SYNTHESIS AND SINGLE CRYSTAL X-RAY DIFFRACTION STUDIES OF Ca Ca_{2} NF

 AND OTHER COMPOUNDSby
Rhea A. Nicklow
Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the
Chemistry
Program

Youngstown State University

July, 2000

SYNTHESIS AND SINGLE CRYSTAL X-RAY DIFFRACTION STUDIES OF Ca ${ }_{2}$ NF AND OTHER COMPOUNDS

Rhea A. Nicklow

I hereby release this thesis to the public. I understand this thesis will be housed at the Circulation Desk of the University Library and will be available for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Approvals:

Dr. Timothy R. Wagner, Thesis Advisor

Abstract

Single crystalline nitride-fluoride analogs of the binary oxide CaO , and possibly BaO , were prepared for the first time. The proposed compositions were derived by replacing two O^{2-} ions of the oxide formula with NF^{4}. After repeated trials, a successful technique for preparing these highly air-sensitive materials for X-ray analysis was developed. $\mathrm{Ca}_{2} \mathrm{NF}$ was subsequently characterized successfully via single crystal x -ray diffraction, and was found to be isostructural with $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$, rather than CaO , as previously predicted. In other work, crystal structures of three organic compounds were determined via single crystal x-ray diffraction in a collaborative effort with a researcher at the Department of Chemistry, Union College, Shenectady, NY.

ACKNOWLEDGMENTS

My first acknowledgment is to thank my research advisor, Dr. Timothy Wagner, for his endless contribution to this thesis and for his patience throughout my graduate studies. He has positively contributed to my transition from my undergraduate education to my graduate schooling, and I thank him for serving as my general chemistry laboratory mentor, graduate inorganic chemistry professor and most importantly, for being a supportive listener. I would like to thank Dr. Allen Hunter for providing me with an excellent opportunity to gain more experience in crystallography through his collaborative research projects, and for reviewing my work as part of my thesis committee. I wish to thank Dr. Daryl Mincey also for serving as my third thesis committee member, and for always making me feel so welcomed to the YSU Chemistry Department. Another important mentor that I would like to personally thank is Dr. James Mike. I am thanking Dr. Mike because he has given me great insight about how to pursue my future dreams.

I would like to thank my two female chemistry colleagues, Carolyn Pugh and Erica Eliser. These two women have blessed me with their intelligence and laughter. You have both made my days at YSU so memorable, and you have made up for the fun I missed during my undergraduate schooling...

I thank my family: my sister, Tina, and her husband, Alex; my brother, George, and his girlfriend, Lisa; for keeping me up late with humorously intense games of Spades, when I should have been in my room at my computer writing this thesis.

I also thank my Mother and Stepfather, Ginny and Denny, for respecting the value of education and for giving me space, but always letting me know that I am loved.

I wish to thank my friend, Norm Jones also. Thanks to Norm, who has listened and guided my personal growth throughout the past year.

I would like to thank Brian Schmidt. My dear Brian, you have been not only an integral part of my graduate studies, but you have become an irreplaceable spiritual partner. Thank you for your unconditional guidance and love. I found a quote by Epictetus, "The key is to keep company only with people who uplift you, whose presence calls forth your best." I am blessed because you have this amazing affect upon me.

And finally, I thank God. Thank you God for giving me this opportunity, an opportunity I never would have expected to have been touched by (especially in Chemistry!). And thank you God for allowing me to meet and know all of the above people to guide me through this path, i.e. for allowing me to live an authentic life.

TABLE OF CONTENTS

PAGE
TITLE PAGE i
SIGNATURE PAGE ii
ABSTRACT iii
AKNOWLEDGEMENTS iv
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES xi
CHAPTERS
I. INORGANIC SOLID STATE CHEMISTRY 1
Introduction to Solid State Chemistry 1
Types of Crystalline Solids 2
Background of Inorganic Solid State Chemistry. 3
Challenges of Solid State Chemistry 5
Overview of X-ray Crystallography 8
Overview of X-ray Powder Diffraction 15
Overview of Single Crystal X-ray Diffraction 20
II. BACKGROUND OF INORGANIC NITRIDE-FLUORIDES 27
Introduction to Main Group Nitride-Fluoride Compounds 27
Transition Metal Nitride-Fluoride Compounds 29
III. STATEMENT OF THE PROBLEM 32
vii
IV. METHODS AND MATERIALS 34
Introduction 34
Nitride-Fluoride Syntheses 34
Single Crystal Preparation Methods of Nitride-Fluorides 39
Powder Sample Preparation and Data Collection of Nitride-Fluorides 46
Collection of Single Crystal X-ray Data 47
Single Crystal X-ray Data Interpretation of $\mathrm{Ca}_{2} \mathrm{NF}$. 48
V. EXPERIMENTAL RESULTS 49
Introduction 49
Syntheses of $\mathrm{Ca}_{2} \mathrm{NF}$. 49
Syntheses of $\mathrm{Ba}_{2} \mathrm{NF}$ 60
Single Crystal X-ray Analysis of $\mathrm{Ca}_{2} \mathrm{NF}$. 62
Structure Solution and Refinement 63
VI. DISCUSSION 69
Introduction 69
Polycrystallinity of the $\mathrm{Ca}_{2} \mathrm{NF}$ Sample 69
Single Crystal Structure Analysis of $\mathrm{Ca}_{2} \mathrm{NF}$. 72
Bond Valence Sum Method and Analysis Results. 74
Future Research Related to Nitride-Fluoride Analogs. 78
VII. SINGLE CRYSTAL ANALYSIS OF α-OXY- β-SUBSTITUTED- β-AMINO
ESTERS 80
Introduction 80
viii
Background of Organic Structure and Synthesis 80
X-ray Diffraction Analysis of Organic Compounds 84
Results of Single Crystal X-ray Diffraction 88
VIII. CONCLUSION 96
REFERENCES 98
APPENDIX A 101
APPENDIX B 104
APPENDIX C 113
APPENDIX D 124

LIST OF TABLES

TABLE
PAGE
5.1 Crystal Data Summary and Refinement Results for $\mathrm{Ca}_{2} \mathrm{NF}$......................... 64
5.2 Refinements for $\mathrm{Ca}_{2} \mathrm{NF} \ldots . ~ 66 ~$
5.3 Positional, Occupational, and Anisotropic and Equivalent Isotropic
Displacement Parameters From Ca $\mathrm{Ca}_{2} \mathrm{NF}$ Final Refinement
6.1 Comparison of Powder d-Spacings.. 73

7.2 Crystal Data Summary and Refinement Results for 2................................. 86
7.3 Crystal Data Summary and Refinement Results for 3................................. 87

7.5 Atomic coordinated and equivalent isotropic displacement
parameters for $2 \ldots . ~$ 3

| 7.6 Atomic coordinated and equivalent isotropic displacement |
| :--- | :--- |
| parameters for $3 \ldots . ~$ |

A-2 Observed and calculated structure factors for $\mathrm{Ca}_{2} \mathrm{NF}_{\ldots} . ~ 103$
B-1 Bond lengths and angles for 1 .. 105
B-2 Anisotropic displacement parameters for 1.. 106
B-3 Hydrogen coordinates and isotropic displacement parameters for 1.............. 107

x
C-1 Bond lengths and angles for 2 114
C-2 Anisotropic displacement parameters for 2. 116
C-3 Hydrogen coordinates and isotropic displacement parameters for 2 117
C-4 Observed and calculated structure factors for 2 118
D-1 Bond lengths and angles for 3 125
D-2 Anisotropic displacement parameters for 3 126
D-3 Hydrogen coordinates and isotropic displacement parameters for 3 127
D-4 Observed and calculated structure factors for 3 128

LIST OF FIGURES

FIGURE PAGE
1.1 Schematic diagram of X-ray tube 10
1.2 The X-ray spectrum obtained from a copper target 11
1.3 Derivation of the Bragg equation 14
1.4 Diffraction cones obtained from polycrystalline samples 17
1.5 Cutaway view of Area Detector 19
1.6 Goniometer head in detail 22
1.7 Crystal mounting methods 23
1.8 A flowchart for the steps involved in a crystal structure determination 25
4.1 Glove bag fitted around a binocular microscope 40
5.1 X-ray diffraction pattern for $\mathrm{Ca}_{2} \mathrm{NF}$ synthesis product 50
5.2 X-ray diffraction pattern for $\mathrm{Ca}_{2} \mathrm{NF}$ synthesis product 57
6.1 X-ray diffraction pattern for $\mathrm{Ca}_{2} \mathrm{NF}$ synthesis product 71
6.2 Ball and Stick Plot for $\mathrm{Ca}_{2} \mathrm{NF}$ 75
7.1 The reaction pathway for the α-oxy- β-substituted- β-amino ester 83
7.2 ORTEP-type plot for 1 89
7.3 ORTEP-type plot for 2 90
7.4 ORTEP-type plot for 3 91

CHAPTER I

INORGANIC SOLID STATE CHEMISTRY

Introduction to Solid State Chemistry

The design and production of most electrical devices from the twentieth century may be accredited to the unique interaction of electrical, mechanical and materials engineering with the field of solid state chemistry. Though the goal of these engineering fields may have been to design and eventually redesign all items requiring electronic devices and intricate circuitry, it has been the standard role of the solid state chemist to create newly innovative materials that would be suitable for such devices in the first place. More recently, solid state chemistry has contributed to the development of electrical devices that are most commonly used in biomedical engineering imaging, biomaterial implants and biocompatable assist devices. Solid state materials are also found in many other products for their optical, magnetic and thermal properties.

Through this wide range of solid state chemistry applications, it may be acknowledged that the solid state chemist has greatly contributed in a positive manner to the overall progress and advancement of knowledge throughout the United States and in other industrialized countries as well. This definite scientific contribution will continue in the future via the creation and design of new materials that are useful to solid state chemists and engineers alike.

Types of Crystalline Solids

Crystalline solids are described according to their bonding characteristics, which may be subdivided into two large categories. These two classifications are: molecular, and non-molecular. Non-molecular solids are further separated into metallic, ionic and covalent network systems.

The main characteristic that distinguishes molecular solids from the other three categories is that they have strong covalent chemical bonds that hold atoms in the molecule together, while relatively weak intermolecular forces adhere separate molecular units to each other. An example of a molecular solid is graphite. Weak forces, viz. low van der Waals forces, shape the structure of graphite contributing to a very stable, low energy system. There is a very low probability for instantaneous dipoles to occur within this molecular solid, and in general the overall structure is unable to be altered and is both mechanically and physically stable.

Non-molecular solids exhibit bonding that may range over the three types of bonding patterns, which each utilize a variety of forces between the particles themselves. Metallic solids involve the bonding of metal atoms, and generally increase in bonding strength as the amount of electrons are increased. As the name implies, ionic solids are composed of ionic bonds, whose forces are created from electrostatic attractions, although ionic compounds often contain appreciable covalent character. And finally, covalent networks are three-dimensional framework structures (like diamond), which are held together by strong covalent bonds. These three types of bonding are most often represented within a three-dimensional system which is referred to as a lattice structure.

The basic building block of this large, ordered repetitive scheme is a unit cell. Unit cell upon unit cell together create this type of non-molecular solid, which is the type of solid state material that is synthesized, characterized and thoroughly analyzed throughout this thesis.

Background of Inorganic Solid State Chemistry

Inorganic solid state chemistry generally relates to compounds which are not composed of carbon in any aspect and are mostly ionic in character. There are four key elements involved in research in the discipline: (1) synthesis (possibly exploratory); (2) structural characterization; (3) property characterization; and finally (4) the calculation and modeling of new materials. The work in this thesis emphasizes the first two of these areas.

The inorganic solid state chemist's approach to synthesis branches in two main directions. The first is a rational design approach, in which a well known system is studied by making slight compositional changes. This usually leads to small changes in structure, but hopefully optimized properties. The other approach is an exploratory one, in which novel compositions are proposed, and then experiments are done by trial and error to determine whether or not the proposed composition actually exists. Note that in solid state chemistry research, it cannot be predicted from the first principles whether a given newly proposed composition may be prepared, and what its properties will be if it is prepared, for that matter.

The exploratory synthesis approach of the inorganic solid state chemist is quite different from other subdivisions of chemistry, such as organic, where reaction mechanisms are well understood and challenges involve mainly yield and purification methods. Inorganic chemistry is opposite in nature to organic chemistry, where all bonds are usually broken and then reformed one at a time. This reforming of bonds makes the organic branch of chemistry a mostly predictable science, allowing it to be presented mechanistically, accounting for all original bonds. Solid state inorganic chemistry is quite different in the sense that bonds of an entire lattice may need to be broken before a reaction takes place. This problem is put into perspective when one realizes that the number of compositions possible for inorganic solids are endless. Any element, except for usually carbon, may be used and the only requirement is that the law of valency be obeyed. While this makes compositions easy to derive, the reason their existence cannot be predicted is due to a lack of knowledge of solid state reaction mechanisms in general, and a lack of data indicating which other related compositions are thermodynamically more stable. Thermodynamic stability is important in high temperature syntheses, which is the most common technique used. This problem will be further discussed in the next section.

As mentioned previously, there are a series of characterization methods that may be utilized following the successful synthesis of a certain solid state compound. Structural characterization occurs mainly through the use of X-ray, neutron and electron diffraction, although spectroscopy techniques are also often used. X-ray diffraction may be further categorized as either single crystal X-ray diffraction or powder X-ray diffraction, and is
the principle characterization technique used in this thesis. This method will be discussed in more detail later. Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) are techniques usually used to study crystal chemical defects.

Basically, X-ray diffraction gives information related to an "average" structure over many unit cells, while TEM and SEM are used to study structure more locally. Chemical analysis methods include Energy Dispersive X-ray Spectroscopy (EDXS) and Electron Spectroscopy for Chemical Analysis (ESCA). Examples of spectroscopic analysis range from Electron Spin Resonance (ESR) to Nuclear Magnetic Resonance (NMR). Finally, methods of thermalanalysis include Thermal Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC).

Challenges of Solid State Chemistry

As previously mentioned, the inorganic solid state synthesis work done in this thesis is mostly exploratory in nature. This is because the synthesis routes and structures of the nitride-fluorides studied in this thesis have not been previously well characterized. Some of the challenges of the exploratory synthesis approach are discussed below.

One challenge is the inability to predict the exact composition that will actually occur from a synthesis, due to the wide range of stoichiometry that may exist for specific phases. What is surprising about this first difficulty of solid state inorganic chemistry research is that according to the French chemist Louis Proust, the existence of a compound over a range of stoichiometries is not possible. Around the year 1800, Proust proposed the law of constant composition, and as the name implies, simply states that the
elemental composition of a pure compound remains the same. Yet, the exploratory field of solid state chemistry cannot fully support this statement, because the compositions that result from some syntheses are not found to be constant for a given type of compound. One such example are β-aluminas, which are compounds having the general formula of $\mathrm{M}_{2} \mathrm{O} . n \mathrm{Al}_{2} \mathrm{O}_{3}$. In this overall formula n may range from 8 to 11 and M is a cation that may be from the following list: $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Ag}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{NO}^{+}, \mathrm{Mg}^{+}$and Ln^{3+}. The range of the n in the formula demonstrates how the law of constant composition unfortunately may not always hold true experimentally in solid state materials chemistry.

Another challenge of the exploratory synthesis method relates to the inability to predict which structure and proposed composition one may have synthesized. Indeed, one may end up with both a different composition and structure than predicted. This is due to the fact that the compound of interest may be thermodynamically less stable than another compound with a related composition, which is then preferentially formed. A good example is given by the recent discovery of high temperature superconductors. In 1986, Bednorz and Muller ${ }^{2}$ discovered a new, previously unobserved oxide superconductor, with a then record-high critical temperature of 35 K . This material has the composition $\mathrm{La}_{2-\mathrm{x}} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4}$, and is isostructural with $\mathrm{K}_{2} \mathrm{NiF}_{4}$. A great deal of research in the field of oxide superconductors was sparked by Bednorz and Muller's discovery, and several new materials were proposed, the most famous of which is the so called 1-2-3 high temperature superconductor. Research leading to the 1-2-3 superconductor began with the knowledge that the T_{c} of Bednorz and Muller's compound increased with pressure. This implies that T_{c} should increase as lattice distance decreases, and it was proposed by Chu, ${ }^{3}$
et al that replacing $\mathrm{La}(117 \mathrm{pm})$ with the smaller $\mathrm{Y}(104 \mathrm{pm})$ in $\mathrm{La}_{2-\mathrm{x}} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4}$ should have decreased lattice distance and thus increased T_{c}. Chu and his group set out to make the $\mathrm{Y}_{2-\mathrm{x}} \mathrm{Ba}_{\mathrm{x}} \mathrm{CuO}_{4}$, which would presumably also have the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure. The compound actually prepared, however, had the composition $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\mathrm{x}}$, with a previously unobserved structure related to perovskite. No one could have predicted beforehand that the reaction mixture would yield this particular composition and structure.

It should also be mentioned that in general, if a synthesis attempt is unsuccessful, it cannot be concluded that the proposed compound will not be made if other reaction conditions (e.g. time and temperature) other than those attempted were explored. In general, any solid state reaction occurs from an initial diffusion, followed by nucleation and growth. Kinetically there must be a sufficient amount of energy for the diffusion, nucleation and growth to be possible in the first place.

Although details about the nucleation, diffraction and growth phase of a particular solid state synthesis are typically not known, there are at least some factors a chemist may control to influence the speed, and therefore perhaps the outcome, of a solid state reaction. One such factor is related to the reaction surface area. In general, as the area of contact between reactants increases, so does the reaction rate. This factor is easily controlled simply by using reactant powders with a small particle size, by making sure the reactants are intimately mixed, and by pressing the reactant mixture into a pellet using a hydraulic press. A second factor the synthetic chemist has some control over in influencing reaction rates is related to the nucleation phase. If reactants which have
structures similar to the predicted structure of the product can be chosen, the growth of the product can be facilitated since the matching planes of the reactant lattice will make a good nucleation site. And finally, a third factor is related to the diffusion rate, which is directly related to the reaction rate. The simplest way for a synthetic chemist to influence the diffusion rate is through adjustment of reaction temperature, which has a direct relation to diffusion rate. A rough guide for helping the experimenter determine reaction temperature is given by Tamman's rule, which states that the reaction temperature should be two-thirds of the melting temperature of one of the reactants. Other than these controls, there is not a perfect guideline for solid state chemists to use in order to perform a synthesis. And though these three factors may contribute towards a positive reaction outcome, the actual reassembly mechanism of the reactants to products is usually unknown by the solid state chemist. Thus, there is no means of actually "seeing" what is going on within the structure during the synthesis itself.

