for bias. This bias correction is essential and is recommended in several studies 

(Bruyère et al., 2014; Donat et al., 2016; Xue-Jie et al., 2013) to ensure that the bias-

corrected data used in hydrological modeling and decision-making processes are accurate 

and reliable, leading to appropriate results (Maraun et al., 2017; Mehrotra & Sharma, 2012; 

Xu & Yang, 2012).  

Out of the several bias correction methods, the quantile mapping method is the most 

popular and widely used across the world (Acharya et al., 2013; Lafon et al., 2013; Wood 

et al., 2004a). Quantile mapping is a technique used to reconcile climate model data with 

historical observations by transforming the model’s data distribution to match the 

observational data distribution, thereby reducing biases and increasing accuracy in climate 

predictions (Abatzoglou & Brown, 2012; J. Chen et al., 2013; Gudmundsson et al., 2012; 

Maraun, 2016; Maraun et al., 2010; Pierce et al., 2014; Tabari et al., 2021). The efficiency 

of this technique has been tested and found to be effective in improving accuracy for 

hydrological modeling and decision-making (Grose et al., 2011; Hayhoe et al., 2008; 

Maurer & Duffy, 2005; Wood et al., 2004b). Quantile mapping is well-known for bias 

correction for specific climate circumstances. The approach aims to closely mimic both the 

statistical distributions of the observed variable and the climatic variable (H. Li et al., 2010; 

Maurer & Pierce, 2014).  

Intensity Duration Frequency Curves 
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In the 1940s, Gumbel developed the Gumbel distribution, also known as the extreme-value 

Type I distribution (Obaid et al., 2014). The Gumbel theory of distribution is the preferred 

choice for analyzing intense rainfall events due to its simplicity (AlHassoun, 2011; 

Hailegeorgis et al., 2013). The Gumbel method has been found to be one of the most 

credible approaches for hydraulic design, particularly when dealing with high-intensity 

events due to its focus on extreme occurrences. Several past studies have shown that 

Gumbel’s distribution may reliably anticipate flood magnitudes, enhancing the safety of 

the design (Al Islam & Hasan, 2020; Elsebaie, 2012b; Mujere, 2011; Solomon & Prince, 

2013; Vidal, 2014). Similarly, ISFRAM (2015, 2016) suggests the use of the Gumbel 

Method in practical applications due to its improved accuracy results compared to Log-

Pearson Type III. Nonetheless, the Gumbel distribution was found to be the best fit for the 

Kelantan River Basin, outperforming the Log Pearson Type III and Normal distributions 

(Yong et al., 2021). It has been observed that the application of Gumbel distribution 

improves the efficient design and utilization of infrastructure facilities, resulting in 

improved public safety and cost savings (Solomon & Prince, 2013).  

The following equation (Elsebaie, 2012) calculates the maximum precipitation PT (in mm) 

for each duration with a specified return period T (in years). 

PT = Pavg + KS                 (1) 

where Pavg is the average of the maximum precipitation corresponding to a given duration, 

as stated by: 

𝑃𝑎𝑣𝑔 =
1

𝑛
∑ 𝑃𝑖
𝑛
𝑖=0                 (2) 
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where “Pi” is the specific extreme value of rainfall and “n” is the number of events or years 

of data available.  

K is the Gumbel frequency factor as given by: 

𝐾 = −
√6

𝜋
+ (0.5772 + ln⁡(ln⁡(

𝑇

𝑇−1
)))              (3) 

and S is the standard deviation, which is computed using Eq. (4): 

𝑆 = [⁡
1

𝑛−1
∑ ⁡(𝑃𝑖 − 𝑃𝑎𝑣𝑔)

2⁡⁡⁡
𝑛

𝑖=0
]
1/2

              (4) 

where S is the standard deviation. The frequency factor (K), when multiplied by the 

standard deviation, provides the deviation of a specific rainfall event (for a certain period 

T) from the average. The rainfall intensity (i) in mm/hr can then be calculated using this 

factor and the standard deviation, as follows: 

𝐼𝑡 =
𝑃𝑇

𝑇𝑑
                  (5) 

where Td is the duration in hours. 

Materials and Methods 

Study Area  

The study was conducted in the town of Willoughby, located in Lake County, Ohio, USA. 

The city is situated at 41° 38´ 45´´ N and 81° 24´ 35´´ W and covers a total area of 26.78 

km2, with 26.55 km2 being land and 0.23 km2 being water.  
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The climate of Willoughby is characterized by hot, muggy summers with scattered clouds 

and cold, snowy, windy winters. The average annual temperature ranges from -5°C to 

28°C, and it is rarely below -13°C or above 32°C. Rainfall is frequent throughout the year, 

with the wettest month being September, which averages 78.74 mm of rain, and the driest 

month being February, with an average of 27.94 mm of rain. These climate patterns have 

been carefully monitored and recorded from 2015 to 2023, giving us a comprehensive 

understanding of the distinctive features of Willoughby’s weather (Weather Spark).  

Historical climate data shows that the area has experienced an upsurge in temperature and 

rainfall intensity in recent years, and extreme weather events show upward trends in 

precipitation days into the future (Bartels et al., 2020). Figure 1 illustrates the geographical 

context of the study area. 

Climate Model Data 

Past observed precipitation as well as RCM and GCM output data for different models 

from CMIP5 and CMIP6, respectively, are included in the precipitation data used with 

historical data and future data under various scenarios. The closest stations at Cleveland 

Easterly (ID: COOP:331651) and Burton (ID: COOP:331113), which are respectively 20 

km and 35 km from the study area, lacked sufficient data for the period of 1980–2019 due 

to gaps in data collection. Therefore, the historical observations were collected from the 

Hopkins International Airport station in Cleveland, Ohio, United States (ID: 

COOP:331657), which is 50 km away from the study site. The 1-hour precipitation data 

from the station was utilized to prepare the observed historical data. This station was 
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selected because it provides long records of continuous data sets without any significant 

interruption.  

The historical period from 1980–2019 was considered the baseline period and referred to 

as Time Span-1 (TS-1), whereas the future period was divided into two time spans: 2020–

2059 as the near future (TS-2), and 2060–2099 as the far future (TS-3). This was intended 

because the most recent data was available for the period of 1980–2019, and separating the 

future period into smaller time frames would allow for a more detailed analysis of potential 

changes in precipitation patterns with equal time for the near future and distant future, 

providing a more comprehensive and holistic view of the potential changes in precipitation 

patterns over time.  

For this study, three RCMs with model-generated historical data and RCP8.5 scenarios for 

each CMIP5 were selected from https://na-cordex.org/. Similarly, for CMIP5, three GCMs 

with historical and four SSP scenarios—namely, SSP126, SSP245, SSP370, and SSP585—

were chosen to examine the potential increase in future precipitation. The projected 

simulations of precipitation in the future were obtained from three climate models 

contributing to CMIP6: https://esgf-node.llnl.gov/search/cmip6/. The fundamental 

information for the three selected CMIP5 and CMIP6 models is reported in Table 1.  

The ability of the climate models to contribute hourly data was a primary factor in their 

selection for this study. In addition, these models have already been widely adopted in the 

research community, ensuring comparability and consistency with existing literature and 

increasing the credibility and reliability of the research. Furthermore, a more nuanced 

comprehension of the potential effects of climate change on precipitation patterns was 
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made possible by including both historical and different future scenarios. Such climate 

scenarios help us understand how precipitation responds to changes in greenhouse gas 

emissions, which is useful for planning responses to climate change. 

Bias correction of raw data 

The climate data from the climate model are corrected in this study against the observed 

daily data using the quantile mapping bias-correction approach, also known as probability 

mapping or distribution mapping. For CMIP5 and CMIP6, the bias correction is 

continuously directed from 1980 to 2005 and from 1980 to 2014, respectively. 

In this study, the Climate Data Bias Corrector (CDBC) tool developed by Gupta et al. 

(2019) was used to complete the bias correction. The effectiveness of the tool and its 

efficacy for bias corrections have been demonstrated in various studies (Ayugi et al., 2022; 

Babaousmail, Ayugi, et al., 2022; Babaousmail, Hou, et al., 2022; Lim Kam Sian et al., 

2022; S. Shrestha et al., 2019). 

Development of the IDF Curve 

After the raw climate model data obtained has been bias corrected, the next step is to 

develop an IDF curve using the Gumbel Extreme Distribution method. For this, the raw 

data were analyzed to determine the maximum precipitation intensity for each year from 

1980 to 2099 for different rainfall durations (1 hr, 2 hr, 6 hr, 12 hr, and 24 hr). In this study, 

the various return periods (including 2, 5, 10, 25, 50, and 100 years) were taken into 

consideration. For each return period, the intensity of precipitation for each duration was 

calculated using the average of the maximum precipitation and the standard deviation 
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corresponding to the time frame. In addition, the Gumbel frequency factor, or K-factor, 

was used to calculate the probability of the occurrence of an event of a given magnitude. 

