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Abstract

This paper will be exploring the theory of differential equations through a specific example.
We will build up the theorems to guarantee a solution. Then we will explore a power series
solution. With the power series solution we are able to notice some similarities to a famous
type of differential equation. We will then build up the theory behind these equations know
as Bessel functions and finally be able to write our solution in terms of them. We will also
explore generalizations of our equations and see if we can say anything about how their
solutions may look.
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Introduction

We start with a simple question. Can we find a particular solution to the differential equation
y' = y? + 2? with y(0) = 07 This turns into a dive into the many different areas of nonlinear
differential equations. The first question you must ask when examining nonlinear differential
equations is if they even are guaranteed to have a solution. This will take us into the world
of Banach spaces and contraction mappings. These will allow us to show that all differential
equations of a certain form have a solution and we will see that ours will satisfy this. After
finding a power series solution, we can recognize our solution in terms of Bessel functions.
Finally it will be nice to explore and see if we can say anything about the equation vy’ = y"+z"
for any n € N.

Preliminaries

We will begin our exploration of differential equations first by recalling some facts about the
real line building up to R being a complete metric space. This fact we be useful later when
exploring existence and uniqueness of solutions for differential equations.

Definition P.1: A metric space (X, d) is a set X equipped with a function called a metric
d: X x X —[0,00) such that for all z,y,z € X,

dz,y) =0 < x=y (1)
d(z,y) = d(y, v) (2)
d(z,z) < d(z,y) +d(y, 2). (3)
Some examples of metric spaces include (R,d) where d(z,y) = |z — y| and (C,d) where

d(z,y) = /(@ — y) & —p).

Definition P.2: Let {x,},en be a sequence of points in a metric space (X, d). {2, }nen
converges to a point x € X if for each € > 0, there is a N € N such that if n > N then
d(z,z,) < e.

Definition P.3: Let {z,}.cn be a sequence of points in a metric space (X,d). {z,}nen is
Cauchy if for each € > 0, there is a N € N such that if n,m > N then d(x,,z,,) < €.

Notice the key difference here in these definitions being a sequence converges if the points
get, arbitrarily close to one point in the space whereas a Cauchy sequence is one whose points
get arbitrarily close to each other. We now introduce a concept relating the two ideas.

Definition P.4: A metric space (X, d) is complete if every Cauchy sequence converges to a
point in the space.

The important part of this definition is that the sequence must converge to a point in the
space, this is highlighted in the following example.

Example P.5: Consider Q with the standard metric being the absolute difference of two
elements and the sequence {z, }neny € Q where 7 = 3,29 = 3.1, 23 = 3.14, 24 = 3.141, . ...




This is a Cauchy sequence in Q that converges to m which is know to be irrational. Hence
Q with the standard metric is not complete.

To build up to showing that R is complete with the standard metric we will require a few
definitions and lemmas beforehand.

Definition P.6: A sequence of points {z,},en in R is bounded if there exists a number
M > 0 such that |x,| < M for each n € N

Definition P.7-10: Let {z,},en be a sequence of points in R. If for each n € N,

(7) 2, < xpqq then {2, }nen is increasing.
(8) z, < xpy1 then {x, }nen is strictly increasing.
(9) z, > x,.1 then {z,},en is decreasing.

(10) =, > w11 then {x, }hen is strictly decreasing.

Definition P.11: A sequence of points {z, },en in R is monotonic if the sequence is increas-
ing or decreasing.

Lemma P.12: If {z,},en is a monotonic and bounded sequence of points in R then it
converges.

Proof. First suppose that {x, },en is increasing and bounded. Since our sequence is bounded
there exists a supremum = € R. Let € > 0, then x — ¢ is not an upper bound for {z, },en.
So there is a N € N such that zy > x —e. Now since {z, } ey is increasing for any n > N,
we have © —e < z,, < x+¢. Hence |z, — 2| < € and {2, }nen converges to x. The case where
our sequence is decreasing follows similarly. O

Definition P.13: Let {x,},en be a sequence of points and {n;},cny be a strictly increasing
sequence in N. Then {x,, }ien is a subsequence of {x,}nen.

Lemma P.14: Every sequence in R has a monotonic subsequence.

Proof. Let {z,}nen be a sequence in R. We say x,, is a turn back point of the sequence if
x, < x,, for all n > m. If there are infinitely many of these points then the subsequence of
them is monotonic. If there are finitely many let x,, be the largest of these points. Then
there is a z,, > x,, where ny > n;. Furthermore since x,, was the last turn back point
there is a x,, > x,, with ng > ny. Constructing this sequence inductively, we arrive at a
increasing subsequence {z,, }ren. O

Proof. By the previous Lemmas we have that every bounded sequence has a monotonic-
subsequence. Then that sequence would be bounded and monotonic and thereby converge.

O

Theorem P.16: R with the standard metric is complete.