As it was discussed before there is more to solid state inorganic chemistry than predicting the synthesis, i.e. there are other major components involved in this field of research. They include the structural characterization, property characterization, calculations and modeling. The next three sections focus on the structural characterization aspect, specifically through the use of X-ray diffraction techniques.

Overview of X-ray Crystallography

X-ray diffraction techniques and methods are fundamental in solid state chemistry research. X-rays are a form of electromagnetic waves, with wavelengths on the order of
$10^{-10} \mathrm{~m}$, which are relatively shorter than radio waves or light waves. The first step in generating X-rays involves accelerating electrons from a cathode that bombard a solid material, called the anode. When the solid material is a metal plate, an electron from a core orbital will be ejected, leaving the atom in an excited state. One possible relaxation mechanism the excited atom may undergo involves an electron from a higher energy orbital moving into the inner core orbital to fill it, thus emitting radiation (Figure 1.1). Metals used for anodes in X-ray tubes typically produce wavelengths anywhere from 0.5 to $3.0 \AA$, or $50-300 \mathrm{pm}$. An anodic material typically used for the generation of X-rays in a diffractometer is copper, which produces X-rays with a wavelength of $1.54 \AA$.

Another important aspect of the emission of X-rays is the concept of bremsstrahlung, i.e. the slowing down of the electrons as they are bombarding the metal solid itself. Figure 1.2 demonstrates this with an X-ray spectrum that displays the standard, smooth background line, a bremsstrahlung, in combination with the strong peaks that result for emitted electrons. The labeling of these sharp lines refers to the exact electron shell location that is providing the X-ray. If a 1 s vacancy is filled, it is labeled K. This symbol is embellished further by K_{α}, if the transition is from 2 p down to 1 s , and K_{β} if it is from $3 p$ down to 1 s .

This entire concept of X-ray diffraction and X-rays in general were first speculated in the 1890 's. The original proposal was that atoms had the ability to pack together into a sphere, which ultimately formed a crystal. At this time it was found that

Figure 1.1 Schematic diagram of X-ray tube. ${ }^{4}$

Figure 1.2 The X-ray spectrum obtained from a copper target. ${ }^{1}$

X-rays had wavelengths up to 300 pm . This allowed the German physicist, Mac Theodor Felix von Laue to develop the concept in 1912 that these crystals could be utilized in the diffraction of X-rays in general. He did not perform his own proposal experimentally, but rather suggested it be completed by two other scientists, by the names of W. Friedrich and P. Knipping. Together these two men proved von Laue's theory to be correct with the use of white X-rays that were experimentally set up to have a wide range of wavelengths. Contrary to these workers, two other scientists testing von Laue's theory chose to perform their experiment with a small range of wavelengths. These two men were the English physicist, Sir William Henry Bragg (1862-1932) and his son Sir Lawrence Bragg (18901978).

William and Lawrence Bragg were pioneers in the quantitative analysis and usage of X-ray diffraction in the fields of physics and chemistry. Their original testing included the structures of KCl and NaCl , which were proposed as being fcc (face centered cubic). Lawrence Bragg did indeed discover that his hypothesis of fcc was validated via the X ray spectrum that was produced. The white X-rays Friedrich and Knipping used in their work yielded data that was difficult to solve due to the wide range of wavelengths present in the incident radiation. Thus, the diffraction patterns produced were full of scattered Xrays from many different planes with a wide range of wavelengths. William and Lawrence Bragg solved this problem by simply using an almost monochromatic X-ray beam with a small range of wavelengths. The results were soon discovered to be directly proportional to the wavelength and the interplanar spacings.

Quantitatively, this may be described by the diagram in Figure 1.3, where certain planes of a crystal are displayed. The angle, θ, represents the angle of incidence of X-rays upon the crystal. The incident X-rays each have a wavelength represented by λ, and are said to be reflected from planes of atoms in the crystalline sample. Some of the beam is reflected from the atoms at the surface, while other portions of the beam will actually penetrate to planes lower in the crystal and will then be reflected. From the diagram it may be inferred that d is the interplanar distance and that the distance $\mathrm{BC}+\mathrm{CD}$ must be equal to the sum of an integral number of wavelengths represented by $n \lambda$. So, simple trigonometry allows the CD and BC to be represented by the following: $\mathrm{CD}=\mathrm{BC}=\mathrm{d}$ sin θ. Adding these two together and simplifying gives the Bragg equation: $n \lambda=2 \mathrm{~d} \sin \theta$. For a given θ and d, Bragg's Law will be obeyed whenever n is an integer: that is for $n=$ $1,2,3 \ldots$, etc. Depending on the value of n, each reflection is called an " nth order" reflection. Note that the value for n is usually set to $n=1$, and higher order reflections are just those with smaller d spacings. For example, a second order reflection from a given set of planes would have half the d-spacing as the first order set. The different reflections are easily identified using Miller indices. Miller indices, (h,k,l), are used to represent all sets of planes of atoms in the crystal which diffract X-rays. To obtain Miller indices, the fractions where the plane cuts through the unit cell's a, b, and c axes is first determined, and then the reciprocal of these three numbers are taken. The fractions are cleared and the result is a set of integers which are the Miller indices for that set of planes. For example, a plane which cuts each of the a, b, and c axes of a unit cell in half would be first written as

Wave front of incoming
 X-rays

Figure 1.3 Derivation of the Bragg equation, $2 \mathrm{~d} \sin \theta=n \lambda$. The diffraction of X-rays may be considered as reflections from different planes. ${ }^{5}$
$1 / 2,1 / 2,1 / 2$, respectively. Taking the reciprocal of these reflections gives the Miller plane (222), pronounced "the two two two plane."

The main significance of Bragg's Law is that it must be obeyed in order for the detector to record a diffraction peak. For a given wavelength, λ, and d-spacing, any angle of incidence other then the Bragg angle results in total destructive interference of the diffracted X-rays, so that no intensity is observed at the detector. From the Bragg angles corresponding to the reflections which are observed, it is possible to deduce the unit cell parameters and symmetry. Though Bragg's equation was pivotal in the application of Xray diffraction as an analytical technique, there are three distinct limitations to this equation. The first of these is that Bragg's Law gives no indication of any systematic absences which may occur in the crystal. There is also no information provided regarding the intensities of the peaks themselves. A third limitation is that Bragg's Law gives no information about the physics of the diffraction, i.e. the nature of the interaction between the incident X-rays and the electron clouds of the atoms in the crystal.

Overview of X-ray Powder Diffraction

Several types of X-ray powder detectors have been developed since the 1930's, when the technique first became widely used. The powder sample itself consists of a large number of single crystals that may range in size from 10^{-7} to $10^{-4} \mathrm{~m}$, and are typically positioned in a variety of orientations relative to one another. In order for this method to be performed successfully, the powder sample, the X-ray source, and the detector must all be in the proper alignment. As previously described, diffraction patterns may be
qualitatively analyzed by Bragg's equation. Due to an ideally random positioning of crystallites in the powder sample, the diffracted beams corresponding to a particular set of planes is actually a cone of intensity, rather than a point as expected for a single crystal. In fact, this cone may be considered as a collection of individual points, with each individual point representing a beam diffracted from a single crystallite. The more crystallites there are in the sample, the more points there are to form the cone structure (Figure 1.4). Either a photographic film could be used to capture these points or some other type of device such as an area detector.

One of the earliest powder diffraction techniques commonly used was the Debye Scherrer method, which employs a camera containing a film upon which a large number of peaks are simultaneously recorded. The sample is prepared by filling a small glass capillary tube (e.g. 0.2 or 0.3 mm diameter) with powder. For convenience, the circular Debye-Scherrer camera typically has a circumference of 360 mm , which is also the length of the film strip loaded in the camera. Thus, each mm of film represents $1^{\circ} \theta$ so that the Bragg angles of the reflections are easily obtained from the film.

The powder diffractometer method is convenient because it does not utilize any film, although relatively large amounts of powder are needed to prepare a sample. This is partially due to the fact that the powder is actually coated on tape affixed to a slide, and pieces of the sample may be lost during the rotation of the sample. Diffractometer data is typically recorded on a diffractogram, which is a graph plotting the intensity of diffracted X-rays versus 2θ. Thus, the Bragg angle for each peak is read directly from the

Figure 1.4 Diffraction cones obtained from polycrystalline samples. ${ }^{1}$
diffractogram. The technique also has the advantage that relative peak intensities are easily observed, which can be useful in the identification of unknown samples.

The multi-wire area detector is a more recently developed technique used in X-ray powder diffraction, and is the type of detector used for preliminary analysis in this thesis. The multi-wire detector consists of a gas (typically a $\mathrm{Xe}-\mathrm{CO}_{2}$ mixture) filled chamber, which also contains three sets of parallel wire grids as shown in Figure 1.5. The wire grids are charged such that the outer set acts as a cathode, and the middle grid acts as an anode. As an X-ray beam enters this detector, Xe atoms are ionized leaving a positive Xe ion and negative electron. The positive ions are attracted to the anode, while the electrons are attracted to the cathode, creating a potential difference, or signal, between the grid. The detector is efficient enough to register an electrical impulse from one Xe ion-electron pair. During this process distortions inherent to the detector may occur and actually "warp" the resulting spectrum. To eliminate detector errors, correction tables are obtained by performing data collections using standard samples. A real time image is collected in one frame of data that may be merged with other frames to produce an overall spectrum of the sample.

Information from a powder pattern may be used to identify an unknown, (as long as a diffraction pattern for the corresponding known material is available in a database for comparison purposes), determine the atomic positions (i.e. structure) of a sample; or follow the progression of a solid state reaction. The ability to quantitatively refine a single crystal structure from powder data is a more recent development. The major quantitative technique used is Rietveld Analysis. Three items are needed in order for results to be

Figure 1.5 Cutaway view of Area Detector. X-rays diffracted from the sample enter the window and ionize the gas mixture. Electronic grids detect the ions and generate electrical impulses which are decoded into position and intensity data. ${ }^{6}$
successfully refined from powder diffraction data: The first is precise lattice parameters, because background is also picked up during the data calculation; secondly, the space group must be known; and thirdly, it is necessary to have a good trial structure before beginning the calculations. The latter two factors make Rietveld analysis more difficult to apply than the typical packages used for single crystal analysis, where structures can be calculated directly with no initial input trial structure requirement. Rietveld analysis calculates the powder diffraction pattern from the given trial structure, and then refines the structure until the calculated and experimental patterns match as closely as possible.

Overview of Single Crystal X-ray Diffraction

Single crystal X-ray diffraction is perhaps the most powerful technique available for structure determinations of crystalline solids. As the name implies, this method of diffraction utilizes one single crystal to determine the structure characteristics of the overall material. A single crystal is defined as a sample that has unit cells that are exactly the same and are all lined up with an identical orientation. If these two items are valid for the sample then the X -rays will create a sharp, clear diffraction pattern. Compared to powder diffraction methods, the overall sample preparation for single crystal diffraction is usually much more difficult and even intricate. Quantitative structure analysis, on the contrary, is much simpler for single crystals than for powder samples as will be evident from the discussion below.

Sample preparation for single crystal X-ray diffraction requires a large amount of hand and eye coordination, as well as patience. The size of the crystal itself will partly
determine the intensity of X-rays that are scattered, though some X-rays are always absorbed by the crystal itself. Since the beam of X-rays generally have a cross section of only 0.5 mm for a typical diffractometer system, it is very important that the sample crystal is directly centered in the line of the beam. In general, a crystal's size should be between 0.1 to 0.4 mm , otherwise absorption becomes a problem. If a crystal is larger than this it may be cut by hand under a microscope with a scalpel, else a smaller crystal must be selected. Once the proper crystal is selected, it is usually mounted with a small dot of glue onto a thin glass capillary tube, which is secured into a goniometer head (Figure 1.6). The glue must hold the crystal into place, due to the fact that it will be rotated in all three dimensions in line of the X-ray beam.

In this thesis project, a variety of crystal preparation methods have been utilized to successfully prepare samples. Standard methods of course include the preparation mentioned above, i.e. a small dot of amorphous glue used to attach the crystal to a thin glass capillary. For air sensitive samples, preparation techniques which protect the sample from air must be used. Examples include enclosing the crystal within a sealed capillary using glue, clay or even encapsulating it in petroleum jelly. Another innovative technique researchers have used is to coat the surface of the crystal with an inert oil (Figure 1.7). Preparation techniques for air-sensitive samples will be addressed at great length in Chapter IV of this thesis, Single Crystal Preparation Methods of Nitride-Fluorides.

Assuming that the sample is a single crystal, if it is mounted properly and is within the view of the X-ray beam with a precision of a hundredth of a degree, the structure will often times be successfully characterized. Data collection is achieved via

Figure 1.6 Goniometer head in detail. ${ }^{7}$

Figure 1.7 Crystal mounting methods: (a) glued to a fine glass fiber; (b) enclosed in a capillary tube; (c) coated with an inert oil. ${ }^{8}$
the scattering of the X-ray beam from the electron clouds present within the atoms in the mounted crystal sample. Generally, several days are required to collect a data set for a sample, using instruments equipped with serial detectors. Data collection is a multi-step process as demonstrated in Figure 1.8. The first step is the collection of a rotation photo to determine the preliminary information about the crystal, such as, is it crystalline? If diffraction spots are found on the rotation photo, these may be centered and used to obtain a rough unit cell and orientation matrix. The next series of steps is concerned with obtaining precise unit cell parameters and the cell symmetry (i.e. Bravais lattice and Laue group). The intensity data is collected next, and depending upon the crystal and its size, and type of detector used, this may take hours or even days. Data reduction follows and absorption corrections are applied to the data set; this is accomplished within a matter of minutes. The structure is then solved via the Patterson or Direct Methods and a few nonhydrogen atoms may be assigned. The Patterson method utilizes the peaks of highest electron density (e.g. from metals in the sample) to determine the structure, while the Direct Methods approach determines reflection phases from intensities when there is no other information about the crystal structure available. ${ }^{8}$ The Direct Methods approach is especially useful for samples with no heavy atoms, such as organic crystals. Next, the structure is refined until all atom positions are assigned. Depending on the experience of the individual, this may take minutes or hours. When the structure is complete, all nonhydrogen and hydrogen atoms have been assigned, and other parameters such as anisotropic thermal parameters, occupancy factors, and/or extinction may be refined as well. ${ }^{9}$ This thesis utilizes the single crystal X-ray diffraction technique to characterize

Figure 1.8 A flowchart for the steps involved in a crystal structure determination. ${ }^{8}$
one inorganic crystal and three organic crystals, all of which will be discussed in
Chapters V and VI.

CHAPTER II

BACKGROUND OF INORGANIC NITRIDE-FLUORIDES

Introduction to Main Group Nitride-Fluoride Compounds

Inorganic nitride-fluorides have been a relatively unexplored area of solid state chemistry. While tens of thousands of inorganic oxides have been studied, only about forty nitride-fluoride compounds have been reported in the past thirty years. The major characterization technique used in these studies was powder X-ray diffraction. No quantitative structural information based on single crystal analysis has ever been reported on any of these nitride-fluoride compounds previous to this thesis.

The nitride-fluoride compounds of interest in this thesis have ideal compositions that may be derived from oxide compounds by replacing two O^{2-} groups of the oxide formula with an NF^{4-} group. One of the earliest relevant studies was published by Andersson, ${ }^{10}$ pertaining to his work on magnesium nitride-fluorides. Andersson prepared his samples by reacting magnesium powder with MgF_{2} in a nitrogen gas atmosphere. His work yielded three different phases having two compositions: $\mathrm{Mg}_{3} \mathrm{NF}_{3}$, and $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$ (low temperature form) and $\mathrm{H}-\mathrm{Mg}_{2} \mathrm{NF}$ (high temperature form). The $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$ and $\mathrm{H}-$ $\mathrm{Mg}_{2} \mathrm{NF}$ forms were prepared at reaction temperatures of $900^{\circ} \mathrm{C}$ and $1350^{\circ} \mathrm{C}$ respectively. The compositions were deduced by both density measurements and structure determinations. Andersson reportedly found single crystals in some of the final product crucibles, although he noted that they were much too small and delicate for single crystal

X-ray studies to be performed with them. Consequently, structural characterizations were performed via powder X-ray diffraction, where Andersson was able to use powder diffraction to determine the structure of his samples largely through a comparison process with known powder patterns for MgO . Thus, $\mathrm{Mg}_{3} \mathrm{NF}_{3}$ was found to have an analogous structure to the MgO cubic structure, except that $1 / 4$ of the magnesium sites are reportedly empty, in an ordered fashion. The structure of $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$, when compared to MgO , displayed similar anion positions, but ordering of nitrogen and fluorine atoms resulted in doubling along one of the dimensions of the cubic MgO structure. Thus, the L $\mathrm{Mg}_{2} \mathrm{NF}$ sample was determined to have a tetragonal structure, which was described as intermediate between the sodium chloride (with sodium six-coordinated) and zinc blende (with zinc four-coordinated) structures. In this structure, magnesium is basically coordinated to three nitrogen and two fluorine atoms, with a sixth long bond to fluorine. The $\mathrm{H}-\mathrm{Mg}_{2} \mathrm{NF}$ sample was found to be isostructural to MgO at temperatures between $1250^{\circ} \mathrm{C}$ and $1350^{\circ} \mathrm{C}$.