Finally, the IDF curve was developed by plotting the intensity of precipitation against the 

duration of the rainfall for each return period using the Multi-Model Ensemble (MME) 

mean method. 

Results and Discussion 

Since the major objective of this study was to develop IDF curves for both CMIP5 and 

CMIP6 models and evaluate the differences between them, simulated precipitation data for 

historical and future periods was used. The data was adjusted to reduce biases using the 

quantile mapping approach, and the results of the bias correction process are presented in 

terms of the mean and standard deviation. Table 2 illustrates the comparison of the average 

and variability (standard deviation) in both CMIP5 and CMIP6 models, both before and 

after bias correction.  

CMIP5 

A comprehensive analysis of the IDF curves, assembling three CMIP5 models for the 

RCP8.5 scenario, provides a visual and mathematical representation of the changes in IDF. 

The IDF curve for the TS-1 and the TS-2 is presented in Figure 2. The analysis has revealed 

a considerable rise in rainfall intensity in the TS-2 compared to the TS-1, with a projection 

of 9–39% for various durations and return periods. It is important to note that the 

percentage increase is not linear, with large increases seen for longer durations and higher 

return periods. The non-linear nature of the increase in rainfall intensity implies that 

extreme rainfall events are projected to become even more intense in TS-2. The analysis 
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of the trend of precipitation indicated that the increasing pattern observed in the TS-2 is 

expected to further increase in the TS-3, as shown in Figure 3. Precipitation is expected to 

become more intense and increase by 20–55% compared to TS-1. The occurrence of 

extreme rainfall events with both shorter and longer return periods has increased in terms 

of both frequency and intensity. This tendency raises concerns about the likelihood of more 

frequent flash floods and stormwater flooding in the future. To further illustrate this point, 

Figure 4 presents a graphical comparison of the percentage change in intensity between 

different time frames. The study reveals that until the final years of the century, hourly 

precipitation with a 100-year return period will increase by almost 24%. Hourly 

precipitation intensity is seen to follow a predictable trend, increasing by 16.15% in the 

TS-2 and by a much larger percentage (29.12%) in the TS-3. These divergent tendencies 

highlight the value of looking across multiple time periods when analyzing climate 

projections for the future, which provide important clues that help us piece together how 

precipitation patterns may shift over time. The increasing trend of precipitation in the Lake 

Erie region that we found in our study is consistent with the findings of previous research 

by Xue et al. (2022) and L. Zhang et al. (2020) on the Great Lakes region using CMIP5 

models. Notably, the same models were used, which suggests the consistency and 

reliability of our findings. 

CMIP6 

In this study, the most recent climate model, CMIP6, agrees with the earlier versions of the 

model, i.e., CMIP5, in predicting an increase in precipitation for the Town of Willoughby 

in the future, in contrast to the TS-1. The findings indicate that even with the lowest SSP 

scenario (SSP126), there will be an increase in rainfall intensity in TS-2, with a range of 
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3–19% (Figure 5). Based on the data studied for the Town of Willoughby, it is interesting 

to note that the magnitude of the increase in the intensity of rainfall varies across different 

durations and return periods. The two-year return period for a six-hour rainfall shows the 

lowest percentage increase in intensity. On the other hand, the return period of 100 years 

for rainfall lasting two hours shows the largest percentage increase in intensity. The 

projected findings indicate that in the TS-3, the intensity of precipitation is anticipated to 

undergo a more pronounced increase, where the projected range of increase falls within a 

range of 7–40% (Figure 6). For a duration of 24 hours and a recurrence interval of two 

years, a predicted increase in intensity of only 7% is made. However, the two-hour duration 

with a 100-year return period is predicted to see the highest percentage increase, at 40%. 

Furthermore, the IDF curve comparison for SSP245 reveals that the TS-2 may experience 

a rise in precipitation intensity of 5-22% (Figure 7), while the TS-3 could see an increase 

of 10–23%, as illustrated in Figure 8. This contrast in trends emphasizes the significance 

of evaluating various time segments when analyzing future climate projections, enabling a 

deeper understanding of the evolving patterns of precipitation. Likewise, the SSP370 

scenario predicts intriguing insights about the future of precipitation intensity. In particular, 

hourly precipitation with a return period of two years is predicted to increase in intensity, 

with the lowest observed increase of 5%. The most significant increase in intensity, 

however, is expected for the two-hour duration of precipitation with a 100-year return 

period; this is projected to increase by a significant 22%. The comparison of the IDF curves 

between the TS-1 and the TS-2 for SSP370 is presented in Figure 9, which shows an 

increase range of 21-38% for various rainfall durations and return periods.  
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Figure 10 displays the comparison between the TS-1 and the TS-3 for scenario SSP370. In 

the same manner, the SSP585 scenario under the CMIP6 model demonstrated an increase 

in precipitation intensity, with a projected range of 9–27% and 21–48% for the TS-2 and 

TS-3, respectively, for various durations and return periods. The results show that in the 

most catastrophic scenario (SSP585), hourly precipitation with a 100-year return period 

will rise by an average of approximately 24% in the future. The IDF curve analysis for the 

worst-case scenario for CMIP6 is presented in Figure 11, showing the comparison between 

the TS-1 and the TS-2, whereas the further increase in precipitation in the TS-3 is 

demonstrated in Figure 12. The increase in precipitation in terms of percentage change 

considering different return periods and rainfall durations, both for the TS-2 and the TS-3, 

as compared to the TS-1, is represented in Figure 13. Earlier research by Minallah and 

Steiner (2021) in the Great Lakes region found that CMIP6 models’ representations of 

precipitation vary widely and contrast with those observed in real-world datasets. 

Nonetheless, the MIROC6 model used in this study agrees with the similar trend in 

increased precipitation presented by Minallah & Steiner (2021), indicating the reliability 

of the findings and validating the predictive ability of the model for future precipitation 

patterns. 

CMIP5 vs. CMIP6: A Comparison 

The study revealed that the increase in rainfall intensity for various duration hours and 

return periods for CMIP5 RCP8.5 and CMIP6 SSP585 is projected to be within the range 

of 9–39% and 20–55% for the TS-2 and TS-3, respectively. This information has been 

inferred from Figure 14, which shows the comparison of the TS-2 for both CMIP5 RCP8.5 

and CMIP6 SSP585. Similarly, Figure 15 shows the plots of the TS-3 for both CMIPs, 
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which show that the Town of Willoughby will experience more intense precipitation. The 

CMIP6 models were assessed under various scenarios, including ssp126, ssp245, ssp370, 

and ssp585, revealing an increase in precipitation intensity from 2–22% for the TS-2 and 

6–40% for the TS-3 across various rainfall durations and return periods. Even though both 

CMIPs indicate an increase in precipitation intensity, the CMIP5 RCP8.5 stands out with 

a higher rainfall intensity than the CMIP6 SSP585, with an intensity range that exceeds the 

CMIP6 SSP585 by 28% across varying durations and return periods.  

The findings from the CMIP5 and CMIP6 models provide a fascinating revelation when 

looking at the percentage increase in rainfall intensity across different durations and return 

periods. CMIP5 predicts a more substantial increase in rainfall intensity for longer 

durations and higher return periods, while CMIP6 offers a contrast. There is a clear upward 

trend in intensity percentage for shorter durations (one and two hours), but an intriguing 

deviation from this pattern for longer durations (six, twelve, and twenty-four hours). 

During the analysis of meteorological data in this study, it was observed that the sub-daily 

intensity of precipitation, specifically those below 6 hours, was relatively underestimated 

by the models. Both CMIP5 and CMIP6 models tend to predict less even in the worst-case 

scenario. This finding is significant because it affects the precision and reliability of 

outcomes. There was a discrepancy between the study’s findings and the historical data 

reported by the National Oceanic and Atmospheric Administration (NOAA). One possible 

explanation for the discrepancies found in the data is that lakes were either simplified or 

left out entirely from the climate models used to examine potential future climate changes. 

The credibility of the CMIP5 models’ projections was called into question by a previous 

study by Briley et al. (2021), which found that most of them did not accurately capture the 
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impact of the Great Lakes on the regional climate. Inaccurately simulating regional climate 

patterns requires a thorough understanding of the interaction between lakes, the 

atmosphere, and the land. This highlights the need for additional research on the accuracy 

of sub-daily data and casts doubt on the applicability of the models used.  

The study in the town of Willoughby found that the intensity of precipitation would 

increase with longer return periods. The hourly precipitation is expected to see an increase 

in the upper range of extreme values in the future, specifically for the 95th percentile. This 

means that the most severe precipitation events that happen only 5% of the time are likely 

to become more intense, with a projected increase in the 95th percentile range of 5% to 

24%, and the average hourly rainfall in the TS-2 and TS-3 is expected to increase by 7–

28% by both CMIPs, which is a signal that communities need to prepare for the impacts of 

extreme weather events and invest in measures to build more resilient communities in the 

face of a changing climate. The results show that extreme weather events will become more 

intense, requiring sustainable development to mitigate urban flooding. 