Proof. Let {x,}nen be a Cauchy sequence in R. First note that Cauchy sequences are
bounded so by the Bolzano Weierstrass Theorem {z, },en has a subsequence {z,, }ren that
converges to some x € R. Now to see that {z,},en converges to z. Let ¢ > 0 and choose
N € N such that if n,m > N we have,

€
|Tn — T < =.

2

Now chose K € N such that if £ > K then,
€
|z, — 2| < 3

Now suppose m > N, if we choose n; such that n, > N and k£ > K we have that,

e €
|xm—x|§|xm—xnk|+|xnk—x|<§+§:5.

Hence {z, }nen converges to x. Thus since {z, },en was arbitrary we have that R is complete
with the standard metric. O
One last important idea we will discuss are contraction mappings and fixed points.

Definition P.17: Let (X, d) be a metric space and f : X — X. Then f is a contraction if
there is a « € [0, 1) such that d(f(z), f(y)) < ad(x,y) for all z,y € X.

Notice by the above definition that all contractions are continuous. An important idea about
contraction mappings is highlighted in the next theorem.

Theorem P.18: (Contracting Mapping Theorem) If f : X — X is a contraction on a
complete metric space (X,d) then f has a unique fixed point i.e. Jlz € X such that

f(x) = 2.

Proof. First for uniqueness suppose that f : X — X has two fixed points z{, x5 € X and let
a be the contraction constant of f. Then d(f(x1), f(z2)) < ad(xy,x2). Since x1, x5 are fixed
points we have d(z1,x2) < ad(x,x3). Since a < 1 it follows that d(xq1,22) = 0 or z1 = 5.
Now for existence let xy € X and for each n € N let z, = f(x,_1). Consider the sequence
{zn}02,. First if n € N then,

d('xn-i-la In) = d(f(l‘n), f(xn—l)) S ad(xn7 xn—l)
= ad(f(zn-1), f(2n—2) < &?d(Tn2, Tn—3)

< o™(d(zq, x0).



Now if n,m € N with n > m then,

d($n7 {Em) S d($n> xn—l) + d<xn—17 xm)
S d(ZEn, xn—l) + d<xn—17 I’IL—Q) + d(xn—% xm)
S («rm xn—l) + d(xn—la xn—2) + d(xn—% xn—S) +---+ d<xn—(n—m—1)a xm)
<

Lo a4 ™) d (2, )

d
Q" Hd(xy, o) + a2 (d(1, ) + " (d(w1, w0) + - ™ (d(w1, o)
(a
am(an, m—1 + an, m—2 + Oé'n,—m—3 + .. Oé)d(xl,ﬁi'o)

o0

Notice that Y o is a convergent geometric series since o < 1. Hence for any n,m € N
k=0

with n > m we have,

TTL

901, l’o)~

oo
d(xy, Tp) < ™d(x1, 20) Zak
k=0

Let € > 0 and choose N € N such that d(ml, zg) < €. Thus if n > m > N we have,
d(xp, ) < €.

Hence {z,}:°, is Cauchy and since (X, d) is complete it converges to some x € X. Finally
to see that this x is our desired fixed point observe since contraction maps are continuous
we have that {f(z,)}22, — f(z), but {f(z,)}22, = {xn}22, by how we define our sequence.
Thus by uniqueness of limits of sequence we have that f(z) = x. U

Picard’s Existence and Uniqueness Theorem
To start with our examination of our differential equation, 1 = y? + 2? with the initial

condition y(0) = 0, let us look at the direction field of it and see if we can extract any
information from it.
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Notice that as one would expect nearby the origin we have almost zero slope due to the
squaring of each term in our differential equation. Furthermore as soon as we cross the line
y = +1 we begin to shoot of very fast in positive and negative y respectively. So we might

be inclined to say that our solution might look like tan or a z2"*! for some n € N.

One the most important ideas in differential equations is when we can guarantee a solution
to a given differential equation. In this section we will build up to an important theorem

regarding this and then be able to apply this to our differential equation.

Definition 1.1: A Normed Vector Space or simply a Normed Space is a vector space V' over

the complex numbers with a function ||.||

Note here |a| =

Proposition 1.2: Let (V,||.||) be a normed space and define

by,

then (V) d) is a metric space.

llz]| =0 <= 2 =0y
[l || = |af * |||
[z +yll <l + Iyl

d:VxV —]0,00)

d(z,y) = |lz = yl|

Vvaa, so if a € R then we get the absolute value of «.

: V' — [0, 00) such that for all z,y € V and a € C;

Proof. First note if z,y € V we already have that d(z,y) > 0 by how the norm is defined.
Now for z,y € V we have that,

dz,y)=llz—yl|=0 <= 2-y=0 <= z=y.