Following the reported synthesis of magnesium nitride-fluoride compounds by Andersson, ${ }^{10}$ another group reported the synthesis of calcium, strontium and barium nitride-fluorides. Erlich, Linz and Siefert ${ }^{11}$ conducted this synthesis by using a 3 to 1 mole ratio of the metal to metal-fluoride for the $\mathrm{Sr}_{2} \mathrm{NF}$ and $\mathrm{Ba}_{2} \mathrm{NF}$ syntheses, and a 4 to 1 ratio for $\mathrm{Ca}_{2} \mathrm{NF}$ syntheses. The reaction mixtures were annealed in an inert argon environment at a temperature of $1000^{\circ} \mathrm{C}$ for 24 hours and then reacted in nitrogen gas for 5 hours at $450^{\circ} \mathrm{C}$. Following this treatment, the calcium, strontium, and barium reaction mixtures were sintered in a nitrogen gas flow for 24 hours at $1000^{\circ} \mathrm{C}, 950^{\circ} \mathrm{C}, 700^{\circ} \mathrm{C}$
respectively. The $\mathrm{Ca}_{2} \mathrm{NF}$ that was found was a light yellow color, although colors of the other two phases were not reported. The products were reportedly characterized using Debye-Scherrer powder X-ray diffraction. The resulting Debye Scherrer patterns suggested the presence of both the MF_{2} and $\mathrm{M}_{2} \mathrm{NF}$ phases (where M is a symbol for the appropriate metal) in representative lines. From qualitatively comparing the powder patterns of their nitride-fluoride compounds to the corresponding oxides, Erlich, Linz and Siefert concluded that the nitride-fluoride compounds were indeed structural analogs of the corresponding rocksalt-type oxides. Subsequent preliminary studies under the direction of Dr. Timothy Wager, Department of Chemistry, Youngstown State University, Youngstown, Ohio have indicated, however, that this does not appear to be the case for the calcium and strontium nitride-fluoride compounds. Guler ${ }^{12}$ prepared $\mathrm{Ca}_{2} \mathrm{NF}$, using the synthesis method as reported by Erlich, Linz and Siefert. A yellow product was obtained, however powder diffraction indicated that the substance did not have the cubic structure as previously reported, but instead appeared to have a tetragonal cell. Potkonicky ${ }^{13}$ synthesized $\mathrm{Sr}_{2} \mathrm{NF}$, and after a thorough analysis of powder data, he suggested that the structure was a combination of the rocksalt and zinc blende structure, as previously reported by $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$ by Andersson.

Transition Metal Nitride-Fluoride Compounds

In addition to the main group compounds discussed above, some transition metal nitride-fluorides have also been reported, but for the most part, structure characterizations were not performed on these and their structures remain undetermined. In 1971,

Marchand and Lang ${ }^{14}$ reported their syntheses of five phases of zinc nitride-fluoride compounds obtained by combining $\mathrm{Zn}_{3} \mathrm{~N}_{2}$ and ZnF_{2} in nickel crucibles. These five phases were the following: $\alpha-\mathrm{Zn}_{2} \mathrm{NF}, \beta-\mathrm{Zn}_{2} \mathrm{NF}, \alpha-\mathrm{Zn}_{9} \mathrm{~N}_{4} \mathrm{~F}_{6}, \beta-\mathrm{Zn}_{9} \mathrm{~N}_{4} \mathrm{~F}_{6}$, and $\mathrm{Zn}_{7} \mathrm{~N}_{4} \mathrm{~F}_{2}$. Debye Sherrer patterns were used to examine the five phases, however only two of the structural lattices were reported. The $\alpha-\mathrm{Zn}_{2} \mathrm{NF}$ was found to have an orthorhombic unit cell, and the $\beta-\mathrm{Zn}_{2} \mathrm{NF}$ compound was found to be tetragonal.

Another group of transition nitride-fluoride compounds that have been referenced in the International Centre for Diffraction Data, $I C D D$, database are those of uranium, ${ }^{15}$ thorium ${ }^{16}$ and technetium. ${ }^{17}$ Though reported, these three compounds were not further characterized by the diffraction data at all, and no specific information about their lattice structure or materials-related characteristics have been reported. Withers, Schmid and Thompson ${ }^{18}$ provided some insight into the zirconium nitride-fluoride and uranium nitride-fluoride with a composite modulation approach to structure and space-group symmetries. This has been successful through the analysis of Transmission Electron Microscopy (TEM) and powder X-ray diffraction. Yet again, single crystals were not found or mentioned in the article, and like the above three examples are also in need of future exploration.

More recently, Wustefeld et al. ${ }^{19}$ have reported their study of the preparation and structural characterization of titanium nitride-fluoride. A powder sample of titanium nitride-fluoride was prepared by ammonolysis of activated $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TiF}_{6}$, and characterized by Rietveld analysis. The compound was found to be isostructural with the anatase form of TiO_{2}, having a body centered tetragonal cell with $\mathrm{a}=3.785 \AA$ and $\mathrm{c}=9.514 \AA$. This is
probably the most comprehensive structure analysis reported for an inorganic nitridefluoride compound to date.

Though powder diffraction was used as the main source of characterization of inorganic nitride-fluorides over the past thirty years, single crystal X-ray analysis is still widely recognized as the best method available for elucidating the structure of crystalline solids. Therefore, successful preparation and analysis of single crystals from the aforementioned synthesized compounds would yield significant new structural information in the area of inorganic nitride-fluoride chemistry.

CHAPTER III

STATEMENT OF THE PROBLEM

As mentioned previously, amazingly few inorganic nitride-fluoride compounds have been reported in the literature, and fewer still have been structurally characterized. Of those studies which did include structural characterization, most of them were done using qualitative powder X-ray diffraction. No single crystal X-ray studies on any inorganic nitride-fluoride compounds have been previously reported. Thus, the major goal of this thesis project is to prepare single crystalline samples of $\mathrm{M}_{2} \mathrm{NF}$ compounds, and perform structure analyses via single crystal X-ray diffraction.

The nitride-fluoride compounds targeted for study are analogs of the rocksalt type oxide MO , where $\mathrm{M}=\mathrm{Ca}$ and Ba . The nitride-fluoride compositions are derived from the oxides simply by replacing two O^{2-} ions with NF^{4-}, giving $\mathrm{Ca}_{2} \mathrm{NF}$ and $\mathrm{Ba}_{2} \mathrm{NF}$. The reason these compounds have been targeted for study is because they have previously been prepared in powder form, ${ }^{11}$ so that they are known to exist. Thus, failure to prepare single crystalline samples of these compounds cannot be attributed to the possibility that they do not exist. Inorganic nitride-fluoride compounds tend to be very air sensitive, so that all synthesis work will need to be performed in an inert atmosphere. Once single crystal samples have been successfully prepared, an optimal technique for protecting them from air during X-ray characterization must be devised. The previous study ${ }^{11}$ qualitatively
proposed that $\mathrm{Ca}_{2} \mathrm{NF}$ and $\mathrm{Ba}_{2} \mathrm{NF}$ have the rocksalt structure like their oxide analogs; this work will verify quantitatively whether or not this is the case.

In order to gain experience in crystallographic collaboration, the structures of three single crystals, α-oxy- β-substituted- β-amino esters, will be selected and analyzed.

These crystals will be provided by James C. Adrian Jr., Assistant Professor of Chemistry, Science and Engineering Center, Union College, Schnectady, New York. High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) have already suggested a likely structure for these samples, which are all enantiomers. The purpose of the present study is to verify the expected structures, and determine which of these stereoisomers are in the anti or syn form, since this is useful information pertaining to the pharmacological properties of these compounds.

CHAPTER IV

METHODS AND MATERIALS

Introduction

Most of the work presented in this thesis is concerned with the synthesis, sample preparation and single crystal X-ray analysis of $\mathrm{Ca}_{2} \mathrm{NF}$. Synthesis attempts for $\mathrm{Ba}_{2} \mathrm{NF}$ were also performed and will be presented. This chapter will discuss the techniques utilized in this work in the ensuing sections with subheadings of Nitride-Fluoride Syntheses, Single Crystal Preparation Methods of Nitride-Fluorides, Powder Sample Preparation and Data Collection of Nitride-Fluorides, Collection of Single Crystal X-ray Data and Single Crystal X-ray Data Interpretation of $\mathrm{Ca}_{2} \mathrm{NF}$.

Nitride-Fluoride Syntheses

A variety of reaction conditions and attempts were performed to achieve a successful synthesis of $\mathrm{Ca}_{2} \mathrm{NF}$, while only two syntheses were conducted for the $\mathrm{Ba}_{2} \mathrm{NF}$ compound. For all of the syntheses that were conducted, the reactants were weighed, mixed, placed in a nickel crucible and then into a silica tube inside of a plastic glove bag. This bag was kept filled with argon or nitrogen gas in order to ensure a controlled inert environment, since nitride-fluorides are highly air sensitive.

There were nine $\mathrm{Ca}_{2} \mathrm{NF}$ syntheses performed overall, usually following the chemical formula $3 \mathrm{Ca}_{(\mathrm{s})}+\mathrm{CaF}_{(\mathrm{s})} \rightarrow 2 \mathrm{Ca}_{2} \mathrm{NF}_{(\mathrm{s})}$ in nitrogen gas, $\mathrm{N}_{2(\mathrm{~g})}$. Prior to each
reaction, the glove bag was purged of air by flushing with argon for at least ten minutes, then it was sealed and filled again with argon. The bag had one inlet tube, which was connected to a valve switchable between argon and nitrogen tanks. Another tube was leading out of the bag into a beaker full of vegetable oil. The oil served as a filter for excess gas to "bubble" into if that bag was too full. The glove bag was sealed with a simple plastic closure device that was included with the bag, and the plastic tubes were secured with electrical tape and then covered again with parafilm to prevent leakage. Also, an analytical balance, Mettler model PM460, was placed inside the glove bag for weighing the reagents and an opening was cut for the cord to be placed through. This opening was sealed with electrical tape and then covered with parafilm.

For the first $\mathrm{Ca}_{2} \mathrm{NF}$ synthesis performed, the reactants were combined in a mole ratio of $4 \mathrm{Ca}: 1 \mathrm{CaF}_{2}$, following the procedure of Erlich, ${ }^{11}$ et al. After this initial synthesis, the mole ratio was slightly altered. Syntheses two through nine were conducted with a ratio of $3 \mathrm{Ca}: 1 \mathrm{CaF}_{2}$. Generally, the calcium metal was first weighed and placed into a 5 mL nickel crucible, and then based upon that amount the correct stiochiometric mass of CaF_{2} was weighed out. This was then added to the crucible also. The calcium metal that was purchased was specifically selected because it was finely ground, so that there was no need to grind up the metal with a mortar and pestle. Usually, the CaF_{2} powder was placed on top of the calcium metal in the crucible, sometimes it was slightly mixed. Thorough mixing prior to the reaction occurred when the reactants were melted at $1000^{\circ} \mathrm{C}$ under argon.

Once the mixture in the crucible was covered with a nickel crucible cover, it was placed within a metal boat, also made of nickel. This just stabilized the crucible so that it would not tip over when placed into the silica reaction tube. The crucible and cover were slightly bent to allow the nitrogen gas to enter the container. Inside the glove bag, the boat was gently pushed with a glass rod with a hook on the end into a silica tube, which was then capped with a Pyrex cover. These silica tubes are able to withstand temperatures as high as $1600^{\circ} \mathrm{C}$ (note that the Pyrex cap end of the tube was not heated). Previous to sealing the glove bag, the tube and cap were coated with a thin layer of vacuum grease to create a secure closure. The Pyrex cap had one outlet and one inlet port where tygon tubes were connected, allowing for dynamic inert gas flow. To avoid any leaks at the silica tube/Pyrex cap junction, the cap was secured to the tube using copper wire. It was very important to prevent any air from leaking into the reaction tube, since this leads to an oxide, rather than a nitride-fluoride synthesis.

Programmable tube furnaces were used for all of the syntheses performed in this project. Syntheses one through four used a Lindburgh Heviduty Tube Furnace, while a Thermolyne 59300 High Temperature Tube Furnace was used for syntheses five through nine. For each synthesis, the silica reaction tube was inserted so that the crucible would be placed in the center of the furnace to provide optimal heating. The synthesis was divided into six steps that were programmed into the tube furnace directly. For each step, three parameters must be specified: the desired temperature level (L\#, where \# = step number), the heating/cooling rate, or ramp rate (R\#), to program the desired temperature level, and the dwell time (D\#), which is the desired time to remain at the specified level.

Argon was used as the inert gas for the first half of the reaction, and after Step 3 and just before Step 4, the inert gas was switched from argon to nitrogen by simply closing the inlet into the tube from the Argon gas tank and opening the one leading from the nitrogen gas tank. A typical program for the $\mathrm{Ca} / \mathrm{CaF}_{2}$ synthesis was the following for all nine syntheses (examples for minor changes will be specified in the next chapter):

Step 1: R1: Step; L1: $28^{\circ} \mathrm{C}$; D1: 0.0 hours
Step 2: R2: $60^{\circ} \mathrm{C} /$ hour; $\mathrm{L} 2: 1000^{\circ} \mathrm{C}$; D2: 1.0 hour
Step 3: R3: $60^{\circ} \mathrm{C} /$ hour; L3: $200^{\circ} \mathrm{C}$; D3: 4.0 hours

Convert to N_{2} gas at this point

Step 4: R4: $60^{\circ} \mathrm{C} /$ hour; $\mathrm{L} 4: 1000^{\circ} \mathrm{C} ; \mathrm{D} 4: 8.0$ hours
Step 5: R5: $15^{\circ} \mathrm{C} /$ hour; L5: $200^{\circ} \mathrm{C}$; D5: 0.0 hours
Step 6: R6: $80^{\circ} \mathrm{C} /$ hour; L6: $28^{\circ} \mathrm{C}$; D6: End of program
Note that the 'Step Function' setting for ramp rate indicates that the furnace is to heat/cool as quickly as possible, as would be the case for a non programmable furnace. The first portion of the synthesis, i.e. up until the change in gas environment from argon to nitrogen, took approximately 35.53 hours total. The rest of the synthesis took 76.81 hours, or 76 hours and 49 minutes to end. The entire program took nearly 111.34 hours, i.e. 111 hours and 20 minutes. It is also important to note in Step 5 that the slow cooling rate is imperative to form single crystals from the melt.

When performing the $\mathrm{Ba}_{2} \mathrm{NF}$ syntheses, the same methods were utilized, except that a slightly shorter time in synthesis was programmed. This is because the highest
temperature setting required is only $900^{\circ} \mathrm{C}$, instead of $1000^{\circ} \mathrm{C}$ for the $\mathrm{Ca}_{2} \mathrm{NF}$ synthesis. The $\mathrm{Ba} / \mathrm{BaF}_{2}$ synthesis was performed with the following program:

Step 1: R1: Step function; L1: $28^{\circ} \mathrm{C} ; \mathrm{D} 1: 0.0$ hours
Step 2: R2: $60^{\circ} \mathrm{C} /$ hour; $\mathrm{L} 2: 900^{\circ} \mathrm{C}$; D2: 1.0 hour
Step 3: R3: $60^{\circ} \mathrm{C} /$ hour; L3: $200^{\circ} \mathrm{C}$; D3: 2.0 hours
Convert to N_{2} gas at this point
Step 4: R4: $60^{\circ} \mathrm{C} /$ hour; $\mathrm{L} 4: 900^{\circ} \mathrm{C}$; D4: 15.0 hours
Step 5: R5: $15^{\circ} \mathrm{C} /$ hour; L5: $200^{\circ} \mathrm{C}$; D5: 0.0 hours
Step 6: R6: $80^{\circ} \mathrm{C} /$ hour; L6: $28^{\circ} \mathrm{C}$, D6: End of program The first portion of the synthesis took 29.20 hours, or 29 hours and 12 minutes before the gas was switched from argon gas to nitrogen gas. After this it took 75.49 minutes to end, with the total time running approximately 104.69 hours, or 104 hours and 29 minutes. Again, the same slow cooling method was utilized in Step 5, in order to help grow single crystals during the synthesis.

After each synthesis was complete for both of the aforementioned compounds, the silica reaction tube was allowed to cool thoroughly and was placed into the glove bag. The bag was then flushed of air and refilled again with argon gas. It was then sealed and argon gas was left on with a small, steady flow. The nitrogen gas leading to the quartz tube was turned off and the Pyrex cap removed. A long glass rod with a metal hook attached was used to pull out the boat. A pair of pliers was usually needed to remove the crucible cap from the crucible. The crucible was then placed into a small plastic container, covered with a cap, taped with electrical tape and then covered again with

Parafilm. This was then placed into a larger plastic container, taped, wrapped in Parafilm and was finally labeled according to the compound, synthesis number and date.

Single Crystal Preparation Methods of Nitride-Fluorides

In order to prepare a single crystalline sample for X-ray analysis, another glove bag was set up to secure an inert environment of argon gas for both the $\mathrm{Ca}_{2} \mathrm{NF}$ and Ba_{2} NF. A variety of materials were needed to be placed in the glove bag to aid in the crystal mounting process. Due to the small size of samples to be mounted, it was necessary to place a stereo-microscope partially inside the glove bag, as depicted in Figure 4.1. Portions were cut out of the plastic glove bag to allow for the microscope, light, power supply and cord to fit properly inside and the bag was sealed with electrical tape and Parafilm. Samples were placed on glass slides, and a variety of scalpels, large and small, were used to move the sample around on the slide. Other items inside the glove bag were glass capillaries (glued into brass pins) upon which the crystals were to be mounted, amorphous glue, paper to mix the glue on, and a thin scupula to mix it with. The glass capillaries were prepared by simply pulling glass pipettes over an open flame (i.e. in air) and then cutting off the length desired. Another type of capillaries used were those purchased with sizes $0.1 \mathrm{~mm}, 0.2 \mathrm{~mm}, 0.3 \mathrm{~mm}, 0.4 \mathrm{~mm}$, and 0.5 mm diameters, which were made of either glass or silica. These were utilized by either dropping the crystal into the capillary or by covering the sample mounted with glue on a pulled capillary in the brass pin.

Following the completion of the $\mathrm{Ca}_{2} \mathrm{NF}$ syntheses, a sample was opened under

Figure 4.1 Glove bag fitted around a binocular microscope. A hole large enough to fit the eyepiece of the microscope is cut in the top of the glove bag. The glove bag is then fastened to the microscope using electrical tape and purged of atmospheric gases. ${ }^{20}$
argon in the glove bag and the most yellow portion (i.e. desired product) of the sample was scraped from the crucible and placed on weigh paper. A small portion was left on a glass slide and the remaining sample was put into a clean vial. The vial was placed directly under the gas inlet tube to ensure that it was full of argon gas before it was sealed with electrical tape and parafilm. Crystal selection for X-ray analysis was based upon a few factors to try to ensure that the sample was indeed a single crystal and not twinned or polycrystalline. This included looking specifically for uniform yellow color throughout the crystal with similar dimensions on all four sides of it. (As it turns out, it was quite difficult to select ideal single crystalline samples of $\mathrm{Ca}_{2} \mathrm{NF}$, due to the small sizes of the crystals formed and the resulting difficulty in seeing many details). Also, the crystal selected should not have been dirty with black or gray specs on it and should have no indication of blue, green or clear, colorless portions. And finally, due to the fact that this sample was extremely air (or moisture) sensitive, there was only a limited time available to search for the perfect crystal because of inevitable diffusion of air into the bag. When air found its way into the bag through one of the many openings, the sample turned into a distinctly white powder, which was probably $\mathrm{Ca}(\mathrm{OH})_{2}$. The probable reaction is: $2 \mathrm{Ca}_{2} \mathrm{NF}$ $+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}+\mathrm{CaF}_{2}$. To keep the bag as dry as possible a container of $\mathrm{P}_{2} \mathrm{O}_{5}$ was kept open inside the bag during sample preparation.