However, it is essential to acknowledge the limitations of this study, such as the fact that it 

is based on the rainfall estimates of a single location and may not be representative of other 

areas. Further studies could be accomplished to explore the limitations and make 

improvements, such as potential uncertainties in the models, data, and bias correction 

methods used. Regardless, the results of this study provide valuable insights for urban 

planners, engineers, and decision-makers in developing sustainable flood control measures 

to mitigate the limitations. Additionally, there’s a chance that the study’s bias correction 

methods, data, and models will all have uncertainties that will affect the results. Further 

studies may explore these limitations and improve upon them.  
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Conclusion 

This study aimed to develop and compare the IDF curves for future climate scenarios using 

two climate models, CMIP5 and CMIP6, in the town of Willoughby and to evaluate the 

differences between them. IDF curves are used as an essential tool in designing effective 

drainage systems for any engineering project. To develop the IDF curves, simulated 

precipitation data from historical and future periods was used. The data was adjusted to 

reduce biases using the quantile mapping approach, and the bias-corrected climate data was 

used to develop the IDF curves using the Gumbel Extreme Distribution Type I method. 

The results indicated a rise in precipitation intensity in the future, ranging from 9–55% 

across different rainfall durations and return periods for CMIP5 RCP8.5 and CMIP6 

SSP585. The analysis of CMIP6 climate scenarios predicts a significant average increase 

of 27% in the intensity of hourly precipitation for the recurrence interval of 100 years in 

the future. Specifically, the SSP585 scenario projects an increase of 9–26% in the TS-2 

and 21–47% in the TS-3, while the RCP8.5 scenario predicts increases of 11% to 24%, 

respectively. Even under the moderate climate change scenario of SSP126, it can be 

expected to have an increase (averaging 6%) in hourly precipitation intensity with a 2-year 

return period. 

The reliance on a limited number of models and scenarios may not account for the entire 

range of uncertainty in future scenarios. In this context, further research is needed to 

understand the combined effects of these uncertainties with other sources of variability, 

such as land use change and natural internal weather variability. The large uncertainty is 

the output of the GCMs, and the RCMs also highlight the need for uncertainty analysis and 

probability-based IDF curves. Furthermore, the process of bias correction in a climate 
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model is not immune to uncertainties. Future forecasts of climatic variables may be subject 

to uncertainty after being corrected for bias in climate models, even when based on a single 

reference period. Hence, future climate results may vary depending on the reference period 

selected. Future research could explore various methods for responding to all these 

unknowns, such as using the professional analysis of climatologists or utilizing more robust 

statistical methods or machine learning algorithms. There is a need for a hybrid approach 

that makes use of many reference periods due to the complex nature of the 

interrelationships between climatic variables. 

To sum up, the study emphasizes the importance of updating the existing IDF curves that 

guide the design of water management infrastructure to account for the effects of climate 

change.  

 

 

 

 

 

 

 

 

 



30 
 

References 

Abatzoglou, J. T., & Brown, T. J. (2012). A comparison of statistical downscaling 
methods suited for wildfire applications. International Journal of Climatology, 
32(5), 772–780. https://doi.org/10.1002/joc.2312 

Abdulrasheed Mohammed, Salisu Dan’Azumi, Abubakar Ahmed Modibbo, & Abbakar 
Abbas Adamu. (2021). Development of Rainfall Intensity Duration Frequency (IDF) 
Curves for Design of Hydraulic Structures in Kano State, Nigeria. 

Acharya, N., Chattopadhyay, S., Mohanty, U. C., Dash, S. K., & Sahoo, L. N. (2013). On 
the bias correction of general circulation model output for Indian summer monsoon. 
Meteorological Applications, 20(3), 349–356. https://doi.org/10.1002/met.1294 

Al Islam, M., & Hasan, H. (2020). Generation of IDF equation from catchment 
delineation using GIS. Civil Engineering Journal (Iran), 6(3), 540–547. 
https://doi.org/10.28991/cej-2020-03091490 

AlHassoun, S. A. (2011). Developing an empirical formulae to estimate rainfall intensity 
in Riyadh region. Journal of King Saud University - Engineering Sciences, 23(2), 
81–88. https://doi.org/10.1016/j.jksues.2011.03.003 

Allen, M. R., & Ingram, W. J. (2002). insight review articles 224. 
www.nature.com/nature 

Ayugi, B., Shilenje, Z. W., Babaousmail, H., Lim Kam Sian, K. T. C., Mumo, R., Dike, 
V. N., Iyakaremye, V., Chehbouni, A., & Ongoma, V. (2022). Projected changes in 
meteorological drought over East Africa inferred from bias-adjusted CMIP6 models. 
Natural Hazards, 113(2), 1151–1176. https://doi.org/10.1007/s11069-022-05341-8 

Babaousmail, H., Ayugi, B., Rajasekar, A., Zhu, H., Oduro, C., Mumo, R., & Ongoma, 
V. (2022). Projection of Extreme Temperature Events over the Mediterranean and 
Sahara Using Bias-Corrected CMIP6 Models. Atmosphere, 13(5). 
https://doi.org/10.3390/atmos13050741 

Babaousmail, H., Hou, R., Ayugi, B., Sian, K. T. C. L. K., Ojara, M., Mumo, R., 
Chehbouni, A., & Ongoma, V. (2022). Future changes in mean and extreme 
precipitation over the Mediterranean and Sahara regions using bias-corrected 
CMIP6 models. International Journal of Climatology. 
https://doi.org/10.1002/joc.7644 



31 
 

Barbero, R., Fowler, H. J., Blenkinsop, S., Westra, S., Moron, V., Lewis, E., Chan, S., 
Lenderink, G., Kendon, E., Guerreiro, S., Li, X. F., Villalobos, R., Ali, H., & 
Mishra, V. (2019). A synthesis of hourly and daily precipitation extremes in 
different climatic regions. Weather and Climate Extremes, 26. 
https://doi.org/10.1016/j.wace.2019.100219 

Bartels, R. J., Black, A. W., & Keim, B. D. (2020). Trends in precipitation days in the 
United States. International Journal of Climatology, 40(2), 1038–1048. 
https://doi.org/10.1002/joc.6254 

Berg, P., Moseley, C., & Haerter, J. O. (2013). Strong increase in convective 
precipitation in response to higher temperatures. Nature Geoscience, 6(3), 181–185. 
https://doi.org/10.1038/ngeo1731 

Boberg, F., & Christensen, J. H. (2012). Overestimation of Mediterranean summer 
temperature projections due to model deficiencies. Nature Climate Change, 2(6), 
433–436. https://doi.org/10.1038/nclimate1454 

Briley, L. J., Rood, R. B., & Notaro, M. (2021). Large lakes in climate models: A Great 
Lakes case study on the usability of CMIP5. Journal of Great Lakes Research, 
47(2), 405–418. https://doi.org/10.1016/j.jglr.2021.01.010 

Bruni, G., Reinoso, R., van de Giesen, N. C., Clemens, F. H. L. R., & ten Veldhuis, J. A. 
E. (2015). On the sensitivity of urban hydrodynamic modelling to rainfall spatial and 
temporal resolution. Hydrology and Earth System Sciences, 19(2), 691–709. 
https://doi.org/10.5194/hess-19-691-2015 

Bruyère, C. L., Done, J. M., Holland, G. J., & Fredrick, S. (2014). Bias corrections of 
global models for regional climate simulations of high-impact weather. Climate 
Dynamics, 43(7–8), 1847–1856. https://doi.org/10.1007/s00382-013-2011-6 

Chen, H., Sun, J., Lin, W., & Xu, H. (2020). Comparison of CMIP6 and CMIP5 models 
in simulating climate extremes. In Science Bulletin (Vol. 65, Issue 17, pp. 1415–
1418). Elsevier B.V. https://doi.org/10.1016/j.scib.2020.05.015 

Chen, J., Brissette, F. P., Chaumont, D., & Braun, M. (2013). Finding appropriate bias 
correction methods in downscaling precipitation for hydrologic impact studies over 
North America. Water Resources Research, 49(7), 4187–4205. 
https://doi.org/10.1002/wrcr.20331 



32 
 

Cheng, L., & Aghakouchak, A. (2014a). Nonstationary precipitation intensity-duration-
frequency curves for infrastructure design in a changing climate. Scientific Reports, 
4. https://doi.org/10.1038/srep07093 

Cheng, L., & Aghakouchak, A. (2014b). Nonstationary precipitation intensity-duration-
frequency curves for infrastructure design in a changing climate. Scientific Reports, 
4. https://doi.org/10.1038/srep07093 

Cioffi, F., Lall, U., Rus, E., & Krishnamurthy, C. K. B. (2015). Space-time structure of 
extreme precipitation in Europe over the last century. International Journal of 
Climatology, 35(8), 1749–1760. https://doi.org/10.1002/joc.4116 