Now for symmetry if x,y € V then,
d(x,y) = |l =yl = (=D = 2)|| = [(=D)]* [ly — z[| = d(y, z).
Lastly for the triangle inequality if z,y,2 € V, then
d(x,z) = |lr — 2|l =[x —y +y — 2| < |z =yl + [ly — 2| = d(z, y) + d(y, 2).

Hence d is metric on V. O

We will say the metric defined above is induced by the norm.

Definition 1.3: A complete normed space with respect to the metric induced by the norm
is a Banach Space

Proposition 1.4: The space Bla,b] = {f : [a,b] — R : f is bounded} with || f|| = sup{|f(z)] :
x € [a,b]} is a normed space.

Proof. Firstly by how ||.|| was defined, ||f|| > 0 for all f € Bla,b]. Now observe that,
|fll=0 <= f(z)=0Vzx € [a,b] <= [ =0.
Now if @ € R and f € Bla,b] then,
laf|] = sup{|af(z) - x € [a.0]} = [a| sup{|f(z)| : = € [a.0]} = [a] * [[f]].
Finally if f,g € Bla,b] and z € [a, ]
[(f +9)@)| < [f(@)] + lg(@)| < £+ llgll-

And since the above is true for all  we have that ||f + ¢|| <||f|| + ||g||. Thus (Bla,b],|.|])
is a normed space. O

Theorem 1.5: Bla,b] is a Banach space.

Proof. Let {f,}nen be a Cauchy sequence in Bla,b]. Let £ > 0, then there is a N € N such
that || f, — fm|| < € for all n,m > N. Thus we have that,

(@) = fn(2)] < |[fn = [l <€

for each « € [a,b]. Thus {f,(z)} is a Cauchy sequence in R for each = € [a,b]. Now R is
complete so for each z let f(x) be the limit of {f,(x)}. Now Cauchy sequences are bounded
so there is M > 0 such that || f,|| < M or for each « we have that,

()] < ([ ful| < M.

Thus as we take n — oo we see that |f(z)| < M for all € [a,b]. Thereby f € Bla,b).
Finally to see that f is indeed the limit of {f, },.cn, let © € [a,b] and n > N then,

Jim [fi(2) = fa(@)] = [falz) = f(2)] <<

Since this was true for any z € [a,b], we have ||f, — f|| < €. Hence {f,}nen converges to f
and Bla,b] is a Banach space. O



The following is an important lemma regarding closed subspaces of Banach Spaces.
Lemma 1.6: A closed subspace of a Banach Space is a Banach Space.

Proof. This follows directly from the fact that closed sets contain all their accumulation
points. Let B* C B where B is a Banach Space and B* is closed. If {x, },en is a Cauchy
sequence in B* then {x,},cn is a Cauchy sequence in B. So it has a limit point = € B. But
as we said x € B”* since it is closed. Hence B* is a Banach Space. O

Definition 1.7: Let U be an open subset of R?> and f : U — R. f satisfies a Lipschitz
condition in y on U if IM > 0 such that

|f(2,92) — f(z, 1) < Mlya — 1

for all (x,11), (x,y2) € U.

Theorem 1.8: Let U be an open subset of R? and f : U — R such that the partial derivative

in y exists everywhere and is bounded on U. Then f satisfies a Lipschitz condition in y on
U.

Proof. Since f, is bounded on U there is an M > 0 such that | f,(z,y)| < M for all (z,y) € U.
Let (z,y1), (z,y2) € U. Without loss of generality suppose that y; < yo. Then by the Mean
Value Theorem there is a ¢ € (y1,y2) such that,

f(x7y1) — f<x7y2)

= f,(z,c).
Y2 — W (7€)
So we have,
|f (@ y1) = fla,y2)l = [ fy( llyz — ya| < Mly2 — -
Hence f satisfies a Lipschitz condition in y on U. O
Let us now take a moment to examine our differential equation. Write v/ = y? + 22 as
y = f(z,y) where f: R? = R by f(x,y) = y? + 2%. Furthermore, if we restrict f to some
open ball U about the origin with radius » > 0. Then g—g = 2y < 2r. Hence the partial

derivative exists and is bounded on U. Thus by Theorem 1.7 f(z,y) = y* + x* satisfies a
Lipschitz condition in y on U.

This fact along with the next theorem will show that our differential equation is guaranteed
a solution and will give us some insight on what that solution might look like.

Theorem 1.9: (Picard’s Existence and Uniqueness Theorem) Let U be an open subset of
R? and f : U — R be a continuous function satisfying a Lipschitz condition in y on U with
(0,Y0) € U. Then there is an € > 0 such that Z—Z = f(z,y) has a unique solution y = p(z)
on [rg — &, xg + €] with p(zo) = vo.