Crystal Mounting Method 1

As it was mentioned in the previous chapter, much effort in this project was focused on finding a way to successfully mount such an air sensitive sample long enough
to conduct an X-ray data collection. The first of these techniques consisted of a slight modification to the traditional capillary/amorphous glue method. Non-air sensitive crystals are usually mounted by touching the tip of a thin capillary glued into a brass pin to the edge of the crystal. This method was slightly altered by placing a larger portion of glue to the tip of the capillary and immersing the crystal in that pool of glue. Moving around the crystal on the glass slide, the crystal became thoroughly covered in the glue and was then picked up off the slide. It was then left to dry inside the glove bag. If there was a tiny portion of the crystal that was not covered in glue, then the crystal's surface became exposed to air, enabling it to turn white. If too much glue was used to mount it to the tip of capillary, then it may have been too thick to even detect the crystal. There is also the possibility that the glue could have reacted with the crystal in certain cases, since some crystals encapsulated in glue seemed to decompose.

Crystal Mounting Method 2

The second method attempted was utilizing glass capillary tubes of sizes 0.1 mm to 0.5 mm to cover the crystal, thus sealing it off from air and protecting it in an inert environment. Depending upon the size of the selected crystal, an appropriately-sized capillary was removed from its packaging with a small pair of tweezers. Under the view of the stereo-microscope, the large top of the capillary was placed close to the selected crystal. A small scalpel was used to push the crystal into the capillary. Once it was placed inside the capillary, the tweezers were used to pick up the capillary to force the crystal deeper into the thin glass tube. Several methods were used to try to cut the capillary,
when the crystal was in its proper place. A scalpel was used to cut the capillary under the microscope, but this harsh movement was often too intense for the crystal, shattering it into many pieces. Clay was also used to plug the top of the capillary, to seal it off so that it may have been completely removed from the glove bag. Once it was outside of the glove bag a pair of tweezers was heated to "cut" the capillary down in size, but the glass was not sealed by the heat. The movement from the tweezers cutting the glass caused the crystal to shatter again. Also, a match was used to try to melt the glass closed at the appropriate location, but the heat damaged the crystal. If the crystal was intact after all of these methods, the capillary was inverted and inserted into a brass pin with either glue or clay. Overall, the crystals were proven to be not only air/moisture sensitive, but also quite susceptible to thermal and mechanical damage.

Crystal Mounting Method 3

Another attempt at mounting these air-sensitive crystals involved wrapping them in a protective layer of aluminum foil. The foil was cut into very small pieces before the glove bag was filled, and a pair of plastic tweezers was used to avoid any ripping or tearing of the foil. Once a crystal was selected, the scalpel was used to pick it up off of the glass slide, and it was then deposited onto the piece of foil. Tweezers were used to gently fold up the foil around the sample and the small ball-like foil was simply glued to the top of a capillary tube. A problem with this technique was that the process of folding the foil around the sample often caused the sample to shatter, and if the foil were folded
more loosely to prevent shattering, the crystal may not have been securely positioned allowing it to roll around inside the foil.

Crystal Mounting Method 4

The next technique attempted again involved enshrouding the crystal inside a capillary tube, but this time in a way that prevented mechanical damage to the crystal upon breaking and sealing the tube. The crystals were first mounted on thin capillaries in standard fashion, and then a 0.5 mm glass capillary was cut and under the microscope was gently placed over the mounted crystal and pushed toward the brass pin. At the brass pin, more glue was dabbed onto the capillary to seal it and to secure it into place.

Alternately, the thin capillary upon which the crystal was mounted was secured with clay instead of glue in the brass pin. This allowed for the 0.5 mm capillary over it to simply be pushed into the clay to avoid any air from entering the small glass tube. More glue was added after the sealed sample was removed from the glove bag to try to thickly coat it to improve its chances of surviving long enough in air for data collection. Samples prepared using this method also decomposed before X-ray data could be collected.

Crystal Mounting Method 5

For this trial, a series of glass capillaries of different sizes were pre-cut and inserted into a brass pin full of clay. The top portion of the capillary was open and was used in the glove bag to "pull" in the crystal. With a large portion of glue surrounding the crystal on the glass slide, the open end of the capillary was pushed onto the crystal. If the crystal would not move into the capillary easily, a scalpel was used to aid in its
movement. Once the crystal was encapsulated in glue and embedded just inside the tip of the capillary, it was dipped into another portion of glue to secure it from air.

Unfortunately, this method did not succeed in shielding samples either. The crystals were found to have turned white overnight, verifying that perhaps the glue was reacting with the crystal as suggested from previous observations.

Crystal Mounting Method 6

The method which was finally successful combined many aspects of the techniques described above along with a few new innovations. A very long glass capillary was pulled from the glass pipettes as described earlier and placed in clay inside a brass pin. Inside the glove bag, a small dab of petroleum jelly was used to secure the selected single crystal to the thin capillary. Then, under the view of the microscope, a 0.2 mm silica capillary was fitted over the crystal and the long, capillary was snipped from the brass pin. The large end of the 0.2 mm capillary was temporarily capped with clay and was then removed from the glove bag. In air, the capillary containing the crystal was trimmed to a proper length for X-ray analysis by first immersing the tube inside a large portion of petroleum jelly, which was placed on a glass slide. The open end was covered in petroleum jelly after this trimming and was then plugged with clay. If the other end had still too much length it was shortened in a similar manner. The sample actually used for the single crystal X-ray structure analysis described in Chapter VI was only trimmed on the small end, while the large funnel end of the capillary was plugged with clay and inserted perfectly into the goniometer head without using a brass pin. No interaction
between the crystal and the petroleum jelly was observed, and the sample remained intact for several weeks, enabling the collection of a complete single crystal X-ray data set. It should be noted that using silica rather than glass capillary tubes seemed to be crucial to the success of the method. Each time glass capillaries were used, the sample decomposed, possibly due to the presence of moisture and/or ions in the glass.

Powder Sample Preparation and Data Collection of Nitride-Fluorides

Powder X-ray diffraction was used occasionally during this project mainly to verify that the multi-phase reaction products contained the desired sample. Powder sample preparation is quite simple as opposed to the previously discussed method of single crystal selection and mounting methods. A glass capillary, size 0.2 or 0.3 mm , was utilized to "pack" a powder sample, which was again performed under an inert atmosphere inside a glove bag.

The yellow colored $\mathrm{Ca}_{2} \mathrm{NF}$ sample was scraped out of the reaction crucible directly into the mortar itself. Large black impurities that may have been from the nickel crucible were quickly picked out by the human eye or under the microscope. However, this had to be performed as fast as possible due to the fact that the sample only had a distinct amount of time before it reacted. The sample was then ground into a very fine powder with the mortar and pestle and loaded into the capillary tube. As the sample was scooped into the glass capillary, it was "packed" tightly by tapping it gently on a surface or with a finger. Only 1 cm of length of a capillary is needed to complete the sample. It was then cut and inverted into a brass pin with clay.

Data collection and analysis was performed using Bruker's X1000 multi-wire area detector (see Figure 1.5, Chapter I, pg. 19), coupled with the General Area Detector Diffractometer Software (GADDS) Package. Final analysis (e.g. background subtraction, peak assignments, etc.) were done using the DIFFRACT-AT package.

Collection of Single Crystal X-ray Data

Initial collection of $\mathrm{Ca}_{2} \mathrm{NF}$ and $\mathrm{Ba}_{2} \mathrm{NF}$ single crystal samples were performed on a Siemens (now Bruker) model P4 X-ray diffractometer. Rotation photographs were taken for a number of samples by loading the film cassette into the detector mount and exposing the film to the X-ray generator for anywhere from 10 minutes to 3 hours. After exposure, all of the samples demonstrated very few weak spots, if any at all. Only one sample, a $\mathrm{Ca}_{2} \mathrm{NF}$ single crystal, remained yellow long enough to be analyzed further than a rotation photo.

Due to the small size of this crystal, it was taken to the Department of Chemistry, Kent State University, Kent, Ohio to be analyzed with a CCD, charged coupled device system. The CCD detector is ideal for data collection of small, air sensitive crystals such as $\mathrm{Ca}_{2} \mathrm{NF}$, since it is very fast and sensitive. For example, a complete data set for our sample was collected overnight, whereas it would probably have taken a week or longer with the P 4 serial detector.

Single Crystal X-ray Data Interpretation of $\mathrm{Ca}_{2} \mathbf{N F}$

All data sets for this thesis project were analyzed using the Bruker SHELXTL package, version 5.05 for Windows NT, on a Gateway 2000 PC-3100XL computer. The structure was solved using direct methods and refined by the full-matrix least-squares on F^{2} technique. The refinement parameters included correction for secondary extinction, and anisotropic thermal parameters on all atoms. The extinctions that were refined in later cycles and the weighting scheme used was that suggested by SHELXTL-XL. Occupancy factors were refined on all atoms as well. Molecular graphics and tabular data were generated with SHELXTL-XP and SHELXTL-XCIF.

CHAPTER V

EXPERIMENTAL RESULTS

Introduction

The results and details of each $\mathrm{Ca}_{2} \mathrm{NF}$ and $\mathrm{Ba}_{2} \mathrm{NF}$ synthesis performed will be described in this chapter. In addition, structural analysis of $\mathrm{Ca}_{2} \mathrm{NF}$ from single crystal Xray diffraction data will be thoroughly discussed. The overall reactions, as well as the number of trials, for each of the two nitride-fluoride syntheses studied in this thesis are summarized below:

Reaction 1: $3 \mathrm{Ca}_{(\mathrm{s})}+\mathrm{CaF}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{Ca}_{2} \mathrm{NF}_{(\mathrm{s})}$ in nitrogen gas, $\mathrm{N}_{2(\mathrm{~g})}$
Trials Performed: 9
Reaction 2: $3 \mathrm{Ba}_{(\mathrm{s})}+\mathrm{BaF}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{Ba}_{2} \mathrm{NF}_{(\mathrm{s})}$ in nitrogen gas, $\mathrm{N}_{2(\mathrm{~g})}$
Trials Performed: 2

Syntheses of Ca_{2} NF

The overall reaction for synthesis of $\mathrm{Ca}_{2} \mathrm{NF}$ listed above was discussed in detail in Chapter IV, in the Nitride-Fluoride Syntheses sections. For most of the nine trials completed, the final product mixture consisted mainly of unreacted CaF_{2} powder and $\mathrm{Ca}_{2} \mathrm{NF}$ crystals, as indicated in the powder diffraction pattern shown in Figure 5.1. Sometimes nickel (from the crucible) was found as well. Each of the nine trials will now

Figure 5.1 X-ray diffraction pattern for $\mathrm{Ca}_{2} \mathrm{NF}$ synthesis product.
be described according to the masses of the reagents used, mole-to-mole ratios, and synthesis results.

Trial 1

This first synthesis used calcium metal pellets that were very large and could not be crushed with the mortar and pestle. Thus, three pellets were weighed to a mass of 0.486 g , corresponding to 0.012 moles of calcium. The grams of CaF_{2} needed was calculated to be 0.237 g based on the mole ratio of $4 \mathrm{Ca}: 1 \mathrm{CaF}_{2}$ used for this trial. As the calcium pellets were too difficult to crush with the mortar and pestle, the reactants were simply placed together in the crucible without mixing.

The synthesis was first attempted with a slight difference in Step 5 of the furnace program as reported in Chapter IV, page 37. Step 5 for this trial utilized a cooling rate of $20^{\circ} \mathrm{C} /$ hour instead of $15^{\circ} \mathrm{C}$ /hour as used for later trials, to promote crystal growth. Though this rate was slightly faster for the first synthesis, yellow crystals were found and were mounted using the Single Crystal Mounting Method 1, described in the last chapter, pg 41. Thus, the crystals were just mounted on a thin capillary and encapsulated in amorphous glue. All of the crystals that were mounted eventually decomposed due to extreme air sensitivity. This was detected by the crystals turning from yellow to pale yellow to white over a short period of time ranging from an hour to a day or so. From this first trial, there was one crystal that was mounted and continued to appear yellow in color long enough for a hemisphere search to be taken. The sample was too small $(0.02 \mathrm{~mm}$ in the largest dimension) for further analysis at Youngstown State University, and so it was
sent to the Department of Chemistry, University of Toledo, where it was inspected via a single crystal X-ray diffractometer equipped with a CCD. Despite its small size, the sample was found to be polycrystalline and it gave poor data, such that it could not be further characterized. In fact, it was not even possible to verify that the crystal was the desired $\mathrm{Ca}_{2} \mathrm{NF}$ phase.

Trial 2

The next trial that was performed used a slight variation of Reaction 1 (see above) by changing the mole-to-mole ratio from $4 \mathrm{Ca}: 1 \mathrm{CaF}_{2}$ to $3 \mathrm{Ca}: 1 \mathrm{CaF}_{2}$ This is the exact stoichiometric ratio needed to give the desired product: $3 \mathrm{Ca}+\mathrm{CaF}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{Ca}_{2} \mathrm{NF}$. Thus it was predicted that a complete reaction should yield only the desired product with no impurities. However, a complete reaction was never observed; the final product always contained unreacted CaF_{2}. Again, calcium pellets were used for this trial, and so the pellets and the CaF_{2} were simply added together into the crucible without any mixing in the mortar and pestle. The mass of three calcium pellets was 0.580 g , and this was used to determine the mass of CaF_{2} needed. This amount was $0.348 \mathrm{~g} \mathrm{CaF}_{2}$. The rest of the synthesis was performed exactly the same as that of Trial 1.

Yellow single crystals were found in the crucible, and a small amount of blue single crystals were found also. Samples of both colors were mounted with the same method as utilized in Trial 1, however none of the samples survived and all turned white overnight after being mounted. The blue crystals found were perhaps a nickel nitridefluoride phase or another phase of calcium nitride-fluoride that has never been previously
reported. Binary nickel-fluoride, nitride or oxide phases were all ruled out as possibilities, since none of these have the deep blue color of the observed crystals. Powder X-ray analysis was also attempted from this synthesis, but after packing the sample, it was oxidized and turned white too.

Trial 3

The calcium metal reactant used in this synthesis and for the remaining trials was a pre-ground calcium powder, enabling pre-mixing of the reactants before synthesis, as well as an increased surface area of contact for the reactant particles during the synthesis. The nickel reaction crucible contained 1.195 g of calcium and 0.810 g of CaF_{2}, in an approximate $3: 1$ mole ratio of $\mathrm{Ca}: \mathrm{CaF}_{2}$. The standard furnace program described in Chapter IV was used, and both yellow and blue crystals were found in the crucible after the completion of the synthesis. The main crystal mounting technique used for this trial was that of dropping the crystal into a glass capillary ranging from 0.1 mm to 0.5 mm in size and then either cutting the glass, or plugging it with clay and sealing it off with a match, (i.e. Crystal Mounting Method 2 from the previous chapter, page 42).

One yellow single crystal sample did remain intact after cutting the capillary in the glove bag and inverting it into glue. After a rotation photo proved unsuccessful with only three weak sets of points on the film, hemisphere and thin shell searches were performed, yet no additional peaks were obtained. Most likely, the crystal was polycrystalline or was much too small to be analyzed via the P4 Siemens diffractometer.

Another method of single crystal preparation for this trial was that of the aluminum foil method as described in Chapter IV (Crystal Mounting Method 3, page 43). After a yellow crystal was prepared, a hemisphere search was performed, but no data was obtained from this. The sample was most likely moving inside the foil ball, and unfortunately there was no way to ensure whether or not the crystal inside the foil was stable. For this reason, this method for mounting crystals was not pursued further with samples from trials four though nine.

Trial 4

For this trial, the masses of the reagents were 0.616 g of Ca metal and 0.400 g of CaF_{2} with a mole-to-mole ratio of $3 \mathrm{Ca}: 1 \mathrm{CaF}_{2}$. In an attempt to obtain larger crystals, the cooling rate was decreased during this synthesis compared to trials one to three. Specifically, Step 5 in the furnace program (see page 37) was altered to cool at a rate of $10^{\circ} \mathrm{C} /$ hour instead of $20^{\circ} \mathrm{C}$ /hour.

After the synthesis was complete, a leak from a crack was found in the glass tube as evidenced by a layer of white powder deposited on the inside and outside of the tube. Some yellow $\mathrm{Ca}_{2} \mathrm{NF}$ crystals were still obtained, but they seemed to decompose more quickly than usual. Nonetheless, several yellow crystals and a blue crystal were mounted by dropping the crystals into glass capillaries ranging in sizes of 0.1 mm to 0.2 mm (i.e see Crystal Mounting Method 2, page 42). Only two yellow crystals were analyzed on the diffractometer. For the first sample analyzed, only two peaks were found during the hemisphere search, probably due to too much crystal damage from a match singeing the
end of the glass capillary during the mounting process. Another yellow crystal revealed no points on a rotation photo after an exposure time of two hours, and a blue crystal did not provide any peaks during a hemisphere search.

Trial 5

For this trial, 0.560 g of calcium metal was mixed together with $0.346 \mathrm{~g} \mathrm{CaF}_{2}$ inside the crucible (approximately a 3:1 mole ratio). Step 5 of the furnace program on page 37 was slightly altered to $15^{\circ} \mathrm{C} /$ hour, which was slighter faster than the previously performed synthesis. During the synthesis the plastic tube supplying the argon gas to the tube furnace had slid off from pressure. This opened the system to the air and contaminated the sample. Therefore, the fifth synthesis was unsuccessful and there were no crystals mounted from this trial.