Coelho, G. de A., Ferreira, C. M., Johnston, J., Kinter, J. L., Dollan, I. J., & Maggioni, V. 
(2022). Potential Impacts of Future Extreme Precipitation Changes on Flood 
Engineering Design Across the Contiguous United States. Water Resources 
Research, 58(4). https://doi.org/10.1029/2021WR031432 

Cook, L. M., McGinnis, S., & Samaras, C. (2020a). The effect of modeling choices on 
updating intensity-duration-frequency curves and stormwater infrastructure designs 
for climate change. Climatic Change, 159(2), 289–308. 
https://doi.org/10.1007/s10584-019-02649-6 

Cook, L. M., McGinnis, S., & Samaras, C. (2020b). The effect of modeling choices on 
updating intensity-duration-frequency curves and stormwater infrastructure designs 
for climate change. Climatic Change, 159(2), 289–308. 
https://doi.org/10.1007/s10584-019-02649-6 

Cook, L. M., McGinnis, S., & Samaras, C. (2020c). The effect of modeling choices on 
updating intensity-duration-frequency curves and stormwater infrastructure designs 
for climate change. Climatic Change, 159(2), 289–308. 
https://doi.org/10.1007/s10584-019-02649-6 

Cook, L. M., McGinnis, S., & Samaras, C. (2020d). The effect of modeling choices on 
updating intensity-duration-frequency curves and stormwater infrastructure designs 
for climate change. Climatic Change, 159(2), 289–308. 
https://doi.org/10.1007/s10584-019-02649-6 

Debbage, N., & Marshall Shepherd, J. (2019). Urban influences on the spatiotemporal 
characteristics of runoff and precipitation during the 2009 Atlanta flood. Journal of 
Hydrometeorology, 20(1), 3–21. https://doi.org/10.1175/JHM-D-18-0010.1 



33 
 

Degaetano, A. T. (2009). Time-dependent changes in extreme-precipitation return-period 
amounts in the continental united states. Journal of Applied Meteorology and 
Climatology, 48(10), 2086–2099. https://doi.org/10.1175/2009JAMC2179.1 

Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). 
More extreme precipitation in the worldâ €TM s dry and wet regions. Nature Climate 
Change, 6(5), 508–513. https://doi.org/10.1038/nclimate2941 

Du, Y., Wang, D., Zhu, J., Wang, D., Qi, X., & Cai, J. (2022). Comprehensive 
assessment of CMIP5 and CMIP6 models in simulating and projecting precipitation 
over the global land. International Journal of Climatology, 42(13), 6859–6875. 
https://doi.org/10.1002/joc.7616 

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, 
L. O. (2000). Climate Extremes: Observations, Modeling, and Impacts. 
https://www.science.org 

Elsebaie, I. H. (2012a). Developing rainfall intensity–duration–frequency relationship for 
two regions in Saudi Arabia. Journal of King Saud University - Engineering 
Sciences, 24(2), 131–140. https://doi.org/10.1016/j.jksues.2011.06.001 

Elsebaie, I. H. (2012b). Developing rainfall intensity–duration–frequency relationship for 
two regions in Saudi Arabia. Journal of King Saud University - Engineering 
Sciences, 24(2), 131–140. https://doi.org/10.1016/j.jksues.2011.06.001 

Elsebaie, I. H. (2012c). Developing rainfall intensity–duration–frequency relationship for 
two regions in Saudi Arabia. Journal of King Saud University - Engineering 
Sciences, 24(2), 131–140. https://doi.org/10.1016/j.jksues.2011.06.001 

Endreny, T. A., & Imbeah, N. (2009). Generating robust rainfall intensity-duration-
frequency estimates with short-record satellite data. Journal of Hydrology, 371(1–4), 
182–191. https://doi.org/10.1016/j.jhydrol.2009.03.027 

Gershunov, A., & Cayan, D. R. (2003). Heavy Daily Precipitation Frequency over the 
Contiguous United States: Sources of Climatic Variability and Seasonal 
Predictability. 

Ghasemi Tousi, E., O’Brien, W., Doulabian, S., & Shadmehri Toosi, A. (2021). Climate 
changes impact on stormwater infrastructure design in Tucson Arizona. Sustainable 
Cities and Society, 72. https://doi.org/10.1016/j.scs.2021.103014 



34 
 

Giorgi, F., Jones, C., & Asrar, G. R. (2009). Addressing climate information needs at the 
regional level: the CORDEX framework. In WMO Bulletin (Vol. 58, Issue 3). 
http://wcrp.ipsl. 

Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., & 
Razuvaev, V. N. (2005a). Trends in Intense Precipitation in the Climate Record. 

Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., & 
Razuvaev, V. N. (2005b). Trends in Intense Precipitation in the Climate Record. 

Groisman, P. Y., Knight, R. W., & Karl, T. R. (2012). Changes in intense precipitation 
over the Central United States. Journal of Hydrometeorology, 13(1), 47–66. 
https://doi.org/10.1175/JHM-D-11-039.1 

Grose, M. R., Post, D. A., Ling, F. L. N., Corney, S., Bennett, J. C., Grose, M. R., Post, 
D. A., Ling, F. L. N., Corney, S. P., & Bindoff, N. L. (2011). Performance of 
quantile-quantile bias-correction for use in hydroclimatological projections 
Bioregional Assessment Programme View project Barwon Water inflows under 
climate change View project Performance of quantile-quantile bias-correction for 
use in hydroclimatological projections. http://mssanz.org.au/modsim2011 

Grum, M., Jørgensen, A. T., Johansen, R. M., & Linde, J. J. (2006). The effect of climate 
change on urban drainage: an evaluation based on regional climate model 
simulations. Water Science and Technology, 54(6–7), 9–15. 

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Technical 
Note: Downscaling RCM precipitation to the station scale using statistical 
transformations &ndash; A comparison of methods. Hydrology and Earth System 
Sciences, 16(9), 3383–3390. https://doi.org/10.5194/hess-16-3383-2012 

Guo, Y., & Asce, M. (2006a). Updating Rainfall IDF Relationships to Maintain Urban 
Drainage Design Standards. https://doi.org/10.1061/ASCE1084-0699200611:5506 

Guo, Y., & Asce, M. (2006b). Updating Rainfall IDF Relationships to Maintain Urban 
Drainage Design Standards. https://doi.org/10.1061/ASCE1084-0699200611:5506 

Gupta, R., Bhattarai, R., & Mishra, A. (2019). Development of climate data bias corrector 
(CDBC) tool and its application over the agro-ecological zones of India. Water 
(Switzerland), 11(5). https://doi.org/10.3390/w11051102 

Gutowski, J. W., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H. S., Raghavan, K., 
Lee, B., Lennard, C., Nikulin, G., O’Rourke, E., Rixen, M., Solman, S., Stephenson, 
T., & Tangang, F. (2016). WCRP COordinated Regional Downscaling EXperiment 



35 
 

(CORDEX): A diagnostic MIP for CMIP6. Geoscientific Model Development, 
9(11), 4087–4095. https://doi.org/10.5194/gmd-9-4087-2016 

Gutowski, W. J., Ullrich, P. A., Hall, A., Leung, L. R., O’Brien, T. A., Patricola, C. M., 
Arritt, R. W., Bukovsky, M. S., Calvin, K. V., Feng, Z., Jones, A. D., Kooperman, 
G. J., Monier, E., Pritchard, M. S., Pryor, S. C., Qian, Y., Rhoades, A. M., Roberts, 
A. F., Sakaguchi, K., … Zarzycki, C. (2021). The ongoing need for high-resolution 
regional climate models: Process understanding and stakeholder information. 
Bulletin of the American Meteorological Society, 101(5), E664–E683. 
https://doi.org/10.1175/BAMS-D-19-0113.1 

Haddad, K., Rahman, A., & Green, J. (2011). Design rainfall estimation in Australia: A 
case study using L moments and Generalized Least Squares Regression. Stochastic 
Environmental Research and Risk Assessment, 25(6), 815–825. 
https://doi.org/10.1007/s00477-010-0443-7 

Haerter, J. O., & Berg, P. (2009). Unexpected rise in extreme precipitation caused by a 
shift in rain type? In Nature Geoscience (Vol. 2, Issue 6, pp. 372–373). 
https://doi.org/10.1038/ngeo523 

Hailegeorgis, T. T., Thorolfsson, S. T., & Alfredsen, K. (2013). Regional frequency 
analysis of extreme precipitation with consideration of uncertainties to update IDF 
curves for the city of Trondheim. Journal of Hydrology, 498, 305–318. 
https://doi.org/10.1016/j.jhydrol.2013.06.019 

Hao, Z., Aghakouchak, A., & Phillips, T. J. (2013). Changes in concurrent monthly 
precipitation and temperature extremes. Environmental Research Letters, 8(3). 
https://doi.org/10.1088/1748-9326/8/3/034014 

Hayhoe, K., Wake, C., Anderson, B., Liang, X. Z., Maurer, E., Zhu, J., Bradbury, J., 
Degaetano, A., Stoner, A. M., & Wuebbles, D. (2008). Regional climate change 
projections for the Northeast USA. Mitigation and Adaptation Strategies for Global 
Change, 13(5–6), 425–436. https://doi.org/10.1007/s11027-007-9133-2 

He, J., Valeo, C., & Bouchart, F.-C. (2006). Enhancing urban infrastructure investment 
planning practices for a changing climate. Water Science and Technology, 53(10), 
13–20. 