Proof. Since U is open there is a § > 0 such that the closed ball, B((z¢,¥0),0) C U. Let
K = max{|f(z,y)| : (z,y) € B((z0,v0),d)} and M > 0 be the Lipschitz constant for f. Now
choose € > 0 such that e < 57 and N = [z — &, 20+ €] X [yo — Ke,yo + Ke|] C B((x0,40),9)-
Define now a map

A:Clxy—e,x0+¢] = Clrg — e, x0 + €]

by,
A(9)](z) = vo + / " ftg(t)) di

Unfortunately here A may not be a proper map on Clzy — €,z + €] since there may be
functions g € Clxg — &,x¢ + €| such that (¢,9(t)) € U, i.e. f(t,g(t)) is not defined. So
we consider a closed subset C C Clzg — &, x9 + €] where if h € C then h(z) = yo and
|h(z) —yo| < Ke. Now if h € C and x € [xg — €,z + €] then clearly [A(h)](z0) = yo and we
have,

A —wol = | [ FE0(0) dt'

< / (R de
/Kdt

=(z—x9)K
< | — x| K
< Ke.

Hence A(h) € C so we have A : C' — C. Now let p;,ps € C and z € [z — €, 2 + €] then,

[Ap)I(z) = [A(p2)](2)] =

/ftpl F(t.pa(t)) b
< [ Vst - o)l
/M\pl pa(t)] dt

—M/ p1() = pa())]

< |z — zo| M max{|pi(z*) — po(z*)| : 2* € [xg — £, 20 + €]}
< eM||p1 — pa|.

Since this holds for all T € [vg — &,20 + €], we have [[A(p1) — A(p2)|| < eM|[p1 — pall.
Observe that e M < J\I — 1, giving us that A is a contraction on C. Since as we saw with



Bla,b], Cla, b] is a Banach space and C'is a closed subset of C[a, b] and thus a Banach space.
Thereby there is a unique y € C such that A(y) = y. In other words y satisfies the equation,

y(z) = yo + / F(t,y(t)) dt.

Converting that back into a differential equation we have,

dy

L= Jy®) 5 ylao) = wo

O

The theorem above now allows us to guarantee a solution to the equation 3’ = y* + 22 with
the initial condition y(0) = 0. Now whether or not the solution has a closed form we still
have to figure out. However if we take advantage of the proof of Theorem 1.18 we can gain
some insight into what the solution will look like. Notice that we showed that if f(z,y)
satisfies a Lipschitz condition in y then y(t) = y(zo) + ffo f(t,y(t))dt is a contraction on
the space of bounded functions. Thus if we start with an initial guess that goes through our
initial condition we can build a sequence that will converge to our solution. This technique
is known as Picard Iteration. First, to see this more clearly, let us consider a classic example.

Example 1.10: Consider the differential equation ¢y’ = y with the initial condition y(0) = 1.
We can rewrite this as an integral equation y = 1 + foz y(t) dt. Famously this has solution
y = e*. If we want to apply the technique of Picard Iteration, let us start with an initial
guess yo = 1. Then,

y1:1+/ yo(t)dt:1+/ ldt=1+ux
0 0

T T 2
0 0

x ZL‘2 $3
y3=1+/ Yo(t)dt=1+2+ —+ —
0 2 6

x .%'2 333 "

Y +/O?J 1(2) ettt

Notice that the lim y, = > i—l,c which is the power serics expansion for e*. Now let us see

what happens when we apply this technique to v’ = y? + 2%

Example 1.11: We will start with an initial guess of yy = x since we want y(0) = 0.
Running a short Matlab code to calculate some of the terms we have,




‘ 2 2 i 2 22°
0+ [ yol(t)" +t7dt = t+tdt:?

N =
2t 2246 2247 3
= —— t2dt = 4 Pdt= -
0<3)+ / - 73 3
2 t3 ) I7 231,11 24ZL‘15
— — t° dt =
vs / <7<32>+ 3) * 3 +32<9>+33<7><n>*34(5)(7%
—/z (t)2+t2dt—x3—|— vy e
ey T3 B B | 3(6)(7)(10)
24(37)x? 2533123 28227 28731

35(72)(11)(19) | 37(5)(79)(112)(23) | 3U(5)(7)(11) 311 (58)(7)(31)"

Figure 2: Plcard I[terations for n =10 of y = y? + 22
08| I

0.6 r
04 r

0.2 r

_02 L
04|
_06 =

-0.8

|
|
|
|
|
|
|
|
|
|
|
0 = |
|
|
|
|
|
|
|
|
|
|
|
|
|

-4 2 0 2 4

As you can see the terms for this sequence blow up a lot faster then in the previous example.
So while we may not be able to extract a closed form using this technique we do gain some
insight into what a power series solution might look like. Notice that since t? is always in
our integral we end up with a ””—33 as the first term of our solution. Also we always will go up

by powers of 4 and we see we have an asymptote forming around z = v/2, but slightly larger
than directly at v/2.