Trial 6

With the same mole ratios and program as used in Trial 5, the $\mathrm{Ca}_{2} \mathrm{NF}$ was prepared with 0.591 g Ca metal and $0.384 \mathrm{~g} \mathrm{CaF}_{2}$. After the synthesis was complete, the crucible was opened and inspected and yellow crystals were present. The crystals for Xray analysis were selected and mounted using two different techniques, (viz. Methods 4 and 5, page 44) discussed in Chapter IV, however all of the crystals decomposed overnight. Blue/green crystals were also mounted using Method 5, but did not retain their color after preparation either.

Trial 7

Again in a 3:1 mole ratio of $\mathrm{Ca}: \mathrm{CaF}_{2}, 0.641 \mathrm{~g} \mathrm{Ca}$ metal and $0.416 \mathrm{~g} \mathrm{CaF}_{2}$ were mixed together in a crucible, and reacted using the standard furnace program described in Trial 5. After the completion of the synthesis, both yellow and blue crystals were observed in the reaction crucible. The few blue and yellow samples that were mounted utilizing the method of sample preparation as described in Trial 6 were somehow exposed to air and decomposed before X-ray data could be collected.

Trial 8

For this trial, three crucibles were placed in the furnace tube to maximize the amount of yellow $\mathrm{Ca}_{2} \mathrm{NF}$ product. The masses of each of the reactants in each of the crucibles are listed below:

Crucible A: $\quad 0.598 \mathrm{~g}$ calcium metal, $0.388 \mathrm{~g} \mathrm{CaF}_{2}$
Crucible B: $\quad 0.592 \mathrm{~g}$ calcium metal, $0.384 \mathrm{~g} \mathrm{CaF}_{2}$
Crucible C: $\quad 0.576 \mathrm{~g}$ calcium metal, $0.374 \mathrm{~g} \mathrm{CaF}_{2}$
Each of these crucibles upon examination after the synthesis contained a large portion of yellow single crystals. Powder samples were prepared from this trial due to the fact that there was a large amount of product readily available for this method of evaluation. Two 0.3 mm glass capillaries were filled with yellow powder with the hope that the sample was pure enough to provide data that could be used for structure refinement by Rietveld analysis. As seen in the powder pattern shown in Figure 5.2, however, the sample (despite its yellow color) consisted largely of CaF_{2}. This could be due to the unreacted CaF_{2}, or more likely indicates decomposition of the $\mathrm{Ca}_{2} \mathrm{NF}$.

Figure 5.2 X-ray diffraction pattern for $\mathrm{Ca}_{2} \mathrm{NF}$ synthesis product from Trial 8.

Attempts to isolate yellow particles and prepare a powder sample from these failed, mainly because the sample decomposed (in the glove bag) before a sufficient amount of the tiny particles for powder diffraction could be gathered. When left out of the glove bag overnight the samples, although packed in a capillary tube, both reacted with air and turned into a white powder, as observed previously for $\mathrm{Ca}_{2} \mathrm{NF}$ single crystals. Single crystals were mounted also from this sample but were unsuccessful. One final triple synthesis was performed and will be describe in detail next.

Trial 9

This synthesis was the last performed and utilized a slight variation of the programs that were previously utilized.

Step 1: R1: Step function; L1: $28^{\circ} \mathrm{C} ; \mathrm{D} 1: 0.0$ hours
Step 2: R2: $80^{\circ} \mathrm{C} /$ hour; $\mathrm{L} 2: 1000^{\circ} \mathrm{C}$; D2: 1.0 hour

Step 3: R3: $100^{\circ} \mathrm{C} /$ hour; L3: $200^{\circ} \mathrm{C}$; D3: 3.0 hours
Switch from Ar to N_{2} gas at this point
Step 4: R4: $80^{\circ} \mathrm{C} /$ hour; L4: $1000^{\circ} \mathrm{C}$; D4: 4.0 hours
Step 5: R5: $60^{\circ} \mathrm{C} /$ hour; L5: $200^{\circ} \mathrm{C}$; D5: 0.0 hours
Step 6: R6: Step function; L6: $28^{\circ} \mathrm{C}$; D6: End of program
Steps 2-6 were each different than the program presented in Chapter IV, page 37. This final program took 24.5 hours until the gas was changed from argon gas to nitrogen gas, with the entire synthesis taking approximately 60 hours.

The three crucibles used in the synthesis were placed in the tube furnace as in Trial 8 and the masses of the reagents (all in approximate $3: 1$ mole ration of $\mathrm{Ca}: \mathrm{CaF}_{2}$) are listed below:

$$
\begin{array}{ll}
\text { Crucible A: } & 0.560 \mathrm{~g} \mathrm{Ca} \text { metal, } 0.364 \mathrm{~g} \mathrm{CaF}_{2} \\
\text { Crucible B: } & 0.555 \mathrm{~g} \mathrm{Ca} \text { metal, } 0.360 \mathrm{~g} \mathrm{CaF}_{2} \\
\text { Crucible C: } & 0.554 \mathrm{~g} \mathrm{Ca} \text { metal, } 0.359 \mathrm{~g} \mathrm{CaF}_{2}
\end{array}
$$

After the synthesis was complete, each crucible displayed a large amount of yellow crystals. A few powder samples were prepared with this yellow $\mathrm{Ca}_{2} \mathrm{NF}$ and they were not successful in the glass capillaries and turned white soon after packing the samples. Thus, attention was once again turned to mounting single crystals.

At this point, it was apparent that the $\mathrm{Ca}_{2} \mathrm{NF}$ samples were not stable while in contact with neither the glass capillary mounting/packing tubes, nor with the epoxy used to secure/encapsulate them. The glass capillary tubes may have had a high water content and once used inside the glove bag, this water may have aided in the decomposition of either the powder or single crystal samples that were prepared, turning the sample to a white powder substance or white crystal. In addition, the glass capillaries may also have had a sufficient cation content (e.g. Na^{+}), to interact with F ions in $\mathrm{Ca}_{2} \mathrm{NF}$, and cause it to decompose. The epoxy was not further analyzed to determine a cause for the apparent instability of $\mathrm{Ca}_{2} \mathrm{NF}$ when placed in contact with it. Thus, for this trial, pure silica capillary tubes (0.1 mm and 0.2 mm in diameter) were used instead of glass to avoid the formation of calcium hydroxide and to secure an inert environment. Also, petroleum jelly was used instead of epoxy to mount the crystal to the thin glass capillary to secure the
crystal. Since the glue may have been reacting with the single crystal, the petroleum jelly was more effective at holding the crystal at the proper site and keeping it yellow in its nitride-fluoride form. The sample was cut to a shorter, more effective length outside of the glove bag in a protective drop of petroleum jelly on a glass slide. The jelly was also an extremely effective shock absorber, allowing the crystal to remain in its argon environment without crumbling or breaking apart at all.

One specific sample mounted in this way remained yellow for over a week, which was long enough for the entire single crystal X-ray diffraction data collection to be performed on the sample. As previously mentioned, the sample was taken to Kent State University, Kent, Ohio, where a diffractometer equipped with a CCD detector was used for data collection. Though it was found that the sample was not single crystalline, a good unit cell and conclusive structure was obtained using about half of the data collected, as discussed shortly.

Syntheses of Ba $\mathbf{B a}_{2}$ NF

Two trials were attempted for the synthesis of $\mathrm{Ba}_{2} \mathrm{NF}$ single crystals. Since the color of $\mathrm{Ba}_{2} \mathrm{NF}$ has never been previously reported, selecting crystals for mounting was difficult relative to the case for $\mathrm{Ca}_{2} \mathrm{NF}$, where the expected color was known. Most often, pink crystals were selected and mounted for analysis, although clear, colorless crystals were also present and sometimes mounted. The two trials for this compound are described below.

Trial 1

The synthesis of BaF_{2} was performed similarly to that for $\mathrm{Ca}_{2} \mathrm{NF}$ with the furnace program as outlined in Chapter IV. The reactant mixture consisted of 1.660 g of barium metal powder and 0.707 g of BaF_{2} in a $3: 1$ mole ratio of $\mathrm{Ba}: \mathrm{BaF}_{2}$. There were no single crystals mounted for this synthesis due to the fact that the resulting product was a gray powder with a layer of white powder substance. After observation, no single crystals were found to have been suitable for mounting.

Trial 2

This trial was performed with three different crucibles, with the first two crucibles set up for a different reaction than the third crucible. Crucibles A and B were prepared according to the following reaction: $\mathrm{BaF}_{2}+\mathrm{Ba}_{3} \mathrm{~N}_{2} \rightarrow 2 \mathrm{Ba}_{2} \mathrm{NF}$. Thus, this particular reaction utilized a direct synthesis method approach, as described in Chapter I. The third crucible contained reactants from the reaction: $3 \mathrm{Ba}+\mathrm{BaF}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{Ba}_{2} \mathrm{NF}$. This triple synthesis used the following masses of reactants:

Crucible A: $\quad 0.451 \mathrm{~g} \mathrm{BaF}_{2}, 1.156 \mathrm{~g} \mathrm{Ba}_{3} \mathrm{~N}_{2}$
Crucible B: $\quad 2.190 \mathrm{~g} \mathrm{BaF}_{2}, 5.388 \mathrm{~g} \mathrm{Ba}_{3} \mathrm{~N}_{2}$
Crucible C: $\quad 0.757 \mathrm{~g}$ barium metal, $0.341 \mathrm{~g} \mathrm{BaF}_{2}$
The program as used in Trial 1 above was altered in Steps 2, 4 and 5. This is shown in the following program:

Step 1: R1: Step function; L1: $28^{\circ} \mathrm{C}$; D1: 0.0 hours
Step 2: R2: $60^{\circ} \mathrm{C} /$ hour; $\mathrm{L} 2: ~ 900^{\circ} \mathrm{C}$; D2: 1.0 hour

Step 3: R3: $60^{\circ} \mathrm{C} /$ hour; L3: $200^{\circ} \mathrm{C}$; D3: 2.0 hours
Switched from Ar to N_{2} gas at this point
Step 4: R4: $60^{\circ} \mathrm{C} /$ hour; $\mathrm{L} 4: 900^{\circ} \mathrm{C} ; \mathrm{D} 4: 15.0$ hours
Step 5: R5: $15^{\circ} \mathrm{C} /$ hour; L5: $200^{\circ} \mathrm{C}$; D5: 0.0 hours
Step 6: R6: $80^{\circ} \mathrm{C} /$ hour; L6: $28^{\circ} \mathrm{C}$, D6: End of program
After inspection of the three crucibles, variations of black, white and gray color and powder/crystalline consistency were found in the crucibles. Crucible A had a thick layer of white on the surface with no other color showing. Crucible B displayed mostly white powder on the surface with small flakes of dark gray and black. And finally, crucible C had black and gray pieces with white powder-like specs on the surface and throughout the sample. Pink single crystals were also found in this crucible, but not in the other two crucibles. Several samples were mounted using Crystal Mounting Method 4, page 44, however, none of the lightly colored pink crystals that were mounted were protected enough from the glass cover to remain pink for more than a few hours.

Single Crystal X-ray Analysis of Ca_{2} NF

X-ray data were collected on a Bruker SMART 1k CCD Single Crystal Diffractometer System equipped with a fine focus, 3.0 kW sealed tube X-ray source (MoK α radiation, $\lambda=0.71073 \AA$) operating at 50 kV and 40 mA . Approximately 1.0 hemispheres of intensity data were collected in 1800 frames using ω scans (width of 0.30° and exposure time of 10 s per frame). Following data collection, initial attempts to reduce the cell indicated the possible presence of twinning in the sample. Bruker's GEMINI
program was then used in an attempt to assign orientation matrices to the twins, however the program could assign only one orientation matrix, using reflections thresholded from 450 of the total 1800 frames collected. As will be discussed in Chapter VI, it was later hypothesized that the sample is actually polycrystalline rather than twinned, with one larger predominant crystallite, and one or more smaller ones. In order to continue the structure analysis, this orientation matrix obtained from GEMINI based on part of the data was used in SMART to determine the higher symmetry cell (i.e. Bravais lattice), and to refine the unit cell parameters. The resulting refined cell was then used to integrate all data in SAINT, which used 384 reflections to achieve the final parameters that were used in the ensuing structural refinement. Prior to structure solution and refinement, an empirical absorption correction was performed on the data files written by SAINT using SADABS (written by George Sheldrick, University of Göttingen, 1996), which also simultaneously corrected for other effects, such as absorption by the glass capillary. Refinement data, including the cell parameters, are summarized in Table 5.1.

Structure Solution and Refinement

As the unit cell parameters indicated a tetragonal structure, it was immediately realized that the $\mathrm{Ca}_{2} \mathrm{NF}$ sample prepared here is not isostructural with CaO (cubic rocksalt-type), as reported previously by Erlich. ${ }^{11}$ The parameters are however similar to those for $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$ reported by Andersson, ${ }^{10}$ which are $\mathrm{a}=4.186$ and $\mathrm{c}=10.042 \AA$. Also, XPREP for the $\mathrm{Ca}_{2} \mathrm{NF}$ sample suggested a space group of $\mathrm{I}_{1} / \mathrm{amd}$, which is the space group suggested by Andersson for $\mathrm{Mg}_{2} \mathrm{NF}$. Thus, it is apparent that the $\mathrm{Ca}_{2} \mathrm{NF}$ prepared in

Table 5.1

Crystal Data Summary and Refinement Results for $\mathrm{Ca}_{2} \mathbf{N F}$

Structural Formula	$\mathrm{Ca}_{2} \mathrm{NF}$
Formula Weight	113.17
Color	Yellow
Crystal Size (mm)	$0.09 \times 0.16 \times 0.24$
Space Group	$\mathrm{I} 41 / \mathrm{amd}$
$\mathrm{a}(\AA)$	$4.9018(9)$
$\mathrm{b}(\AA)$	$4.9018(9)$
$\mathrm{c}(\AA)$	$10.516(3)$
$\beta\left(^{\circ}\right)$	$101.246(13)$
$\mathrm{V}\left(\AA^{3}\right)$	$252.67(9)$
Z	4
$\rho_{\text {calc }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	2.975
$\lambda(\mathrm{CuK} \alpha)(\AA)$	1.54178
$\mu\left(\mathrm{~mm}^{-1}\right)$	4.197
θ Range for Data Collection $\left(^{\circ}\right)$	4.59 to 28.24
Limiting Indices	$-5 \leq \mathrm{h} \leq 6,-6 \leq \mathrm{k} \leq 6,-12 \leq 1 \leq 13$
No. of Reflections Collected	695
No. of Independent Reflections	$101\left(\mathrm{R}_{\text {int }}=0.0894\right)$
No. of Parameters	12
Refinement Method	$\mathrm{Full}^{\circ}-\mathrm{matrix}$ least-squares on F^{2}
Final R Indices [I>2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}(\mathrm{~F})^{a}=0.0316, \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)^{b}=0.0585$
Final R Indices $(\mathrm{All}$ Data $)$	$\mathrm{R}_{1}(\mathrm{~F})^{a}=0.0426, \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)^{b}=0.0630$
Goodness-of-Fit on F^{2}	1.178
Largest Diff. Peak and Hole	0.604 and $-0.422 \mathrm{e}^{\circ} \AA^{\AA-3}$

[^0]the project is isostructural with Andersson's $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$ compound, and also with the $\mathrm{Sr}_{2} \mathrm{NF}$ powder analyzed by Potkonicky. ${ }^{13}$

The structure was determined using Direct Methods and the three atomic positions expected (i.e. one calcium, one nitrogen, and one fluorine) by comparison to the L $\mathrm{Mg}_{2} \mathrm{NF}$-type structure could be assigned immediately. Following the initial structure solution, the refinement converged after six cycles, as summarized in Table 5.2. After the sixth refinement, the final structure was achieved by observing successful convergence of all atomic positions, displacement factors and occupancies. In general, acceptable convergence of the aforementioned parameters are at or below a shift of 0.1. In this refinement, the final shift was 0.0 for convergence, suggesting that all of the parameters were consistent and convergence was achieved.

The final atomic coordinates, occupancy factors and anisotropic and equivalent isotropic displacement parameters are listed in Table 5.3. From the occupancy factors, the composition was found to be $\mathrm{Ca}_{2.00} \mathrm{~N}_{1.09} \mathrm{~F}_{1.00}$, in good agreement with the ideal composition of $\mathrm{Ca}_{2} \mathrm{NF}$. The displacement parameters listed in Table 5.3 are typical for inorganic solids.

Despite the fact that this structure determination is based on less than half of the total data collected, the data/parameter ratio of 8.4 (see Table 5.1) indicates that there was sufficient data to achieve a conclusive refinement. The R values obtained for the refinement were fairly low, and are typical for inorganic structures refined from a complete data set. This indicated that intensity contributions from other crystallites presumably present did not introduce significant error. The structure refinement is also

Table 5.2

Refinements for $\mathrm{Ca}_{2} \mathbf{N F}$

Refinement \#	Merging R Value		Description of Refinement
	0.0391	0.0312	
2	0.0312	Assigned all atoms (Ca1, N1, F1)	
3	0.0312	Refined anisotropic displacement parameters for all three atom positions	
4	0.0312	Refined extinction ACTystallographic information file	
5	0.0316	Refined occupancy factors for all three atom positions	
6		Weight changed to refine any additional crystallographic parameters	

Table 5.3

Positional, Occupational, and Anisotropic ${ }^{a}$ and Equivalent Isotropic ${ }^{b}$ Displacement Parameters $\left(\AA^{2} \times 10^{4}\right)$ From $\mathrm{Ca}_{2} \mathrm{NF}$ Final Refinement

Atom	$\mathrm{Ca}(1)$	$\mathrm{F}(1)$	$\mathrm{N}(1)$
Site	8 e	4 a	4 b
Occupancy Factors	0.24988	0.13630	0.12453
X	$1 / 2$	0	$1 / 2$
Y	$3 / 4$	$3 / 4$	$1 / 4$
Z	$0.032(1)$	0.125	0.125
U_{11}	$12(1)$	$14(2)$	$16(2)$
U_{22}	$10(1)$	$14(2)$	$16(2)$
U_{33}	$12(1)$	$40(4)$	$12(4)$
U_{12}	0	0	0
U_{13}	0	0	0
U_{23}	0	0	0
$\mathrm{U}_{(\mathrm{eq})}$	$11(1)$	$22(2)$	$15(2)$

${ }^{a}$ The anisotropic thermal parameter is expressed as $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+1^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+\right.\right.$ $\left.\left.2 \mathrm{hla}^{*} \mathrm{c}^{*} \mathrm{U}_{13}+2 \mathrm{klb}^{*} \mathrm{c}^{*} \mathrm{U}_{23}\right)\right]$.
${ }^{b} \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the Uij orthogonalized tensor. sense." Based on these factors, the overall refinement is deemed to be quite successful. It should be noted that this is apparently the first single crystal structure refinement of an inorganic nitride-fluoride compound ever reported.