Hess, J. J., Malilay, J. N., & Parkinson, A. J. (2008). Climate Change. The Importance of 
Place. In American Journal of Preventive Medicine (Vol. 35, Issue 5, pp. 468–478). 
https://doi.org/10.1016/j.amepre.2008.08.024 



36 
 

Hosseinzadehtalaei, P., Tabari, H., & Willems, P. (2020). Climate change impact on 
short-duration extreme precipitation and intensity–duration–frequency curves over 
Europe. Journal of Hydrology, 590. https://doi.org/10.1016/j.jhydrol.2020.125249 

Hou, J., Wang, N., Guo, K., Li, D., Jing, H., Wang, T., & Hinkelmann, R. (2020). Effects 
of the temporal resolution of storm data on numerical simulations of urban flood 
inundation. Journal of Hydrology, 589. 
https://doi.org/10.1016/j.jhydrol.2020.125100 

Huang, Y., Bárdossy, A., & Zhang, K. (2019). Sensitivity of hydrological models to 
temporal and spatial resolutions of rainfall data. Hydrology and Earth System 
Sciences, 23(6), 2647–2663. https://doi.org/10.5194/hess-23-2647-2019 

IPCC. (2007). Climate Change 2007: Synthesis Report Summary for Policymakers An 
Assessment of the Intergovernmental Panel on Climate Change. 

IPCC. (2014). Climate change 2014 : synthesis report : longer report. 

ISFRAM 2015. (2016). In ISFRAM 2015. Springer Singapore. 
https://doi.org/10.1007/978-981-10-0500-8 

Karl, T. R., & Knight, R. W. (1998). Secular Trends of Precipitation Amount, Frequency, 
and Intensity in the United States. 

Karl, T. R., Knight, R. W., & Plummer, N. (1995). Trends in high-frequency climate 
variability in the twentieth century. Nature, 377(6546), 217–220. 
https://doi.org/10.1038/377217a0 

Kirtman, B., & Pirani, A. (2009). The State of the Art of Seasonal Prediction: Outcomes 
and Recommendations from the First World Climate Research Program Workshop 
on Seasonal Prediction. Source: Bulletin of the American Meteorological Society, 
90(4), 455–458. https://doi.org/10.2307/26220969 

Kourtis, I. M., & Tsihrintzis, V. A. (2022a). Update of intensity-duration-frequency 
(IDF) curves under climate change: a review. Water Supply, 22(5), 4951–4974. 
https://doi.org/10.2166/ws.2022.152 

Kourtis, I. M., & Tsihrintzis, V. A. (2022b). Update of intensity-duration-frequency 
(IDF) curves under climate change: a review. Water Supply, 22(5), 4951–4974. 
https://doi.org/10.2166/ws.2022.152 



37 
 

Kundwa, M. J. (2019). Development of Rainfall Intensity Duration Frequency (IDF) 
Curves for Hydraulic Design Aspect. Journal of Ecology & Natural Resources, 3(2). 
https://doi.org/10.23880/jenr-16000162 

Kunkel, K. E., Karl, T. R., Brooks, H., Kossin, J., Lawrimore, J. H., Arndt, D., Bosart, L., 
Changnon, D., Cutter, S. L., Doesken, N., Emanuel, K., Groisman, P. Y., Katz, R. 
W., Knutson, T., O’brien, J., Paciorek, C. J., Peterson, T. C., Redmond, K., 
Robinson, D., … Wuebbles, D. (2013). Monitoring and understanding trends in 
extreme storms: State of knowledge. Bulletin of the American Meteorological 
Society, 94(4), 499–514. https://doi.org/10.1175/BAMS-D-11-00262.1 

Lafon, T., Dadson, S., Buys, G., & Prudhomme, C. (2013). Bias correction of daily 
precipitation simulated by a regional climate model: A comparison of methods. 
International Journal of Climatology, 33(6), 1367–1381. 
https://doi.org/10.1002/joc.3518 

Lee, J. W., Hong, S. Y., Chang, E. C., Suh, M. S., & Kang, H. S. (2014). Assessment of 
future climate change over East Asia due to the RCP scenarios downscaled by 
GRIMs-RMP. Climate Dynamics, 42(3–4), 733–747. 
https://doi.org/10.1007/s00382-013-1841-6 

Lenderink, G., & Van Meijgaard, E. (2008). Increase in hourly precipitation extremes 
beyond expectations from temperature changes. Nature Geoscience, 1(8), 511–514. 
https://doi.org/10.1038/ngeo262 

Li, H., Sheffield, J., & Wood, E. F. (2010). Bias correction of monthly precipitation and 
temperature fields from Intergovernmental Panel on Climate Change AR4 models 
using equidistant quantile matching. Journal of Geophysical Research Atmospheres, 
115(10). https://doi.org/10.1029/2009JD012882 

Li, Z., Li, X., Wang, Y., & Quiring, S. M. (2019). Impact of climate change on 
precipitation patterns in Houston, Texas, USA. Anthropocene, 25. 
https://doi.org/10.1016/j.ancene.2019.100193 

Lim Kam Sian, K. T. C., Hagan, D. F. T., Ayugi, B. O., Nooni, I. K., Ullah, W., 
Babaousmail, H., & Ongoma, V. (2022). Projections of precipitation extremes based 
on bias-corrected Coupled Model Intercomparison Project phase 6 models ensemble 
over southern Africa. International Journal of Climatology. 
https://doi.org/10.1002/joc.7707 



38 
 

Liu, L. (2023a). The dynamics of early-stage transmission of COVID-19: A novel 
quantification of the role of global temperature. Gondwana Research, 114, 55–68. 
https://doi.org/10.1016/j.gr.2021.12.010 

Liu, L. (2023b). The dynamics of early-stage transmission of COVID-19: A novel 
quantification of the role of global temperature. Gondwana Research, 114, 55–68. 
https://doi.org/10.1016/j.gr.2021.12.010 

Liu, S., Li, Y., Pauwels, V. R. N., & Walker, J. P. (2018). Impact of rain gauge quality 
control and interpolation on streamflow simulation: An application to the warwick 
catchment, Australia. Frontiers in Earth Science, 5. 
https://doi.org/10.3389/feart.2017.00114 

Lopez-Cantu, T., Prein, A. F., & Samaras, C. (2020). Uncertainties in Future U.S. 
Extreme Precipitation From Downscaled Climate Projections. Geophysical Research 
Letters, 47(9). https://doi.org/10.1029/2019GL086797 

Madsen, H., Arnbjerg-Nielsen, K., & Mikkelsen, P. S. (2009a). Update of regional 
intensity-duration-frequency curves in Denmark: Tendency towards increased storm 
intensities. Atmospheric Research, 92(3), 343–349. 
https://doi.org/10.1016/j.atmosres.2009.01.013 

Madsen, H., Arnbjerg-Nielsen, K., & Mikkelsen, P. S. (2009b). Update of regional 
intensity-duration-frequency curves in Denmark: Tendency towards increased storm 
intensities. Atmospheric Research, 92(3), 343–349. 
https://doi.org/10.1016/j.atmosres.2009.01.013 

Madsen, H., Mikkelsen, P. S., Rosbjerg, D., & Harremoës, P. (2002). Regional estimation 
of rainfall intensity-duration-frequency curves using generalized least squares 
regression of partial duration series statistics. Water Resources Research, 38(11), 
21-1-21–11. https://doi.org/10.1029/2001wr001125 

Mailhot, A., Duchesne, S., Rivard, G., Nantel, E., Caya, D., & Villeneuve, J. P. (2006). 
Climate change impacts on the performance of urban drainage systems for southern 
Québec. Proceeding of the EIC Climate Change Technology Conference, Ottawa, 
ON, Canada, 10. 