Power Series Solution

To employ the technique of power series solutions for differential equations we need to find
a way to rewrite our equation into a linear differential equation. Luckily for us ¢’ = 2 + 22
is a special type of differential equation.

10



Definition 2.1: A Riccati Equation is a first-order differential equation of the form
y'(z) = alw) + b(x)y(x) + c(w)y*(x)

where a(z) # 0 and ¢(x) # 0.

“There is no general way to find a particular solution, which means that one cannot always
solve Riccati’s equation. Occasionally one can get lucky.” [2] Based on the title of this section
you would be fair to assume we got lucky. This luck comes from a powerful technique for
these equations highlighted in the next lemma.

Lemma 2.2: A Riccati Equation can be converted to a second order linear differential
equation.

Proof. Consider the Riccati Equation ¢/(x) = a(x) + b(z)y(x) + c(x)y*(z) and let y = GO
Then y/ = =% + (Colan 2% 50 we have,

(c)u?
" (u/)2 Ju' —u o' 2
t et =a+b—tc| —

cu  (u?  ctu cu cu
<~
" A !
—=a-+b
cu o ctu cu
<~

cu” — du' — beu' + ac*u = 0.
O

Thus for the equation ¢’ = y*+ 2, since we have ¢(z) = 1, we make the substitution y = _T“/

giving us,

u +uz?=0.

Thus we have converted our first-order nonlinear differential equation in y into a second-
order linear differential equation in u. Now before we proceed with our power series solution
we need one more definition that will allow us to write our solution in a cleaner way.

Definition 2.3: For n € N J{0} the Factorial Function (t), defined for all t € R is given
tt+1)(t+2)...(t+n—-1 ifn>1

by (1), = JHEFDE2 (1)
1 ifn=0

Theorem 2.4 The equation u” + uz? = 0 has a power series solution of the form u(z) =

o Z 1_, ( ) + ap Z (nh)( H)_”)n (%)4n+1'

11



00

Proof. As with a typical power series solution we will guess that u(z) = Y a,z™. This gives
n=0
us,

oo

u(zx) = Z anx"

n=0

o
u'(z) = Z apnz"

n=1

u'(z) = an(n)(n — )",

Substituting these into our differential equation we have,

Z an(n)(n —1)z" 2 + z? Z apx” =0
n=2 n=0

<~
Z an(n)(n —1)a" 2 + Z apr"? = 0.
n=2 n=0

Our goal now is to write the left hand side as one series. This is achieved by re-indexing the
second series to n — n + 2 and the first series to n — n — 2.

Z apia(n+2)(n+1)z" + Z a,_2x" = 0.
n=0 n=2
Now we may pull the first two terms of the first series off to combine the two as one series,

30’2 + 6(131' + Z(an+2(n + 2)(” + 1) + Clan)SCn = 0.

n=2

Since we have the right hand side being equal to zero we know that each term of our series
must be zero for all x giving us,

12



apg = Qo ay = ax

Ao — 0 as = 0
—ag a —ay
A = —— [ ——
E) " h4)
g — a7 =
o ay
ag = Qg =

0y = (=1)"ao
" dn(dn —1)(4n — 4)(4n —5) ... (4)(3)
_ (=1)"ay
Wl = (g + 1) (4n)(dAn — 3)(dn — 4) ... (5)(4)
A4nt2 = 0
A4qn+3 = 0.

Notice that for the terms not equal to zero we can rewrite them in a clever way as such,

An(dn —1)(4n —4)(4n —5)...(4)(3) =4n(dn —4)(4n —8)...(dn — 1)(4n —5) ...
1 1 1

=4"(n!)(4")(n — Z)(n —-1- 4_1) (1= Z)
1

=2"nl(1 = 2),.
nl(1- )

Similarly we get that (4n + 1)(4n)(4n — 3)(4n — 4)...(5)(4) = 2*"n!(1 + 1),. So we have
that,

0 - (=D)"ag
an 24rnl(1 — zl;)n
—1)"a
Aqp+1 = ( ) .

24nnl(1 + }1)”

So we may write our series solution as,

OZ i G ey i ()

So with the solution above we now have a general solution to v/ = y? + 22 given by,
n+14n 4n— 1 (=)t (4n+1) [g\4n
@0 Z 2<n'> (‘) Z ¢ 2N D (5)

_ —1)n 2\ 4n+1
E%U +ar ) Gy (5)"

n

y(z) =
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You may notice an issue here with this solution. We started with a first order equation so
we should only have one unknown. But notice what happens when we plug in our initial
condition y(0) = 0. The first series on top will go to 0 but the second has the constant term
leaving us with —a,. Likewise on the bottom we will be left with ay. Hence a; = 0 and so
the ag terms cancel giving us our particular solution,

"+1 n (z\4n—1
Z 2((n'1) 1_f) (5)

If we were to expand out the first few terms of each series we have,

s
3

=G T e
2134
1 - 22_(3) —l_ PR

y(r) =

If we were to cut of the bottom after the first two terms we see we would have a vertical
asymptote at z ~ v/12. Which is indeed slightly larger than /2, as v/12 = 1.86120971 . ...