CHAPTER VI

DISCUSSION

Introduction

The main focus of this chapter concerns the crystal chemistry of the $\mathrm{Ca}_{2} \mathrm{NF}$ structure described in Chapter V. In addition, the partial polycrystalline nature of the sample used in the structure analysis will be discussed. The chapter will conclude with a discussion of possible future directions for this work as well as related research.

Polycrystallinity of the Ca_{2} NF Sample

As mentioned in the last chapter, the single crystal structure refinement of the successfully mounted $\mathrm{Ca}_{2} \mathrm{NF}$ sample was based on only a partial data set. This is because the data set in its entirety could not be indexed using a common orientation matrix, and GEMINI could not find a twin law relating the indexed data to the rest of the data set. Attempts to index the rest of the data set by first deleting the successfully indexed data also failed. This led to the hypothesis that the $\mathrm{Ca}_{2} \mathrm{NF}$ sample was not actually single crystalline, but rather polycrystalline, consisting of one large crystal (from which the structure was successfully obtained) and several smaller ones. Since the crystal was very small (which was generally the case for the hundreds of crystals observed), the presence of the small crystallites could have easily escaped detection during mounting. It is also quite possible that the crystal fractured while being inserted in the capillary tube.

To test the hypothesis of a polycrystalline sample, the 450 frames of data used for the structure refinement, containing both indexed and unindexed reflections, were analyzed as powder diffraction data. The reasoning here is that analysis of powder diffraction data does not require knowledge of the specific orientations of the crystallites, and does not even require a single-phase sample. To accomplish this analysis, the 450 frames of data were unwarped on the system at Kent State University (i.e. where the data was collected) and then imported into the GADDS system (i.e. for powder analysis) onsite at YSU. Before integrating the data in the GADDS system, it was first necessary to calibrate GADDS for analysis of data from a CCD detector, since GADDS is normally configured for the multi-wire detector available on site. The calibration was performed by collecting corrundum powder data on the Kent State University CCD system, unwarping the data, and then importing it into the GADDS system for adjustment of the x and y center and detector distance parameters. Following the calibration, all 450 frames of $\mathrm{Ca}_{2} \mathrm{NF}$ single crystal data obtained from the Kent State University CCD system were integrated (from 3.0 to 175.1° in chi) in GADDS, and merged into a single diffraction pattern. The resulting diffraction pattern, after background subtraction, is shown in Figure 6.1 and spans a 2θ range of 13 to 56°.

After the diffraction pattern was obtained, the "powder" data was indexed using the TREOR program on Bruker's WIN-INDEX package (version 1.5), and cell parameters were refined using WIN-METRIC (version 2.1). The final cell parameters obtained from the powder pattern analysis were: $\mathrm{a}=4.88259(321) \AA$ and $\mathrm{c}=10.4674(1468) \AA$. These compare fairly closely to the parameters used for the single crystal structure refinement,

Figure 6.1 Equivalent powder X-ray diffraction pattern for $\mathrm{Ca}_{2} \mathrm{NF}$ obtained after merging 450 frames of single crystal data in GADDS.
viz. $\mathrm{a}=4.9018(9) \AA$ and $\mathrm{c}=10.516(3) \AA$. A closer match cannot be expected based on the fact that so few reflections are present on the powder pattern. This in turn is likely due to the fact that GADDS could not integrate many of the isolated weak reflection points that were present, since GADDS is designed to integrate powder rings and not spots. It should be noted here that partial powder rings were frequently observed during the GADDS integration, suggesting that the $\mathrm{Ca}_{2} \mathrm{NF}$ sample was indeed powder-like. Table 6.1 summarizes the powder analysis data. The fact that all the reflections could be indexed using the same cell parameters indicates that the $\mathrm{Ca}_{2} \mathrm{NF}$ sample was a single phase material, and did not decompose during the data collection. We are not aware of any other successful "single crystal" structure analysis of a polycrystalline sample.

Single Crystal Structure Analysis of $\mathrm{Ca}_{2} \mathbf{N F}$

Based on the crystallographic information presented in Chapter V, it was concluded that the $\mathrm{Ca}_{2} \mathrm{NF}$ compound reported here is not isostructural with that reported by Erlich, ${ }^{11}$ et al. as having the rocksalt type structure. This is clearly illustrated by the powder diffraction pattern in Figure 6.1, which compares the present experimental data to Erlich et al.'s data stored in the database. The cubic cell edge for $\mathrm{Ca}_{2} \mathrm{NF}$ reported in the Erlich paper is $4.937 \AA$, which is somewhat larger than the a and c cell edges for the present sample. Possible explanations for the discrepancy are that the cubic cell parameters are based on relatively few powder reflections and/or poor data, or that a phase different from the present one was actually synthesized. For example, Erlich

Table 6.1

Comparison of Equivalent Powder d-Spacings from $\mathrm{Ca}_{2} \mathrm{NF}$ Single Crystal Data to Calculated d-Spacings

(hkl)	$\mathrm{d}($ obss $)$	$\mathrm{d}^{*}($ calc $)$	$\left.d_{\text {obs }}-\mathrm{d}_{\text {calc }}\right\rfloor$
(004)	2.6165	2.6168	0.0003
(200)	2.4446	2.4413	0.0033
(204)	1.7853	1.7851	0.0002
(220)	1.7199	1.7263	0.0064
(224)	1.4380	1.4410	0.0030
(440)	1.2202	1.2206	0.0004
(540)	0.7617	0.7625	0.0008

et al. could have actually synthesized a $\mathrm{Ca}_{3} \mathrm{NF}_{3}$ phase, isostructural with Andersson's ${ }^{10}$ cubic $\mathrm{Mg}_{3} \mathrm{NF}_{3}$ compound.

The reason that $\mathrm{Ca}_{2} \mathrm{NF}$ does not have the rocksalt structure (at least at ambient pressure) is likely due to the fact that calcium would be overbonded in octahedral coordination with three N^{3-} ions and three F^{-}ions. Likewise, one would expect calcium in tetrahedral coordination (as in the ZnS structure) to two N^{3-} ions and two F^{-}ions to be underbonded. This was discussed in detail for the case of $\mathrm{Sr}_{2} \mathrm{NF}$ by Potkonicky. ${ }^{13}$ The optimal structure is the one originally proposed by Andersson ${ }^{10}$ for $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$, in which magnesium is basically five-coordinated to three N^{3-} ions and two F^{-}ions, with a sixth longer bond to a $\mathrm{F}^{\text {i }}$ ion. The single crystal analysis completed in this study unambiguously assigns a $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$-type structure to $\mathrm{Ca}_{2} \mathrm{NF}$, and the resulting structure plot is shown in Figure 6.2.

Bond-Valence Sum Method and Analysis Results

To verify the overall structure of $\mathrm{Ca}_{2} \mathrm{NF}$, the empirical bond-valence sum analysis is performed. This method involves calculating the individual bond valences with respect to a specific bonded pair of atoms, such as $\mathrm{Ca}-\mathrm{N}$, and then summing the total valences around an atom of interest, like calcium. If the bond-valence sum is equal to the ideal oxidation state of the specified atom (again, calcium for this case) then the crystallographic structure is considered acceptable. As described by Brese and O'Keeffe, ${ }^{21}$ the bond valence, v_{ij}, is between two atoms i and j , and the sum of all of the valences are given by the following:

Figure 6.2 Ball and Stick Plot for $\mathrm{Ca}_{2} \mathrm{NF}$.

$$
\Sigma_{\mathrm{j}} \mathrm{v}_{\mathrm{ij}}=\mathrm{V}_{\mathrm{i}}
$$

where v_{ij} is equal to the equation given below:

$$
\mathrm{v}_{\mathrm{ij}}=\exp \left[\left(\mathrm{R}_{\mathrm{ij}}-\mathrm{d}_{\mathrm{ij}}\right) / \mathrm{b}\right] .
$$

In the above expression, b is referred to as a universal constant of $0.37 \AA . R_{i j}$ is a unitless empirical parameter that represents the bonds between pairs of atoms in a structure, i.e. the bond valence parameter. And finally, d_{ij} is the experimental bond length. The R_{ij} values were obtained for $\mathrm{Ca}-\mathrm{N}$ and $\mathrm{Ca}-\mathrm{F}$ from the paper by Brese and O'Keeffe: for $\mathrm{Ca}-$ $\mathrm{N}, \mathrm{R}_{\mathrm{ij}}=2.14$ and for $\mathrm{Ca}-\mathrm{F}, \mathrm{R}_{\mathrm{ij}}=1.824$. The bond valence sum results for $\mathrm{Ca}_{2} \mathrm{NF}$ are summarized in Table 6.2.

Using the calcium atom as the central atom for the above calculations, it would be expected that the calculated valence sum should be close to 2.0 , which is the ideal valence for the calcium atom. However, the results in Table 6.2 indicate that the bond valence sum of 1.771 obtained here is lower than 2.0 by about 11.5%. According to Brese and O'Keeffe, ${ }^{21}$ some error (from 2 to 14% or higher) in the bond valence sum calculation is expected, depending on the quality of the structural data used to derive the empirical parameters used in the equation given above. Another point worth making regarding the $\mathrm{Ca}-\mathrm{N}$ and $\mathrm{Ca}-\mathrm{F}$ parameters used in this calculation is that these were derived mainly from nitride and fluoride compounds, respectively. It is likely that few polycompounds (i.e. compounds containing two types of anions, such as fluorine and oxygen), and certainly no nitride-fluoride structures, were used to derive them. Thus, subtle crystal chemical factors, such as N-F nonbonded interactions that may be present in $\mathrm{Ca}_{2} \mathrm{NF}$, would not be

Table 6.2

Bond Valence Sum Results for $\mathrm{Ca}_{2} \mathbf{N F}$

Bond	Bond Distance	Bond Valence
Ca-N1	$2.4000 \AA$	0.495
$\mathrm{Ca}-\mathrm{N} 2$	$2.4616 \AA$	0.419
$\mathrm{Ca}-\mathrm{N} 3$	$2.4616 \AA$	0.419
$\mathrm{Ca}-\mathrm{F} 1$	$2.4616 \AA$	0.187
$\mathrm{Ca}-\mathrm{F} 2$	$2.4616 \AA$	0.187
$\mathrm{Ca}-\mathrm{F} 3$	$2.8579 \AA$	0.064
$\mathrm{~V}(\mathrm{Ca})=\Sigma \mathrm{v}_{\mathrm{ij}}$		1.771

inherent in the empirical database parameters used in the calculation. Based on this discussion, it can be concluded that the bond valence sum results obtained here are compatible with the proposed structure.

Future Research Related to Nitride-Fluoride Analogs

The most obvious area for future work is to apply the synthesis and X-ray sample mounting techniques developed in this thesis for $\mathrm{Ca}_{2} \mathrm{NF}$ to other nitride-fluoride analogs of binary oxides. Examples for possible single crystal preparation and analysis include $\mathrm{Sr}_{2} \mathrm{NF}, \mathrm{Ba}_{2} \mathrm{NF}, \mathrm{Mg}_{2} \mathrm{NF}, \mathrm{TiNF}, \mathrm{Ni}_{2} \mathrm{NF}, \mathrm{Y}_{2}(\mathrm{NF})_{1.5}$, and $\mathrm{Cu}_{2} \mathrm{NF}$. Although rigorous structural analysis based on powder X-ray diffraction has been published for two of the compounds listed (viz. $\mathrm{Mg}_{2} \mathrm{NF}$ and TiNF), no quantitative single crystal studies have been reported for any of them.

While single crystal X-ray diffraction is widely recognized as the best method available for elucidating crystal structures, the technique provides only an average structure over many unit cells. This is sufficient for the majority of samples analyzed, which are well ordered. For compounds with superlattice ordering present, such as might be the case in nitride-fluorides, other techniques are required to characterize the nature of any ordering present. In the case of nitride-fluoride compounds, the method of choice for determining whether or not there is ordering of nitrogen and fluorine atoms in the lattice is neutron powder diffraction. This is because the scattering factors for nitrogen and fluorine are quite different for neutron diffraction, whereas they are very similar in X-ray diffraction, making it difficult to differentiate between the two atoms by this method.

Therefore, it would be quite worthwhile to complement single crystal X-ray diffraction studies of the nitride-fluorides prepared with powder neutron diffraction.

Another possibility for future work involves preparation of nitride-fluoride analogs of ternary oxides such as perovskite, CaTiO_{3}. These would be prepared by first making nitride-fluoride precursors, and then reacting them using standard ceramic methods. For example, a perovskite analog could be made according to the following reaction: $1 / 2 \mathrm{Ca}_{2} \mathrm{NF}+\mathrm{TiNF} \rightarrow \mathrm{CaTi}(\mathrm{NF})_{1.5}$. Successful preparation of this product would be significant, since no ternary nitride-fluoride analogs have yet been reported. Also, perovskites in general have become widely studied in recent years due to their relationship to high temperature superconducting oxides. A related goal for the long term would be to attempt preparation of more complex nitride-fluoride compounds such as $\mathrm{YBa}_{2} \mathrm{Cu}_{3}(\mathrm{NF})_{3.25}$, which is an analog of the so-called 1-2-3 high temperature superconducting oxide, $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6.5}$. The successful preparation of this phase would be significant in terms of comparison of its properties to those of the oxide material.

As so few inorganic nitride-fluoride compounds have been prepared and studied to date, possibilities for research in this field are essentially unlimited.

CHAPTER VII

SINGLE CRYSTAL ANALYSIS OF α-OXY- β-SUBSTITUTED- β-AMINO ESTERS

Introduction

This chapter describes the results of single crystal X-ray diffraction studies of three organic samples provided by James C. Adrian Jr., Assistant Professor of Chemistry, Science and Engineering Center, Union College, Schenectady, New York. Before describing the X-ray diffraction analysis, a brief background related to the samples is given below.

Background of Organic Structure and Synthesis

With respect to β-amino acids, they are found less than α-amino acids, yet they do contribute significantly to the field of pharmacology. ${ }^{22}$ The difference between α and β amino acids is the location of the amino group in relation to the carboxylic acid group. α amino acids have an amino and a carboxylic acid group both bonded to a central carbon atom, i.e. the α-carbon. β-amino acids have an amino group attached to a carbon atom that is located two carbons away (β-carbon) from the carboxylic acid attachment site. β amino acids are known to serve as precursors or synthetic intermediates, in the preparation of the class known as β-lactam antibiotics. ${ }^{23}$ It has also been discovered that
the peptides of the β-amino acids have the ability to construct folding patterns that are close in structure to that for α-amino acid peptides. ${ }^{24,25}$ Due to these factors, β-amino acids are an intriguing category related to pharmacology, of which single step methods for the stereoselective preparations of α-oxy- β-substituted b-amino acids will be explored. ${ }^{26,27}$

Synthetically, the phenylisoserine derivatives are of great interest to organic chemists, because of the fact that their β-amino ester side chain is related to that of Taxol. The interest in this synthesis stems from a stereoselectivity that could occur in one step. To prepare this there are two methods that are utilized. The first is that of a direct coupling of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bonds. This differs from the second method which uses a functional transforming of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bonds. Another direct coupling method is the use of chlorotitanium enolates added to aldimines, an overlooked type of single step synthesis.

Two different research groups; Mukai, Kim and Hanaoka and Annunziata, ${ }^{28}$ et al. performed and published separate work in this subject in 1992. They both reported that α, β-dihydroxy thioesters were synthesized in high yields after an aldol reaction occurred from chlorotitanium enolates and O-protected aryl thioglycolates. Both research groups found that the Aldol reactions that occurred had produced the anti isomer. Later, Cozzi, ${ }^{29}$ et al. proved that the stereoselectivity of the anti versus syn reaction was related to the protecting group utilized. This was found to have been dependent upon the size of the Oprotecting group, i.e. a small benzyl group produced an anti isomer, while a sterically bulky (TBDMS) group created a syn isomer. The research that was conducted by James C. Adrian and analyzed via X-ray diffraction methods in this section of the thesis
demonstrates that via an addition of enolated of methyl methoxyacetate to aldimines, an α-oxy- β-substituted- β-amino ester results with a higher yield for the anti isomer relative to the syn isomer. The reaction scheme is shown in Figure 7.1

Imine substitution of the β-amino ester was the method of synthesis utilized by James C. Adrian to produce the anti isomer. Enolization of methyl methoxyacetate occurred with TiCl_{4} and diisopropylethylamine (DIPEA) at $-80^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The violate enolate was placed into 0.5 molar equivalents of the imine into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$ again. Significant β-amino esters resulted. HPLC was used to determine the anti to syn ratio of the product. $200-\mathrm{MHz}$ NMR was another method used for determining which diasteriomer was produced. The major product of para-chlorophenyl, which was the ester methyl 3-(2-methoxyphenyl)amino-2-methoxy-3-(4-chloro)phenylpropionate (1), was found to have been the anti isomer. 1 was grown in a 95% ethanol solvent. The method of determining this was via single crystal X-ray diffraction, as performed in this study. It was also found in the same method that the minor product of phenyl was the ester methyl 3-(2-methoxyphenyl)amino-2-methoxy-3-phenylpropanoate $(\mathbf{2}, \mathbf{3})$ was found to have been the syn isomer. $\mathbf{2}$ and $\mathbf{3}$ have the same relative stereochemistry, but their solvents were varied. 2 was crystallized in a 95% ethanol solution, while $\mathbf{3}$ was crystallized in isopropyl alcohol. To explicitly explain the HPLC and NMR results, as well as the working hypothesis for why the anti is the more abundant isomer as aforementioned is beyond the intentions of this thesis, but see the paper "Chlorotitanium Enolate Addition to Aldimines: A Stereoselective Route to α-Oxy- β-Substituted- β -

Figure 7.1 The reaction pathway for the α-oxy- β-substituted $-\beta$-amino ester.