Maraun, D. (2016). Bias Correcting Climate Change Simulations - a Critical Review. In 
Current Climate Change Reports (Vol. 2, Issue 4, pp. 211–220). Springer. 
https://doi.org/10.1007/s40641-016-0050-x 



39 
 

Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., 
Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., & Mearns, L. O. (2017). 
Towards process-informed bias correction of climate change simulations. Nature 
Climate Change, 7(11), 764–773. https://doi.org/10.1038/nclimate3418 

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., 
Brienen, S., Rust, H. W., Sauter, T., Themel, M., Venema, V. K. C., Chun, K. P., 
Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., & Thiele-Eich, I. (2010). 
Precipitation downscaling under climate change: Recent developments to bridge the 
gap between dynamical models and the end user. Reviews of Geophysics, 48(3). 
https://doi.org/10.1029/2009RG000314 

Martel, J.-L., Brissette, F. P., Lucas-Picher, P., Troin, M., & Arsenault, R. (2021a). 
Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of 
Science and Guidelines for Adaptation. Journal of Hydrologic Engineering, 26(10). 
https://doi.org/10.1061/(asce)he.1943-5584.0002122 

Martel, J.-L., Brissette, F. P., Lucas-Picher, P., Troin, M., & Arsenault, R. (2021b). 
Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of 
Science and Guidelines for Adaptation. Journal of Hydrologic Engineering, 26(10). 
https://doi.org/10.1061/(asce)he.1943-5584.0002122 

Martel, J.-L., & Mailhot, A. (2018). Role of Natural Climate Variability in the Detection 
of Anthropogenic Climate Change Signal for Mean and Extreme Precipitation at 
Local and Regional Scales. https://doi.org/10.1175/JCLI-D-17-0282.s1 

Maurer, E. P., & Duffy, P. B. (2005). Uncertainty in projections of streamflow changes 
due to climate change in California. Geophysical Research Letters, 32(3), 1–5. 
https://doi.org/10.1029/2004GL021462 

Maurer, E. P., & Pierce, D. W. (2014). Bias correction can modify climate model 
simulated precipitation changes without adverse effect on the ensemble mean. 
Hydrology and Earth System Sciences, 18(3), 915–925. https://doi.org/10.5194/hess-
18-915-2014 

McGinnis, S., & Mearns, L. (2021). Building a climate service for North America based 
on the NA-CORDEX data archive. Climate Services, 22. 
https://doi.org/10.1016/j.cliser.2021.100233 

Mehrotra, R., & Sharma, A. (2012). An improved standardization procedure to remove 
systematic low frequency variability biases in GCM simulations. Water Resources 
Research, 48(12). https://doi.org/10.1029/2012WR012446 



40 
 

Meira, M. A., Freitas, E. S., Coelho, V. H. R., Tomasella, J., Fowler, H. J., Ramos Filho, 
G. M., Silva, A. L., & Almeida, C. das N. (2022). Quality control procedures for 
sub-hourly rainfall data: An investigation in different spatio-temporal scales in 
Brazil. Journal of Hydrology, 613. https://doi.org/10.1016/j.jhydrol.2022.128358 

Minallah, S., & Steiner, A. L. (2021). Analysis of the Atmospheric Water Cycle for the 
Laurentian Great Lakes Region Using CMIP6 Models. https://doi.org/10.1175/JCLI-
D-20 

Mirhosseini, G., Srivastava, P., & Stefanova, L. (2013). The impact of climate change on 
rainfall Intensity-Duration-Frequency (IDF) curves in Alabama. Regional 
Environmental Change, 13(SUPPL.1), 25–33. https://doi.org/10.1007/s10113-012-
0375-5 

Moraglia, G., Brattich, E., & Carbone, G. (2022). Precipitation trends in North and South 
Carolina, USA. Journal of Hydrology: Regional Studies, 44. 
https://doi.org/10.1016/j.ejrh.2022.101201 

Morrison, A., Villarini, G., Zhang, W., & Scoccimarro, E. (2019). Projected changes in 
extreme precipitation at sub-daily and daily time scales. Global and Planetary 
Change, 182. https://doi.org/10.1016/j.gloplacha.2019.103004 

Mujere, N. (2011). Flood Frequency Analysis Using the Gumbel Distribution. 

Noor, M., Ismail, T., Chung, E. S., Shahid, S., & Sung, J. H. (2018). Uncertainty in 
rainfall intensity duration frequency curves of Peninsular Malaysia under changing 
climate scenarios. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121750 

Noor, M., Ismail, T., Shahid, S., Asaduzzaman, M., & Dewan, A. (2022). Projection of 
rainfall intensity-duration-frequency curves at ungauged location under climate 
change scenarios. Sustainable Cities and Society, 83. 
https://doi.org/10.1016/j.scs.2022.103951 

Ntegeka, V., & Willems, P. (2008). Trends and multidecadal oscillations in rainfall 
extremes, based on a more than 100-year time series of 10 min rainfall intensities at 
Uccle, Belgium. Water Resources Research, 44(7). 
https://doi.org/10.1029/2007WR006471 

Obaid, N., Alghazali, S., Adnan, D., & Alawadi, H. (2014). Fitting Statistical 
Distributions of Monthly Rainfall for Some Iraqi Stations. 6(6). www.iiste.org 

O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., 
Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, 



41 
 

K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project 
(ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. 
https://doi.org/10.5194/gmd-9-3461-2016 

Ouarda, T. B. M. J., Yousef, L. A., & Charron, C. (2019). Non-stationary intensity-
duration-frequency curves integrating information concerning teleconnections and 
climate change. International Journal of Climatology, 39(4), 2306–2323. 
https://doi.org/10.1002/joc.5953 

Papa, F., Guo, Y., & Thoman, G. W. (2004). Urban drainage infrastructure planning and 
management with a changing climate. Proceedings of the 57th Canadian Water 
Resources Association Annual Congress—Water and Climate Change: Knowledge 
for Better Adaptation, Montréal, QC, Canada, 16–18. 

Park, J. H., Oh, S. G., & Suh, M. S. (2013). Impacts of boundary conditions on the 
precipitation simulation of RegCM4 in the CORDEX East Asia domain. Journal of 
Geophysical Research Atmospheres, 118(4), 1652–1667. 
https://doi.org/10.1002/jgrd.50159 

Peck, A., Prodanovic, P., & Simonovic, S. P. (2012a). Rainfall intensity duration 
frequency curves under climate change: City of London, Ontario, Canada. Canadian 
Water Resources Journal, 37(3), 177–189. https://doi.org/10.4296/cwrj2011-935 

Peck, A., Prodanovic, P., & Simonovic, S. P. (2012b). Rainfall intensity duration 
frequency curves under climate change: City of London, Ontario, Canada. Canadian 
Water Resources Journal, 37(3), 177–189. https://doi.org/10.4296/cwrj2011-935 

Pierce, D. W., Cayan, D. R., & Thrasher, B. L. (2014). Statistical Downscaling Using 
Localized Constructed Analogs (LOCA)*. https://doi.org/10.1175/JHM-D-14 

Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., & Holland, G. J. (2017). 
The future intensification of hourly precipitation extremes. Nature Climate Change, 
7(1), 48–52. https://doi.org/10.1038/nclimate3168 

Prodanovic, P., & Simonovic, S. P. (2007). THE UNIVERSITY OF WESTERN ONTARIO 
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Water 
Resources Research Report. 

Pui, A., Sharma, A., Mehrotra, R., Sivakumar, B., & Jeremiah, E. (2012). A comparison 
of alternatives for daily to sub-daily rainfall disaggregation. Journal of Hydrology, 
470–471, 138–157. https://doi.org/10.1016/j.jhydrol.2012.08.041 



42 
 

Qian, Y., Ghan, S. J., & Leung, L. R. (2010). Downscaling hydroclimatic changes over 
the western US based on CAM subgrid scheme and WRF regional climate 
simulations. International Journal of Climatology, 30(5), 675–693. 
https://doi.org/10.1002/joc.1928 

Ragno, E., AghaKouchak, A., Love, C. A., Cheng, L., Vahedifard, F., & Lima, C. H. R. 
(2018). Quantifying Changes in Future Intensity-Duration-Frequency Curves Using 
Multimodel Ensemble Simulations. Water Resources Research, 54(3), 1751–1764. 
https://doi.org/10.1002/2017WR021975 

Rashid, M., Faruque, S., Rashid, M. M., Faruque, S. B., & Alam, J. B. (2012). Modeling 
of Short Duration Rainfall Intensity Duration Frequency (SDR-IDF) Equation for 
Sylhet City in Bangladesh Statistical Downscaling of GCM Outputs to Rainfall View 
project Extreme sea level variations along the U.S. coastlines View project 
Modeling of Short Duration Rainfall Intensity Duration Frequency (SDR-IDF) 
Equation for Sylhet City in Bangladesh. 2(2). http://www.ejournalofscience.org 

Rodríguez, R., Navarro, X., Casas, M. C., Ribalaygua, J., Russo, B., Pouget, L., & 
Redaño, A. (2014). Influence of climate change on IDF curves for the metropolitan 
area of Barcelona (Spain). International Journal of Climatology, 34(3), 643–654. 
https://doi.org/10.1002/joc.3712 

Rummukainen, M. (2016). Added value in regional climate modeling. Wiley 
Interdisciplinary Reviews: Climate Change, 7(1), 145–159. 
https://doi.org/10.1002/wcc.378 