If you have studied differential equations before you may know why we chose to write our
solution in that specific way, specifically why we wrote the (1 — i)n term in the denominator
like that. This idea will be highlighted in the next section.

A Detour into Bessel Functions

As the title suggests we are going to take a slight detour into Bessel Equations and Functions.
These functions as we will see will be closely related to our solution to the differential equation
we found.

Definition 3.1: For v > 0 a linear second order differential equation of the form,

2%y"(x) +ay'(2) + (2% = 1*)y(x) = 0
is called a Bessel Equation of order v.

Before we may find solutions to these equations we require a bit of background theory in
solving second order equations.

Definition 3.2: For a differential equation of the form a(z)y”(z )+b( W (z) +c(x )y( ) =0,
a point xg is an ordinary point if both
xo with a positive radius of convergence 1e the gunctlon is analytic at xg. Otherwise, we
say xg is a singular point.

Note that in the above definition we are using analytic in regards to real-valued functions
only. As this will be all we need in our study here. However, there is an analogous definition
for complex-valued functions.

14



Observe that for the Bessel Equation, 735 = & = < and z((i; = mzm_;ﬂ =1- ;—z So we have

a single singular point at 0 since neither function is differentiable at 0.

Definition 3.3: A singular point zy of a(z)y"(z) + b(z)y'(z) + c(z)y(x) = 0 is a reqular
singular point if both (x — xg)% and (r — x0)2% are analytic at zo. Otherwise, x is a
irreqular singular point.

With the singular point xq = 0 found above for the Bessel equation notice that, (x—xo)% =
1 and (x — z¢)%c(z)a(z) = 2* — 2. So 0 is a regular singular point.

Definition 3.4: If x( is a regular singular point of a(z)y”(x) + b(z)y'(x) + c(z)y(z) = 0,
then the indicial equation for xg is the equation

r(r—=1)4+pr+q=0

where

p= Ili_glo(x — xo)% and ¢ = IIE?O(:C — xo)z%.

~—

We call the zeros of this equation the indices of the singularity xy.

Circling back to the Bessel Equation and the regular singular point 0, notice p = 316131(1) (x)i =1
and ¢ = llg(l] 2%(1 — ;—2) = —v?%. So the indicial equation for 0 is r(r — 1) +r —v* = 0. So we
see our indices are r = *£v.

Before we proceed with the Bessel Functions we need will need to consider some ideas and
properties of the Gamma Function.

Definition 3.5: The Gamma Function is the function I'(x) = fooo e~'t*~1 dt defined for all
complex numbers with real part greater than zero.

We have an important result for this function relating it to the factorial function defined
earlier.

Lemma 3.6: For x € (0, 00). Fgfc(::;l) = ().

Proof. Proceeding by induction, for n =1

C(x+1) = / e T dt
0

= (—e "+ / e tat® 1 dt
0

= :):/ et dt
0

= zl(x).

15



So we have (a’(:)l) = (z); = . Now if we assume that for some k € N that Z2H) — (z),

I(z)
then

Tz+k+1)= / et tR at
0

— (= etk /0 et + k) e

= (z+k) / et at
0
= (z+ k)'(z+ k)
= (z +k)(2)sl(z)
= (@)g1 ' (2).
Thus for all n € N we have gf”(;i)") = (), O

Theorem 3.7: For a Bessel equation x2y”(z) + zy/(z) + (2* — v?)y(z) = 0, where v > 0, if
v & 7 then we have two linearly independent solutions of the form;

Tolw) = ; n!F(i_%—lI)/n—}- n) (g)Qan

Tolw) =2 ; n!r(i__l)yl n) (3)2 '

Here J,(x) is called the Bessel Function of the first kind of order v.

Proof. Recall that for the Bessel Function we have one regular singular point at zo = 0
with the associated indices being +v. We guess a power series solution of the the form

y(x) = > a,a™" then,

n=0

Substituting these into our equation we have,

Z apn(n+r)n+r—1)a"™" + Z an(n 4 7)™ 4+ (2% — %) Z T =

n=0 n=0 n=0

16



Combining like series we have,

Z[(n +r)n+r—1)+ (n+7r)—1a,z"" + Z apz" T =0,
n=0

n=0

Finally re-indexing allows us to write the powers series as one,

[(r)(r = 1) + (r) = v*]agz” + [(L 4+ 7)(r) + (1 +r) — v*]agz™*"

+ Z([(n +r)n+r—1)+n+71)—va, + apo)z™ = 0.
n=2
Observe that the piece with the agz” term is the indicial equation which we saw had roots
+v. So both v and —r will produce power series solutions to the Bessel equation. Now
solving for the other coefficients we have,

agp = Qo ap =0
2= +4v a =0
ap 0

ay, = as =

YT (16 + 8v)(4 + ) i
0 — (=1)"aq

2 ((2n)2 +4nv)((2n —2)2+2(2n — 2)v) ... (4 + 4v)
azp1 = 0.