Amino Esters," by Adrian, ${ }^{30}$ et al. However, the determination of structure of $\mathbf{1 , 2}$ and $\mathbf{3}$ via X-ray diffraction methods will be discussed next.

X-Ray Diffraction Analysis of Organic Compounds

Three crystals were found and selected via a stereo-microscope and were then mounted onto a thin piece of glass fiber with clear epoxy glue. The crystal was then centered optically into the X-ray beam of a Bruker P4 automated diffractometer, equipped with a normal focus, 2.4 Kw copper sealed tube. Rotation photographs and peak profiles of representative reflections were used to evaluate crystal quality. The data collection results and solution parameters are summarized in Tables 7.1, 7.2 and 7.3.

Data was collected via Bruker's XSCANS software package. The preliminary unit cell was found from centering the reflections chosen from the rotation photograph previously taken. Axial photographs, a fractional search, and a thin shell search then followed. These aided in the centering of 100 reflections for finding the final unit cell parameters of 1,2 and 3. Bravais and Laue symmetry determinations were then performed. Three of the strong and orthogonal reflections from the thin shell were chosen as check reflections as standards for the analysis and were recollected after each 97 data reflections.

The structure solution was determined via the SHELXTL package for Windows NT from Bruker on a Gateway 2000 Pentium and/or Pentium Pro computer. Data was corrected for Lorentz and polarization effects and also for absorption using the empirical Psi-scan data. The refinements were carried out on F^{2} for all data. Structure solution

Table 7.1

Crystal Data Summary and Refinement Results for 1

Structural Formula	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$
Formula Weight	253.33
Color	Colorless
Crystal Size (mm)	$0.12 \times 0.36 \times 0.14$
Space Group	P21/c
a (A)	10.7610(3)
b (\AA)	16.0943(4)
c (\AA)	8.9848(4)
$\beta\left({ }^{\circ}\right.$)	100.378(3)
$\mathrm{V}\left(\AA^{3}\right)$	1530.63(9)
Z	4
$\rho_{\text {calc }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.099
$\lambda(\mathrm{CuK} \alpha)(\AA)$	1.54178
$\mu\left(\mathrm{mm}^{-1}\right)$	0.527
θ Range for Data Collection (${ }^{\circ}$)	4.18 to 56.75
Limiting Indices	$-11 \leq \mathrm{h} \leq 11,-17 \leq \mathrm{k} \leq 17,-9 \leq 1 \leq 9$
No. of Reflections Collected	4228
No. of Independent Reflections	$2008\left(\mathrm{R}_{\text {int }}=0.0461\right)$
No. of Parameters	267
Refinement Method	Full-matrix least-squares on F^{2}
Final R Indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}(\mathrm{~F})^{a}=0.0377, \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)^{b}=0.1048$
Final R Indices (All Data)	$\mathrm{R}_{1}(\mathrm{~F})^{a}=0.0470, \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)^{b}=0.1198$
Goodness-of-Fit on F^{2}	0.992
Extinction Coefficient	0.0080(9)
Largest Diff. Peak and Hole	0.156 and $-0.147 \mathrm{e} \AA^{-3}$
$\left.{ }^{a^{a} \mathrm{R}_{1}(\mathrm{~F})=\Sigma}\right\|^{\text {a }} \mathrm{F}_{0}\left\|-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right\| / \Sigma\left\|\mathrm{F}_{\mathrm{o}}\right\|$ with $\mathrm{F}_{0}>4.0 \sigma(\mathrm{~F})$.	
${ }^{b}{ }_{w R}\left(\mathrm{~F}^{2}\right)=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}^{2}\right)^{2}\right]\right]^{1 / 2}$ with $\mathrm{F}_{0}>4.0 \sigma(\mathrm{~F})$, and $\mathrm{w}^{-1}=$	
$\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)^{2}+(\mathrm{W} \cdot \mathrm{P})^{2}+\mathrm{T} \cdot \mathrm{P}$, where $\mathrm{P}=$	0) $\left.+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3, \mathrm{~W}=0.0718$, and $\mathrm{T}=0.25$.

Table 7.2

Crystal Data Summary and Refinement Results for 2

Structural Formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNO}_{4}$
Formula Weight	349.80
Color	Colorless
Crystal Size (mm)	$0.48 \times 0.18 \times 0.10$
Space Group	Pna2(1)
a (\AA)	11.6544(8)
b (\AA)	19.5883(13)
c (A)	7.9495(5)
$\mathrm{V}\left(\AA^{3}\right)$	1814.8(2)
Z	4
$\rho_{\text {calc }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.281
$\lambda(\mathrm{CuK} \alpha)(\AA)$	1.54178
$\mu\left(\mathrm{mm}^{-1}\right)$	2.041
θ Range for Data Collection (${ }^{\circ}$)	4.41 to 57.19
Limiting Indices	$-12 \leq \mathrm{h} \leq 12,-21 \leq \mathrm{k} \leq 21,-8 \leq 1 \leq 8$
No. of Reflections Collected	2497
No. of Independent Reflections	$2267\left(\mathrm{R}_{\text {int }}=0.0243\right)$
No. of Parameters	270
Refinement Method	Full-matrix least squares on F^{2}
Final R Indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}(\mathrm{~F})^{a}=0.0408, \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)^{b}=0.1098$
Final R Indices (All Data)	$\mathrm{R}_{1}(\mathrm{~F})^{a}=0.0440, \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)^{b}=0.1146$
Goodness-of-Fit on F^{2}	1.037
Absolute Structure Parameter	-0.01(3)
Extinction Coefficient	0.0065 (7)
Largest Diff. Peak and Hole	0.222 and $-0.205 \mathrm{e}^{-3}$

[^1]
Table 7.3

Crystal Data Summary and Refinement Results for 3

Structural Formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNO}_{4}$
Formula Weight	349.80
Color	Colorless
Crystal Size (mm)	$0.26 \times 0.08 \times 0.10$
Space Group	Pna2 $2(1)$
$\mathrm{a}(\AA)$	$11.6442(11)$
$\mathrm{b}(\AA)$	$19.598(2)$
$\mathrm{c}(\AA)$	$7.9495(5)$
$\mathrm{V}\left(\AA^{3}\right)$	$1813.3(3)$
Z	4
$\rho_{\text {calc }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.281
$\lambda(\mathrm{CuK} \alpha)(\AA)$	1.54178
$\mu\left(\mathrm{~mm}^{-1}\right)$	2,043
θ Range for Data Collection $\left(^{\circ}\right)$	4.42 to 56.71
Limiting Indices	$-12 \leq \mathrm{h} \leq 12,-21 \leq \mathrm{k} \leq 21,-8 \leq 1 \leq 8$
No. of Reflections Collected	2456
No. of Independent Reflections	$2249\left(\mathrm{R}_{\text {int }}=0.0267\right)$
No. of Parameters	270
Refinement Method	$\mathrm{Full}^{\circ}-\mathrm{matrix}$ least squares on F^{2}
Final R Indices [I>2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}(\mathrm{~F})^{a}=0.0473, \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)^{b}=0.1097$
Final R Indices (All Data)	$\mathrm{R}_{1}(\mathrm{~F})^{a}=0.0850, \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)^{b}=0.1433$
Goodness-of-Fit on F^{2}	1.003
Absolute Structure Parameter	$-0.02(4)$
Extinction Coefficient	$0.0021(4)$
Largest Diff. Peak and Hole	0.228 and $-0.166 \mathrm{e}^{b} \AA^{-3}$

```
\({ }^{a} \mathrm{R}_{1}(\mathrm{~F})=\Sigma\left|\mathrm{F}_{0}\right|-\left|\mathrm{F}_{\mathrm{c}}\right||/ \Sigma| \mathrm{F}_{\mathrm{o}} \mid\) with \(\mathrm{F}_{\mathrm{o}}>4.0 \sigma(\mathrm{~F})\).
\({ }^{b} \mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}\) with \(\mathrm{F}_{\mathrm{o}}>4.0 \sigma(\mathrm{~F})\), and \(\mathrm{w}^{-1}=\)
\(\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)^{2}+(\mathrm{W} \cdot \mathrm{P})^{2}+\mathrm{T} \cdot \mathrm{P}\), where \(\mathrm{P}=\left(\operatorname{Max}\left(\mathrm{F}_{0}^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3, \mathrm{~W}=0.0641\), and \(\mathrm{T}=0.92\).
```

proceeded in a routine fashion for all three compounds utilizing the SHELXS structure solution packages included in SHELXTL, version 5.05. All atomic scattering factors were taken by SHELXTL from the International Tables, Volume C. The initial solution was obtained from Direct Methods located from electron density difference maps and were refined first with isotropic displacement parameters and then with anisotropic displacement parameters. All hydrogen atoms were also located from electron density difference maps and were then refined isotropically. Extinction was refined in later refinement cycles and the weighting scheme used was that suggested by SHELXTL-XL. Molecular graphics and tabular data were generated with SHELXTL-XP and SHELXTLXCIF. ORTEP-type structure plots for each of the three compounds are shown in Figures 7.2, 7.3 and 7.4.

Final fractional atomic coordinates for all three crystals and equivalent isotropic displacement parameters are listed in Tables 7.4, 7.5 and 7.6. Complete Tables of bond lengths and angles, hydrogen atom coordinates, tables of anisotropic displacement factors, and structure factor tables for all three samples are given in Appendices B, C and D.

Results of Single Crystal X-Ray Diffraction

The 50% ellipsoid plots shown in Figures 7.2, 7.3 and 7.4 , as well as the bond distances and angles (see Appendices B, C and D) for 1, 2 and $\mathbf{3}$ are typical for these types of compounds. Final X-ray diffraction results were found from the above plots to have proven that $\mathbf{1}$ was anti in structure, while $\mathbf{2}$ and $\mathbf{3}$ were both syn in structure. This

Figure 7.2 ORTEP-type plot (50% ellipsoids) for 1.

Figure 7.3 ORTEP-type plot (50\% ellipsoid) for 2.

Figure 7.4 ORTEP-type plot (50% ellipsoids) for 3.

Table 7.4

Atomic coordinates [$\mathbf{x} 10^{4}$] and equivalent isotropic displacement parameters $\left[\AA^{2} x\right.$ $10^{\mathbf{3}}$] for $1 . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	2	U (eq)
N	2866 (2)	5585 (1)	1186 (2)	$51(1)$
O(1)	1890 (1)	4937 (1)	-2309(2)	66 (1)
C(1)	3072 (2)	4837 (1)	-1591(2)	$52(1)$
O(2)	3967 (2)	5120 (1)	-2031(2)	77 (1)
C(2)	3132 (2)	4331 (1)	-181(2)	54 (1)
C(3)	2392 (2)	4745 (1)	924 (2)	48 (1)
0 (4)	4161 (1)	6905 (1)	2233 (2)	66 (1)
c(4)	1679(3)	5455(2)	-3641(3)	77 (1)
C(6)	4804 (3)	7674 (2)	2507 (5)	91 (1)
C(11)	2444 (2)	4225 (1)	2345 (2)	47 (1)
C(12)	3430(2)	4298 (1)	3557 (2)	$54(1)$
C(13)	3462 (2)	3813 (1)	4841 (2)	64 (1)
C(14)	2509 (2)	3254 (2)	4915 (3)	69 (1)
C(15)	1535 (3)	3172 (2)	3716 (3)	73 (1)
C(16)	1502 (2)	3654 (1)	2446 (3)	63 (1)
C(21)	2313 (2)	6131 (1)	2074 (2)	47 (1)
C(22)	2991(2)	6844 (1)	2633 (2)	52(1)
C(23)	2491(2)	7406 (2)	3522 (3)	69 (1)
C (24)	1298 (3)	7276 (2)	3845 (3)	75(1)
C (25)	$606(2)$	6597 (2)	3275 (2)	$68(1)$
C(26)	$1111(2)$	6028 (1)	2401(2)	56(1)

Table 7.5

Atomic coordinates [$\times 10^{4}$] and equivalent isotropic displacement parameters $\left[\AA^{2} \mathbf{x}\right.$ $10^{\mathbf{3}}$] for $\mathbf{2 .} U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	Y	z	0 (eq)
C1	6799(1)	4299 (1)	1430 (2)	130 (1)
H	6843 (2)	1395 (1)	5989 (4)	59 (1)
O(1)	8551 (2)	1396 (1)	2068(3)	66 (1)
C(1)	8451 (2)	1022 (1)	3449 (5)	54 (1)
O(2)	8093 (2)	446 (1)	3460 (3)	77 (1)
C(2)	8825 (3)	1410 (2)	5001 (4)	54 (1)
O(3)	9160 (2)	970(1)	6301 (3)	69 (1)
C(3)	7820 (2)	1836 (2)	5707 (4)	53 (1)
$O(4)$	5370 (2)	453 (1)	6917 (4)	86 (1)
C(4)	8097 (4)	1110 (2)	$521(5)$	90 (1)
C(5)	10279(3)	$702(2)$	6075(6)	92 (1)
C(6)	4560 (5)	-72(3)	7245 (9)	112 (2)
C(11)	7541 (2)	2440 (1)	4591 (4)	51 (1)
C(12)	8228 (3)	3010 (2)	4660 (5)	65 (1)
C(13)	8019 (4)	$3580(2)$	3693(6)	81 (1)
C(14)	7090 (4)	3581 (2)	2628(5)	75 (1)
C(15)	6406 (4)	3023(2)	2518(5)	79 (1)
C(16)	6624 (3)	2451 (2)	3477 (5)	63 (1)
C(21)	5989 (2)	1582 (2)	7111 (4)	58 (1)
C(22)	5182 (3)	1086 (2)	7588 (4)	68 (1)
c(23)	4279 (3)	1254 (3)	8649(6)	92 (1)
C(24)	4174 (4)	1918 (3)	9235 (6)	99 (2)
C(25)	4937 (4)	2401(3)	8773 (5)	87 (1)
C(26)	5864 (3)	2241(2)	7730 (5)	$68(1)$

Table 7.6

Atomic coordinates $\left[x 10^{4}\right]$ and equivalent isotropic displacement parameters $\left[\AA^{2} x\right.$ 10^{3}] for $3 . U(e q)$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	Y	z	U (eq)
c1	-1792(2)	-5705(1)	-3504(3)	136 (1)
N	-1848(4)	-8504 (3)	-8051 (6)	64 (1)
O(1)	-3549(3)	-8605 (2)	-4138(5)	$74(1)$
C(1)	-3456(5)	-8983 (3)	-5530(9)	62 (1)
C(2)	-3832 (5)	-8587 (3)	-7074 (7)	$58(2)$
O(2)	-3086(4)	-9555 (2)	-5522 (6)	84 (1)
O(3)	-4160(3)	-9030(2)	-8379 (5)	75 (1)
C(3)	-2820 (4)	-8164(3)	-7771(8)	$59(2)$
0 (4)	-369(4)	-9541(2)	-8992(6)	$88(1)$
C(4)	-3094 (6)	-8888 (4)	-2584 (9)	$97(2)$
C(5)	-5281(5)	-9300(4)	-8154(10)	100(2)
C(6)	442 (9)	-10067(6)	-9335 (15)	111(3)
C(11)	-2539 (4)	-7562 (3)	-6647 (7)	$54(1)$
C(12)	-1621(5)	-7554(3)	- 5564 (8)	64 (2)
C(13)	-1407(6)	-6980(4)	-4598(9)	80 (2)
C(14)	-2090(7)	-6422(4)	-4720(9)	81 (2)
c (15)	-3019(6)	-6418(4)	-5760(10)	$83(2)$
C(16)	-3226 (6)	-6990(3)	- 6736 (9)	$70(2)$
C(21)	-977(4)	-8426(3)	-9187(7)	$62(2)$
C(22)	-183(5)	-8913 (4)	-9661(8)	73 (2)
C(23)	710 (6)	-8750(5)	-10715 (11)	$97(2)$
C(24)	919 (9)	-8090(6)	-11282(10)	105 (3)
C(25)	62 (8)	-7609(7)	-10833 (10)	94(3)
C(26)	-865 (5)	-7764 (4)	-9800(8)	73 (2)

information was provided to the researcher (i.e. James C. Adrian), who synthesized the compounds, and was used in his further work described elsewhere. ${ }^{30}$

CHAPTER VIII

CONCLUSIONS

The focus of this thesis was mainly on the synthesis and single crystal X-ray analysis of $\mathrm{Ca}_{2} \mathrm{NF}$. A significant bulk of the work centered on the technical problems associated with mounting the highly air sensitive crystals for X-ray analysis. It was discovered that nitride-fluorides will react with the epoxy typically used for mounting crystals, and apparently also with ions present in glass capillary tubes. Success was achieved only when silica capillary tubes were used in place of glass, and petroleum jelly was used in place of epoxy. The mounting technique developed in this project will be central to the success of future studies involving nitride-fluoride materials.

This work apparently represents the first successful synthesis of single crystalline inorganic nitride-fluoride samples suitable for X-ray analysis. Certainly, no single crystal structures of an inorganic nitride-fluoride compound have previously been reported. The present study found through single crystal X-ray diffraction that $\mathrm{Ca}_{2} \mathrm{NF}$ has a tetragonal structure similar to that of $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$, as opposed to the cubic CaO (i.e. rocksalt-type) structure originally proposed in the literature. The structure is intermediate between the ZnS - (with zinc 4 -coordinated) and NaCl - (with sodium six-coordinated) type structures, having calcium in an essentially five-coordinated site. By implication, $\mathrm{Sr}_{2} \mathrm{NF}$ and $\mathrm{Ba}_{2} \mathrm{NF}$ are likely isostructural with $\mathrm{L}-\mathrm{Mg}_{2} \mathrm{NF}$ as well.

An unusual aspect of this study was the successful structure refinement of the partially polycrystalline $\mathrm{Ca}_{2} \mathrm{NF}$ sample. The results are an indication of the significant advantages that the more recently developed CCD systems have over conventional serial detector systems. The CCD area detector diffractometer method provided the sensitivity, data collection speed, and data analysis capabilities which were essential for the successful structure determination of the sample.

Finally, the work involving the crystal structure determinations of the three organic samples discussed in Chapter VII illustrates the significance of single crystal Xray diffraction in elucidating problems of importance to organic chemists. Knowledge of crystal structures of molecular solids provides important clues and explanations regarding the properties of the molecules themselves in non-crystalline environments.