Shrestha, A., Babel, M. S., Weesakul, S., & Vojinovic, Z. (2017). Developing Intensity-
Duration-Frequency (IDF) curves under climate change uncertainty: The case of 
Bangkok, Thailand. Water (Switzerland), 9(2). https://doi.org/10.3390/w9020145 

Shrestha, S., Sharma, S., Gupta, R., & Bhattarai, R. (2019). Impact of global climate 
change on stream low flows: A case study of the great Miami river Watershed, Ohio. 
International Journal of Agricultural and Biological Engineering, 12(1), 84–95. 
https://doi.org/10.25165/j.ijabe.20191201.4486 

Singh, R., Arya, D. S., Taxak, A. K., & Vojinovic, Z. (2016). Potential Impact of Climate 
Change on Rainfall Intensity-Duration-Frequency Curves in Roorkee, India. Water 
Resources Management, 30(13), 4603–4616. https://doi.org/10.1007/s11269-016-
1441-4 

Sohoulande Djebou, C. D., Conger, S., Szogi, A. A., Stone, K. C., & Martin, J. H. (2021). 
Seasonal precipitation pattern analysis for decision support of agricultural irrigation 



43 
 

management in Louisiana, USA. Agricultural Water Management, 254. 
https://doi.org/10.1016/j.agwat.2021.106970 

Solomon, O., & Prince, O. (2013). Flood Frequency Analysis of Osse River Using 
Gumbel’s Distribution. 3(10). www.iiste.org 

Sowby, R. B., & Capener, A. (2023). The influence of precipitation on the energy 
footprint of Denver’s water supply: A 20-year analysis and implications for climate 
change. Energy Nexus, 9, 100166. https://doi.org/10.1016/j.nexus.2022.100166 

Srivastav, R. K., Schardong, A., & Simonovic, S. P. (2014). Equidistance Quantile 
Matching Method for Updating IDFCurves under Climate Change. Water Resources 
Management, 28(9), 2539–2562. https://doi.org/10.1007/s11269-014-0626-y 

Statkewicz, M. D., Talbot, R., & Rappenglueck, B. (2021). Changes in precipitation 
patterns in Houston, Texas. Environmental Advances, 5. 
https://doi.org/10.1016/j.envadv.2021.100073 

Sun, X., Thyer, M., Renard, B., & Lang, M. (2014). A general regional frequency 
analysis framework for quantifying local-scale climate effects: A case study of 
ENSO effects on Southeast Queensland rainfall. Journal of Hydrology, 512, 53–68. 
https://doi.org/10.1016/j.jhydrol.2014.02.025 

Sunyer, M. A., Madsen, H., Rosbjerg, D., & Arnbjerg-Nielsen, K. (2014). A Bayesian 
approach for uncertainty quantification of extreme precipitation projections 
including climate model interdependency and nonstationary bias. Journal of 
Climate, 27(18), 7113–7132. https://doi.org/10.1175/JCLI-D-13-00589.1 

Swain, D. L., Wing, O. E. J., Bates, P. D., Done, J. M., Johnson, K. A., & Cameron, D. 
R. (2020). Increased Flood Exposure Due to Climate Change and Population 
Growth in the United States. Earth’s Future, 8(11). 
https://doi.org/10.1029/2020EF001778 

Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases 
with water availability. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-
020-70816-2 

Tabari, H., Paz, S. M., Buekenhout, D., & Willems, P. (2021). Comparison of statistical 
downscaling methods for climate change impact analysis on precipitation-driven 
drought. Hydrology and Earth System Sciences, 25(6), 3493–3517. 
https://doi.org/10.5194/hess-25-3493-2021 



44 
 

Thakali, R., Kalra, A., & Ahmad, S. (2016). Understanding the effects of climate change 
on urban stormwater infrastructures in the Las Vegas Valley. Hydrology, 3(4). 
https://doi.org/10.3390/hydrology3040034 

Thibeault, J. M., & Seth, A. (2014). Changing climate extremes in the Northeast United 
States: observations and projections from CMIP5. Climatic Change, 127(2), 273–
287. https://doi.org/10.1007/s10584-014-1257-2 

Thomas R. Karl, Jerry M. Melillo, & Thomas C. Peterson. (2009). Global Climate 
Change Impacts in the United States: a state of knowledge report from the U.S. 
Global Change Research Program. http://hdl.handle.net/1834/20072 

Tiwari, S., Jha, S. K., & Singh, A. (2020). Quantification of node importance in rain 
gauge network: influence of temporal resolution and rain gauge density. Scientific 
Reports, 10(1). https://doi.org/10.1038/s41598-020-66363-5 

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 
47(1–2), 123–138. https://doi.org/10.3354/cr00953 

Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). THE CHANGING 
CHARACTER OF PRECIPITATION. 

Trenberth, K. E., & Zhang, Y. (2018). Near-global covariability of hourly precipitation in 
space and time. Journal of Hydrometeorology, 19(4), 695–713. 
https://doi.org/10.1175/JHM-D-17-0238.1 

Vidal, I. (2014). A Bayesian analysis of the Gumbel distribution: An application to 
extreme rainfall data. Stochastic Environmental Research and Risk Assessment, 
28(3), 571–582. https://doi.org/10.1007/s00477-013-0773-3 

Weathers, M., Hathaway, J. M., Tirpak, R. A., & Khojandi, A. (2023). Evaluating the 
impact of climate change on future bioretention performance across the contiguous 
United States. Journal of Hydrology, 616. 
https://doi.org/10.1016/j.jhydrol.2022.128771 

Weldegerima, T. M., Zeleke, T. T., Birhanu, B. S., Zaitchik, B. F., & Fetene, Z. A. 
(2018). Analysis of Rainfall Trends and Its Relationship with SST Signals in the 
Lake Tana Basin, Ethiopia. Advances in Meteorology, 2018. 
https://doi.org/10.1155/2018/5869010 

Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, 
E. J., Lenderink, G., & Roberts, N. M. (2014). Future changes to the intensity and 
frequency of short-duration extreme rainfall. In Reviews of Geophysics (Vol. 52, 



45 
 

Issue 3, pp. 522–555). Blackwell Publishing Ltd. 
https://doi.org/10.1002/2014RG000464 

Westra, S., Renard, B., & Thyer, M. (2015). The ENSO-precipitation teleconnection and 
its modulation by the interdecadal pacific oscillation. Journal of Climate, 28(12), 
4753–4773. https://doi.org/10.1175/JCLI-D-14-00722.1 

Willems, P. (2013a). Adjustment of extreme rainfall statistics accounting for 
multidecadal climate oscillations. Journal of Hydrology, 490, 126–133. 
https://doi.org/10.1016/j.jhydrol.2013.03.034 

Willems, P. (2013b). Revision of urban drainage design rules after assessment of climate 
change impacts on precipitation extremes at Uccle, Belgium. Journal of Hydrology, 
496, 166–177. https://doi.org/10.1016/j.jhydrol.2013.05.037 

Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004a). HYDROLOGIC 
IMPLICATIONS OF DYNAMICAL AND STATISTICAL APPROACHES TO 
DOWNSCALING CLIMATE MODEL OUTPUTS. 

Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004b). HYDROLOGIC 
IMPLICATIONS OF DYNAMICAL AND STATISTICAL APPROACHES TO 
DOWNSCALING CLIMATE MODEL OUTPUTS. 

Xu, Z., & Yang, Z. L. (2012). An improved dynamical downscaling method with GCM 
bias corrections and its validation with 30 years of climate simulations. Journal of 
Climate, 25(18), 6271–6286. https://doi.org/10.1175/JCLI-D-12-00005.1 

Xue, P., Ye, X., Pal, J. S., Chu, P. Y., Kayastha, M. B., & Huang, C. (2022). Climate 
projections over the Great Lakes Region: using two-way coupling of a regional 
climate model with a 3-D lake model. Geoscientific Model Development, 15(11), 
4425–4446. https://doi.org/10.5194/gmd-15-4425-2022 

Xue-Jie, G., Mei-Li, W., & Giorgi, F. (2013). Climate Change over China in the 21st 
Century as Simulated by BCC_CSM1.1-RegCM4.0. Atmospheric and Oceanic 
Science Letters, 6(5), 381–386. https://doi.org/10.3878/j.issn.1674-2834.13.0029 

Yan, H., Sun, N., Wigmosta, M., Skaggs, R., Hou, Z., & Leung, L. R. (2019). Next-
Generation Intensity–Duration–Frequency Curves to Reduce Errors in Peak Flood 
Design. Journal of Hydrologic Engineering, 24(7). 
https://doi.org/10.1061/(asce)he.1943-5584.0001799 

Yilmaz, A. G., & Perera, B. J. C. (2014). Extreme Rainfall Nonstationarity Investigation 
and Intensity–Frequency–Duration Relationship. Journal of Hydrologic 



46 
 

Engineering, 19(6), 1160–1172. https://doi.org/10.1061/(asce)he.1943-
5584.0000878 

Yong, S. L. S., Ng, J. L., Huang, Y. F., & Ang, C. K. (2021). ASSESSMENT OF THE 
BEST PROBABILITY DISTRIBUTION METHOD IN RAINFALL FREQUENCY 
ANALYSIS FOR A TROPICAL REGION. Malaysian Journal of Civil 
Engineering, 33(1). https://doi.org/10.11113/mjce.v33.16253 

Zhai, P., Zhang, X., & Wan, H. (2005). Trends in Total Precipitation and Frequency of 
Daily Precipitation Extremes over China. 