Now as we saw with our power series solution to u” + z%u = 0 there is a slick way to rewrite
the denominator of our terms as follows,

((2n)* + 4nv)((2n — 2)* +2(2n — 2)v) ... (4 + 4v)
=4"(n+nw)(n®> —2n+ lnv —v)(n® —dn +4+nv —2v) ... (1 +v)
=2""(n)(n+v)(n—1)n+v—1)n-2)n+v—-2)...(1)(1 +v)
=2 (n)) (1 + v),.

Hence we have that,

- (_1)71, 2n+v
yi(x) = ag Z —22”n!(1 ) x
n=0 n

G (_1)n 2n—v
y2(7) = bo Z —22"n!(1 ) T .
=0 n

Finally if we make the substitution ag = % notice by Lemma 3.7 we have,
_a o D) o (D (I)W
1) = S0 ;22"n!(1+u)nx _Clgn!F(1+V—l—n) 2 '

17



Cc2
2-vI(1-v)

va() = ez ni"% n!r((__l)yn+ n) (9%

A similar substitution of by = gives us,

O

Now there are Bessel functions of other kinds, but for our study we will only need to consider
the Bessel Function of the first kind. Below are some graphs of different v values for the
Bessel Function.

Figure 3: Graph of Jy(z)

0.8 -

04 -

Figure 4: Graph of J(z)
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Back to ¢ = y* + 2

Now let us circle back to our original goal of finding a solution to y’ = 3? + 2. Notice that
in the proof of Theorem 3.6 before we introduced the Gamma function, the solutions found
for the equations u” 4+ x?u = 0 are eerily similar. Notice that for the first summation if we

let v = 1 and qp = iy then,
Y it (3)" =0 e ()

- CUW_/Q; (n!)F((l_l)Z—l—n) g)Wé
- CO\/x_/Qnio% (n!)r((i)z +n) (x_z)%i
- CU\/I_/Qni:O (n!)F((l_i)V +n) (x_z)%—”
- CU\/”j_/ang (n!)r((i)u +n) (%)2_
= con/x /27, (%2)

Similarly, a, nzo—m (5" = eiv/a/20, (%) where ar = ity

To further highlight why we are obtaining Bessel functions in our solutions, consider the
substitution to v’ + z*u = 0 of u(z ) = ( x/2) (”—2) Notice then that

u'(x) = \/LE ( 41x*v( ) + 2z (% °) + 230 "(% )) Thus substituting that into our differen-

tial equation of u we have,

0=1u"+ 2%
. 1 -1 %3 :1;2 I 9 % ’ x2 I % " .732 i % :L‘2
= \/i 1 Xr 20U 5 r2v 5 r2v 5 xT2v B .

Multiplying through by z*/? we get that,



Finally if we introduce the substitution ¢t = %2 we arrive at,

0 = 462" (1) + 440/ (1) + (482 — i)v(t)
— A(20(8) + (1) + (12 — %G)U(t))

or,

1

0= t20"(t) + tv'(t) + (* — T

Ju(t).

Notice that the above equation is the Bessel equation of order i. Since v € Z we have
solutions of the form J; /4(t) and J_;,4(¢). Which going backwards through our substitutions
we see that is indeed what we had gotten from our power series solution.

Now if we want to write our solution fully in terms of Bessel functions we first need to see
what derivatives of them look like. This is captured in the next lemmas and theorem.

Lemma 4.1: L (2" J,(z)) = 2"J,_1(z)

Proof. Observe that,

@iy (A e
%(:): (@) = dz” ; n!l'(1+v+n) (5)
B d i (_1)71 x2n+21/
- dx nI'(14+v+n) \ 220+

n=0

B io: (_1)n(2n + 21/) p2nt2v—1

B —~ nll(l+v+n) 22ty

B i (_1)71(2n+ 21/) p2n+2v—1
B n'(v+n)(v+n) \ 22t

n=0
B i (_1)772 x2n+2u—1
B —nll'(v+n) \ 220t

> (_1)n x2n+2u71

n=0
N Zae e
- nZ:()n!F(V+n) (5)
=a"J,1(x).

Lemma 4.2: L (27 J,(2)) = —27"J,41(2)
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Proof. As we saw before notice that,

[e9]

d . _, _d (=" AN
@) = e ;%n!r(1+y+n)<2)
Cdx — nll(1 +v+n) \ 22"
0 ( 1)n2n x2n—1
nll'(1+ v +mn) \ 220tV

T ()

[
MgngﬁM

( 1)n+12 2n+1
(MIT(1+v+n+1) (22n+2+v)

I
o

T

a7y (n)!r(l(;zlx): nt1) @)MHU

=—z " J,(z).