Zhang, L., Zhao, Y., Hein-Griggs, D., Janes, T., Tucker, S., & Ciborowski, J. J. H. 
(2020). Climate change projections of temperature and precipitation for the great 
lakes basin using the PRECIS regional climate model. Journal of Great Lakes 
Research, 46(2), 255–266. https://doi.org/10.1016/j.jglr.2020.01.013 

Zhang, N., Li, Z., Zou, X., & Quiring, S. M. (2019). Comparison of three short-term load 
forecast models in Southern California. Energy, 189. 
https://doi.org/10.1016/j.energy.2019.116358 

Zhang, R., & Delworth, T. L. (2006). Impact of Atlantic multidecadal oscillations on 
India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33(17). 
https://doi.org/10.1029/2006GL026267 

  

 

 

 

 

 

 

 



47 
 

Table 1. Description of the climate models and climate change scenarios used in the 
study. 

 

 

 

 

 

 

CMIP5 

Source Source ID GCM Scenario Grid Frequency Resolution 

 

NA-

CORDEX 

 

WRF 

GFDL-

ESM2M 

 

hist, RCP8.5 

 

NAM-22 

 

1 hr 

 

0.44° x 0.44° 

HadGEM2-ES 

MPI-ESM-LR 

CMIP6 

Source Source ID Experiment ID Variant Label Frequency Resolution 

 

WRCP 

MIROC6 hist, ssp126, 

ssp245, ssp370, 

ssp585 

r1i1p1f1  

1 hr 

1.4° x 1.4° 

CNRM-CM6-1-HR r1i1p1f2 0.5° x 0.5° 

CNRM-ESM2-1 r1i1p1f2 1.4° x 1.4° 
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Table 2. Bias in terms of mean and standard deviation (St. Dev.) before and after bias 

correction for CMIP5 and CMIP6 models for the baseline period (TS-1: 1980-2019) 

 

 

Statistics 

CMIP5 Models 

Observed GFDL-ESM2M HadGEM2-ES MPI-ESM-LR 

  Before After Before After Before After 

Average 2.67 4.04 2.6 3.06 2.68 3.56 2.51 

St. Dev. 6.62 7.24 6.78 7.11 6.58 6.79 6.39 

 CMIP6 Models 

Statistics Observed GFDL-ESM2M HadGEM2-ES MPI-ESM-LR 

  Before After Before After Before After 

Average 2.67 3.04 2.69 3.36 2.65 3.30 2.68 

St. Dev. 6.62 6.06 6.77 6.60 6.71 6.13 6.77 
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Figure 1. Location map of the study area showing Town of Willoughby, Ohio, USA 
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Figure 2. IDF curves for the baseline period (TS-1: 1980-2019) vs. the near future (TS-2: 

2020-2059) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP5 RCP8.5 models

Figure 3. IDF curves for the baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 

2060–2099) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP5 RCP8.5 models
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Figure 5. IDF curves for the baseline period (TS-1: 1980–2019) vs. the near future (TS-2: 

2020–2059) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP6 SSP126 models
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Figure 4. Graphical comparison showing the rainfall intensity percentage change between the 

baseline period (TS-1: 1980–2019) vs. the near future (TS-2: 2020–2059), on the left, and the 

baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 2060–2099), on the right, for different 

return periods and rainfall durations of CMIP5 RCP8.5
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Figure 6. IDF curves for the baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 

2060–2099) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP6 SSP126 models

Figure 7. IDF curves for the baseline period (TS-1: 1980–2019) vs. the near future (TS-2: 

2020–2059) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP6 SSP245 models
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Figure 8. IDF curves for the baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 

2060–2099) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP6 SSP245 models

Figure 9. IDF curves for the baseline period (TS-1: 1980–2019) vs. the near future (TS-2: 

2020–2059) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP6 SSP370 models
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Figure 10. IDF curves for the baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 

2060–2099) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP6 SSP370 models

Figure 11. IDF curves for the baseline period (TS-1: 1980–2019) vs. the near future (TS-

2: 2020–2059) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP6 SSP585 models
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Figure 12. IDF curves for the baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 

2060–2099) considering a 2, 5, 10, 25, 50, and 100-year return period ensembling three 

CMIP6 SSP585 models

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

R
ai

nf
al

l I
nt

en
si

ty
 (m

m
/h

r)

Rainfall Duration (hrs)

T= 2 Yrs (TS-1) T= 2 Yrs (TS-3)

T= 5 Yrs (TS-1) T= 5 Yrs (TS-3)

T= 10 Yrs (TS-1) T= 10 Yrs (TS-3)

T= 25 Yrs (TS-1) T= 25 Yrs (TS-3)

T= 50 Yrs (TS-1) T= 100 Yrs (TS-1)

T= 50 Yrs (TS-3) T= 100 Yrs (TS-3)

0
5

10
15
20
25
30
35
40
45
50

2 5 10 25 50 100

Pe
rc

en
ta

ge
 In

cr
ea

se
 (%

)

Return Periods (Years)

1 hr 2 hr 6 hr 12 hr 24 hr

0

10

20

30

40

50

2 5 10 25 50 100

Pe
rc

en
ta

ge
 In

cr
ea

se
 (%

)

Return Periods (Years)

1 hr 2 hr 6 hr 12 hr 24 hr

Figure 13. Graphical comparison showing the rainfall intensity percentage change between the 

baseline period (TS-1: 1980–2019) vs. the near future (TS-2: 2020–2059), on the left, and the 

baseline period (TS-1: 1980–2019) vs. the far future (TS-3: 2060–2099), on the right, for 

different return periods and rainfall duration of CMIP6 SSP585
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Figure 14. IDF curves for the near future period (TS-2: 2020–2059) considering a 2, 5, 10, 

25, 50, and 100-year return period ensembling three CMIP5 RCP8.5 vs. CMIP6 SSP585 

models

Figure 15. IDF curves for the far future period (TS-3: 2060–2099) considering a 2, 5, 10, 

25, 50, and 100-year return period ensembling three CMIP5 RCP8.5 vs. CMIP6 SSP585 

models
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Chapter 3: Recommendations 

Over the 21st century, it is highly probable that climate change will have a discernible 

impact on the distribution and intensity of rainfall. This, in turn, raises concerns about the 

capacity of our water drainage systems to cope with the anticipated surge in intense 

precipitation. The aim of this research work was to establish the relationship between 

intensity, duration, and frequency on an hourly scale using the CMIP5 and CMIP6 climate 

models under various climate change scenarios. Furthermore, the IDF curves generated 

from CMIP5 models for RCP8.5 and from CMIP6 for scenario SSP585 were analyzed and 

compared. The IDF curve was developed and extended to a temporal scale of one hour 

using simulated precipitation data for historical and future periods from climate models. 

However, this study has limitations and suggests some directions for future studies. This is 

because the use of a limited number of models and scenarios may not represent the full 

range of uncertainty in the future. For example, future research is needed to incorporate 

several GCMs to understand the combined effects of these uncertainties with other sources 

of variability, such as land use change, natural internal weather variability, lake-

atmosphere-land interaction, and so on. GCMs and RCMs both produce results with 

significant uncertainty, which calls attention to the necessity for uncertainty analysis and 

probability-based IDF curves. The climate model bias correction procedure has its own 

limitations. Future-period data that has been adjusted for bias uses the assumption that the 

bias is the same as the bias in the control period, which may not always be the case and 

may thus affect the results of the corrected data. Therefore, the design process should 

incorporate new ways to deal with and quantify uncertainty in the event of analyzing the 

effects of climate change. Despite these shortcomings, the study provides useful data for 
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city planners, engineers, and decision-makers to reduce the devastating effects of floods in 

the Town of Willoughby through the implementation of long-term, sustainable flood 

control measures.  

In conclusion, the research highlights the significance of updating the current IDF curves, 

which might be helpful for the design of water management infrastructure to account for 

the consequences of climate change. There is a pressing need to review and update the IDF 

curve for the future, as the effects of climate change have already been noticed in this 

region. Further study can be conducted to incorporate several GCMs and conduct 

uncertainty analysis to report the lower and upper bounds of the IDF curve. In order to 

create a more resilient infrastructure system against climate change, state and federal 

agencies need to incorporate the future IDF curve in the design. 
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