Theorem 4.3: L J,(z) = 1(J,_1(2) — J,11(2)).

Proof. By Lemma 4.1,

and by 4.2,
vV (J,(2)) —ve N (2) = —2 7V T, (T)
=
(J,(z)) — vt (z) = =T, (2).
Hence adding these two equations we have,
2(J,(@)) = Jy(x) = o ().

With this we can write our solution to 3/ = y? + 2?2 in terms of Bessel functions,

_co(‘]_lg/(}(g) 3/2(J_o/4( ) — J3/4(%)))
Co\/_J—1/4( )+01\/_J1/4( )

—ey 1/2‘i([)+ﬁ(J,3/4( ) — J5/4(%)))
co\/_J_1/4(%)+Cl\/_Jl/4( ) .

y(z) =

+

21



We now look for our particular solution where y(0) = 0. Recall that we found a; = 0, hence
c1 = 0 giving us,

J 14 9”22 23/2 -
—eo( ) + 22 (T sa(5) — Taya(5)))
CO\/_J71/4(%)

J_1/a “2 23/2 22 z2
—( 2/\/(5 ) 4 5 (Jos/a(5) — J3/4(%)))
\/EJ—1/4( S

y(z) =

Furthermore if we multiply through on top and bottom by 2./ we have,

y(x) = x J3/4(%) x J—o/4(%) J—1/4(T7)
2‘7571/4(%)

Using Matlab to graph our solution we have the following graph,

F1gure 5: Graph of solutlon toy = y + x?
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A final note to point out would be our asymptote is now just slightly bigger than 2. Now if
we write a short Matlab code employing Newton’s Method we find that z = 2.0031 is where
this vertical aysmptote lies. Here I used a tolerance of 1071 and increasing it did not give
us any more accurate of a number. Likewise starting with a guess of x = —2 gives us that
x = —2.0031 is approximately where the left side asymptote lies.

Generalizing our equation

It would be nice now to say something more general about what solutions for differential
equations of the form ¢’ = y™ + 2" look like. We just found the solution for n = 2. Note
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that for n = 1 we have y' = y + x, which if we multiply through by an integrating factor
w(x) = e * we have ey’ — e ¥y = e “x. As with a typical integrating factor problem we
have on the left hand side the derivative of e™®y. Giving us,

ye ' = /xe‘m dx
= —ze "+ /em dx

=—ge *—e "4+ C.

—X

So we have that y(x) = Ce” —x — 1. However, the next case one would like to examine
would be ' = 3® + 23, this one will not be as easy as the n = 1 case. Note that by Theorems
1.7/1.8 we do have a solution if we add the initial condition y(0) = 0. Furthermore, if we use
the method of Picard Iteration as before notice that this equation will blow up a lot faster
than for the n = 2 case. This is an approximation of our solution after 3 iterations,

240 3431 3422 £13 0

+ et =

v(«) = 11904560 © 1341184 ' 36608 | 832 | 4

There is at least some information we can extract from how these will begin to look. We
always have that % term for the same reasoning we saw that x—; term in the n = 2 case.
More interestingly we have that we are going up by powers of 9 for each term. This may
allow us to carefully chose a substitution we can make to rewrite our equation. Before that
as we did with our first example let’s look at the direction field and a graph of the Picard
iteration.

Figure 6: Picard Iterations for n = 7 of ¢/ = y* + 23
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Figure 7: Direction Field of 3/ = 3 + 2
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As it turns out, this equation is what is known as an Abel equation of the first kind. We
can make the substitution y = % to transform it into, —u—g’ = u—lg, + 3 or v'u + 23u® +1=0.
Note now we can rewrite the first term as w'u = (3u?)". Now another method we can use to
rewrite our equation would be to suppose that 1, is a solution to our differential equation

then we make the substitution y = yo + % This leads to,

u 1
Y—— =W+ =) +2°
u u
Y vo 1
= yp +32 435 + — +a°,
Uu Uu u

Note that since yo was a solution to the original differential equation this reduces down to,
u'u + 3ypu® 4 3you + 1 = 0.

This is now as an Abel equation of the second kind. Unfortunately for us neither of these
substitutions lead us to any fruitful way of expressing our solution in terms of known func-
tions.

Conclusion

In conclusion we were able to first show that our differential equation has a solution around
the initial condition y(0) = 0. We were then able to explore many different techniques
in solving differential equations first looking at a power series solution and then rewriting
that solution in terms of Bessel functions. Finally we also took a look at generalizing this
differential equation to the form ¢y’ = y™ + 2™ for n € N. While we were unable to find a
closed solution for this equation we did gain some insight into the difficult world of Abel
equations and why they are notoriously hard to solve analytically.
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