REFERENCES

1. Weller, Mark T. Inorganic Materials Chemistry; Oxford University: New York, 1994.
2. T.G. Bednorz and K.A. Muller, Z. Phys. 1986, B64, 189.
3. M.K. Chu, J.R. Ashborn, C.J. Torng, P.H. Hor, R.C. Meng, L.Gao, Z.J. Huang, Y.Q. Wang and C.W. Chu, Phys. Rev. Lett. 1987, 58, 908.
4. Berry, Stephen R.; Rice, Stuart A.; Ross, John. Physical Chemistry; John Wiley \& Sons: New York, 1980; p 35.

5 Laidler, Keith J.; Meiser, John H. Physical Chemistry; Houghton Mifflin: Boston, 1995; p 762.
6. Siemens Industrial Automation, Inc. Hi-Star Area Detector Pamphlet. Analytical Instrumentation, Madison, Wisconsin 53719-1173.
7. Siemens Energy \& Automation, Inc. XSCANS VERSION 2.2 Software Tutorial/Users Guide. Analytical Instrumentation, Madison, Wisconsin 54719-1173; pg. 6-1.
8. Clegg, William. Crystal Structure Determination; Oxford University: New York, 1998.
9. West, Anthony R. Basic Solid State Chemistry. John Wiley \& Sons, p 36, New York, (1984).
10. Andersson, S. "Magnesium Nitride Fluorides." J. Solid State Chem. 1970, 1, 306309.
11. Erlich, P.; Linz, W.; Seifert, H.J. "Nitridfluoride der schweren Erdalkalimetalle." Naturwissenchaftern. 1970, 58, 219-220.
12. Guler, L. B.S. Research Report, Youngstown State University, 1997.
13. Potkonicky, J. M.S. Thesis, Youngstown State University, Dec. 1997.
14. Marchand; Lang. "Zinc Fluoride Nitride." Mater. Res. Bull. 1971, 6, 845.
15. Jung; Juza. "Uranium Fluoride Nitride." Z. Anorg. Allg. Chem. 1973, 399, 148.
16. Juza; Sievers. "Thorium Fluoride Nitride." Z. Anorg. Allg. Chem. 1968, 363, 258.
17. Lavarle; Steele; Smith, J. "Technetium Nitrogen Fluoride." ZJ. Inorg. Nucl. Chem. 1966, 28, 260.
18. Withers; Schmid; Thomson. "A Composite Modulated Structure Approach to the Lanthanide Oxide Fluoride, Uranium Nitride Fluoride and Zirconium Nitride Fluoride Solid-Solution Fields." Acta Crystallogr., Sect. B. 1993, 49, 941-951.
19. Wustefeld, Claus; Vogt, Thomas; Lochner, Ulrich; Strahle, Joachim; Fuess, Hartmut. "Synthesis of TiNF and Structure Determination by Powder Diffraction using Synchrotron Radiation." Angewandte Chemie. 1998, 27, 929-930.
20. Shriver, D. F.; Drezdzon, M A. The Manipulation of Air-Sensitive Compounds; John Wiley \& Sons: New York, 1986; p 63.
21. Brese, N.E. and O'Keefe, M."Bond-Valence Parameters for Solids." Acta Cryst. 1991, B47, 192-197.
22. Boge, T.C. and George, G. I. "The Medicinal Chemistry of β-Amino Acids: Paclitaxel as an Illustrative Example." Enantioselective Synthesis of b-Amino Acids; Juaristi, E. Ed.; Wiley-VCH, Inc.: New York, 1996; pp. 1-43.
23. Shandar, B.B.; Kirkup, M.P.; McCombie, S.W.; Clader, J.W.; Ganguly, A.K. Tetrahdron Lett. 1996, 37, 613-618.
24. Seebach, D.; Overhand, M.; Kuhnle, F.N.M.; Martinoni, B.; Oberer, L.; Hommel, U.; Widmer, H. Helv. Chim. Acta 1996, 79, 913-941.

25 Appela, D.H.; Christianson, L.A.; Karle, I.L.; Powel, D.R.; Gellman, S.H. J. Am. Chem. Soc. 1996, 118, 13071-13072.
26. D.C.Cole Tetrahedron 1994, 50, 9517-9582.
27. Juaristi, E. Ed; Enantioselective Synthesis of β-Amino Acids; Wiley-VCH, Inc.; New York, 1996
28. Mukai, C; Kim, I. J.; Hanaoka, M. Tettrejedron Lett. 1992, 93, 1007-1010.
29. Annunziata, R,; Cinquini, M.; Cozzi, F.; Borgia, A.L. J. Org. Chem. 1992, 57, 6339-6342.
30. Adrian, James C, Jr; Barkin, Julia L.; Fox, Richard J.; Chick, Jennifer E.; Hunter, Allen D.; Nicklow, Rhea A. "Chlorotitanium Enolate Addition to Aldimines: A Stereoselective Route to a-Oxy-B-Substituted-B-Amino Esters." J. Org. Chem., in press.

APPENDIX A

CRYSTALLOGRAPHY DATA FOR Ca $\mathbf{C a}_{2}$ NF

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathrm{Ca}_{2} \mathbf{N F}$.

Ca(1)-N(1)\#1	2.4000(12)	$\mathrm{Ca}(1)-\mathrm{H}(1) \# 2$	2.4616 (5)
Ca(1)-7(1) \#3	2.4616 (5)	$\mathrm{Ca}(1)-\mathrm{F}(1)$	2.4616 (5)
$\mathrm{Ca}(1)-\mathrm{N}(1)$	2.4616 (5)	$\mathrm{Ca}(1)-\mathrm{P}(1) \# 4$	2.8579(13)
$\mathrm{Ca}(1)=\mathrm{Ca}(1) \pm 1$	$3.3742(15)$	$\mathrm{Ca}(1) \mathrm{Ca}(1) 45$	3. 2742 (15)
Ca(1)-Ca(1)*6	$3.4962(7)$	$\mathrm{Ca}(1)$ - $\mathrm{Ca}(1){ }^{\text {\% }} 7$	3.4962 (7)
ca(1)-Ca(1)\#8	$3.4962(7)$	Ca(1)-Ca(1)\#9	$3.4952(7)$
$\mathbf{F}(1)$ - $\mathrm{Ca}(1){ }_{\text {\# }} 8$	2.4616 (5)	F(1) -Ca (1) 10	2.4616 (5)
F(1)-Ca(1) ${ }^{\text {\% }}$	2.4616 (5)	P(1)-Ca(1) 4	2.8579(13)
F(1) -Ca (1) \#11	2.8579(13)	(1) - Ca (1) ${ }^{\text {(1) }} 12$	2.4000 (12)
N(1)-Ca(1)\#1	$2.4000(12)$	N(1)-Ca(1) ${ }^{\text {(1) }}$	2.4616 (5)
N(1) - Ca (1) \#13	2.4616 (5)	$\mathrm{N}(1)-\mathrm{Ca}(1) \mathrm{T}$	2.4616 (5)

\#2	95.34 (2)	$\mathrm{M}(1){ }^{\text {\# }} 1-\mathrm{Ca}(1)-\mathrm{F}(1) 43$	95.34 (2)	
(1) \#2 Ca (1)-P(1) \#3	$89.504(5)$	$\mathrm{W}(1) \\|$ - $\mathrm{Ca}(1)-\mathrm{F}(1)$	95.34 (2)	
$\mathrm{H}(1) \mathrm{H2} \mathbf{- C a}(1)-\mathrm{F}(1)$	89.504 (4)		169.33 (5)	
N(1) \#1-Ca (1)-7(1)	95.34 (2)		169.33 (5)	
F(1) \#3-Ca(1)-w(1)	89.504 (4)	$\mathrm{F}(1)-\mathrm{Ca}(1)-\mathrm{N}(1)$	89.504 (5)	
(1) ${ }^{\prime \prime} 1-\mathrm{Ca}(1)-\mathrm{P}(1) \mathrm{H}$	180.0	Y(1)竐-Ca(1)-F(1) \#4	84.65 (2)	
F(1) \#3-Ca(1)-F(1) 4	84.66 (2)	$\mathrm{F}(1) \mathrm{Ca}(1)=\mathrm{F}(1){ }^{4}$	84.65 (2)	
$\mathrm{N}(1) \mathrm{Ca}(1)-\mathrm{F}(1) 4$	84.66 (2)	(1) 1 - $\mathrm{Ca}(1)-\mathrm{Ca}(1) \mathrm{t}$	48.46 (3)	
(1) $\mathrm{E} 2-\mathrm{Ca}(1)-\mathrm{Ca}$ (1)\#1	143.80(5)	F(1) 3 - $\mathrm{Ca}(1)-\mathrm{Ca}(1){ }^{\text {(1 }}$	93.536 (1)	
F(1)-Ca(1)-Ca(1) \#1	93.536 (14)	(1) $=\mathrm{Ca}(1)-\mathrm{Ca}(1){ }^{\text {(1) }}$	46.872 (
	131,54(3)		48.46 (3)	
	46.872 (11)	E(1) \#3-ca (1) Ca (1) \#\#	93.536(14)	
(1)-Ca (1) - $\mathrm{Ca}(1)$ \#5	$93.536(14)$	(1) - $\mathrm{Ca}(1)-\mathrm{Ca}(1){ }^{\text {\# }} 5$	143.80 (5)	
P(1) \#4-Ca(1)-Ca(1)*5	131.54(3)	$\mathrm{Ca}(1) \\| 1-\mathrm{Ca}(1) \mathrm{Ca}(1) \# 5$	96.93 (6)	
(11) 1 - Ca (1)-Ca(1)*6	97,53(3)		44.752 (2)	
F(1) \#3-Ca (1)-Ca(1) 6	44.752 (2)	$\mathrm{P}(1) \mathrm{Ca}(1) \mathrm{Ca}(1){ }^{\text {\% }} 6$	$133.298(15)$	
s(1)-Ca(1)-Ca (1) \#6	133.298(15)	F(1)*4-Ca(1)-Ca(1) \#6	82.47 (3)	
$\mathrm{Ca}(1){ }^{\text {\#1- }} \mathrm{Ca}(1)-\mathrm{Ca}(1) \# 5$	127.70(4)	$\mathrm{Ca}(1){ }^{\text {\# }} 5-\mathrm{Ca}(1)-\mathrm{Ca}(1) \# 6$	64.030(13)	
(1) \#1-Ca(1)-Ca(1) 7	97.53 (3)		$133.298(15)$	
F(1) \#3-Ca(1)-Ca(1)*7	133.298(15)	(1) - $\mathrm{Ca}(1)-\mathrm{Ca}(1){ }^{\text {(1) }}$	$44.752(2)$	
$\mathrm{E}(1) \mathrm{Ca}(1) \times \mathrm{Ca}(1){ }^{\text {(1) }}$	44.752 (2)		82.47 (3)	
Ca(1) 1-Ca(1)-Ca(1) 7	64.030 (13)	$\mathrm{Ca}(1)$ \#5-Ca(1)-Ca(1)\#7	127.70(4)	
$\mathrm{Ca}(1)$ \%-Ca (1)-Ca (1) ${ }^{\text {\# }} 7$	164.95 (7)	M(1) \#1-Ca (1)-Ca(1) \#8	97.53(3)	
(1) $\mathrm{H} 2 \mathrm{Ca}(1)-\mathrm{Ca}(1) \pm 8$	$44.752(2)$	F(1)\#3-Ca(1)-Ca(1)\#8	$133.298(15)$	
$\mathrm{F}(1)-\mathrm{Ca}(1)-\mathrm{Ca}(1){ }^{\text {\# }} 8$	44.752 (2)	$\mathrm{N}(1)-\mathrm{Ca}(1)-\mathrm{Ca}(1) \mathrm{\#}$	$133.298(15)$	
P(1) \#4-Ca(1)-Ca(1) 48	82.47 (3)	$\mathrm{Ca}(1) \# 1-\mathrm{Ca}(1)-\mathrm{Ca}(1) \# 8$	127.70(4)	
$\mathrm{Ca}(1) 45-\mathrm{Ca}(1)-\mathrm{Ca}(1){ }^{\text {(1) }}$	64.030 (13)	Ca(1) ${ }^{\text {6-Ca(1)-Ca(1)\#8 }}$	89.017 (9)	
Ca(1) \#7-Ca(1)-Ca(1)\#8	89.017 (9)	H(1) 1 1- $\mathrm{Ca}(1)-\mathrm{Ca}(1)$ \#9	97.53 (3)	
(1) \#2-Ca(1) - Ca (1) \# 9	133.298(15)	F(1) \#3-Ca(1)-Ca(1) \#9	$44.752(2)$	
F(1) $\mathrm{Ca}(1)=\mathrm{Ca}(1){ }^{\text {(1) }}$	$133.298(15$	(1)-Ca (1)-Ca (1) \#9	$44.752(2)$	
F(1) 4 4-Ca(1)-Ca(1)-9	82.47 (3)		$54.030(13)$	
$\mathrm{Ca}(1) \mathrm{\#} 5-\mathrm{Ca}(1)=\mathrm{Ca}$ (1)\#9	127,70(4)		89.017 (9)	
$\mathrm{Ca}(1) \% 7-\mathrm{Ca}(1)-\mathrm{Ca}(1){ }^{\text {\% }}$	89.017 (9)	$\mathrm{Ca}(1) * 8-\mathrm{Ca}(1)-\mathrm{Ca}(1){ }^{\text {(1) }}$	164.95(7)	
$\mathrm{Ca}(1) \mathrm{EH}_{8} \mathrm{~F}(1)-\mathrm{Ca}(1) 10$	90.496 (5)	$\mathrm{Ca}(1)$ \#8-F(1)-Ca (1)	$90.496(5)$	
Ca(1) $110-\mathrm{P}(1)-\mathrm{Ca}(1)$	169.33 (5)		169.33(5)	
	90.496 (5)	Ca(1)-7(1)-Ca(1) ${ }^{\text {(1) }}$	$90.496(5)$	
$\mathrm{Ca}(1) 88 \mathrm{~T}(1)-\mathrm{Ca}(1){ }^{\text {(1) }}$	84.66 (2)	$\mathrm{Ca}(1)$ 10-F(1)-Ca(1) E_{4}	95.34(2)	
$\mathrm{Ca}(1)-\mathrm{F}(1)-\mathrm{Ca}(1){ }^{\text {(1) }}$	95.34 (2)	$\mathrm{Ca}(1) \# 7-\mathrm{F}(1)=\mathrm{Ca}(1) \# 4$	84.66(2)	
Ca(1) \#8-7(1)-Ca(1)\#11	95.34 (2)	Ca(1) \#10-F(1)-Ca(1) \#11	84.66 (2)	
$\mathrm{Ca}(1)-\mathrm{F}(1)$-Ca(1) \#11	84.66 (2)	$\mathrm{Ca}(1){ }^{\text {\# } 7-\mathrm{F}}$ (1)-Ca(1) \#11	95.34 (2)	
	180.0	Ca(1)\#12-N(1)-Ca(1)\#1	$180=0$	
$\mathrm{Ca}(1) \mathrm{\# 12-H(1)-Ca(1){ }}^{\text {\% }}$ (84.66 (2)	$\mathrm{Ca}(1) \# 1-\mathrm{M}(1)-\mathrm{Ca}(1){ }^{\text {\# }}$?	95.34 (2)	
$\mathrm{Ca}(1) \mathrm{n} 12-\mathrm{M}(1)-\mathrm{Ca}(1) \# 13$	95.34 (2)	Ca(1) $11-\mathrm{N}(1)-\mathrm{Ca}(1) \# 13$	84.661	

Table A-2

Observed and calculated structure factors for $\mathbf{C a}_{2} \mathbf{N F}$.

-	
-	
$\stackrel{\text { d }}{\text { - }}$	
-	
\pm	mmammotwnmmocenmmm
4	
-	
-	
$\stackrel{0}{6}$	
-1	
\cdots	
\pm	OHONHMONOOMmmonomommm
\%	
$\stackrel{\text { - }}{ }$	
昜	
\cdots	
\pm	
4	
㫛	
$\stackrel{0}{8}$	$\rightarrow \mathrm{m} \rightarrow \mathrm{m} \pi \mathrm{m}+\mathrm{HETH}$
$\stackrel{\mathbf{a}}{\mathbf{N}}$	
-	
\cdots	
\pm	
$\stackrel{\square}{0}$	- \#-
*	
\%	
\rightarrow	
*	
4	

APPENDIX B

CRYSTALLOGRAPHY DATA FOR 2

Table B-1

Bond lengths $[\boldsymbol{\AA}]$ and angles $\left[{ }^{\circ}\right]$ for 1.

H-C(21)	1.390 (2)	H-C (3)	1.450 (2)
- H (2N)	0.85 (3)	O(1)-C(1)	1.328 (2)
O(1)-C(4)	1.443 (3)	$\mathrm{c}(1)$-0(2)	$1.196(2)$
C(1) $-6(2)$	1.497 (3)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.532 (3)
C(3)-H(2B)	0.98 (2)	$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	1.00 (2)
C(3) $=\mathrm{C}(11)$	1.519(2)	$\mathrm{C}(3)-\mathrm{H}(3)$	1.00 (2)
$0(4)-C(23)$	$1.374(2)$	$0(4)$ - $\mathrm{C}(6)$	1.417 (3)
C(4)-H(4C)	1.01(4)	C(4)-H(48)	0.91 (4)
C(4)-K(4)	0.99 (5)	$\mathrm{C}(6)-\mathrm{y}(6 \mathrm{C})$	0.95 (3)
c(6)-8(68)	1.00 (3)	C(6)-8(6A)	1.03 (3)
c(11)-c(16)	1.383 (3)	c(11)-C(12)	1.382 (3)
C(12)-C(13)	1.388 (3)	$\mathrm{C}(12)$ - H (12)	$0.96(2)$
c(13)-c(14)	1.375 (3)	$\mathrm{C}(13)$ - $\mathrm{E}(13)$	0.93 (3)
c(14)-C(15)	1.367 (4)	$\mathrm{C}(14)-\mathrm{E}(14)$	0.93 (3)
C(15) - $\mathrm{C}(16)$	1.375 (3)	C(15)-H(13)	0.94 (3)
C(16)-H(16)	0.96 (3)	C(21)-C(26)	1.387(3)
c(21)-C(22)	$1.403(3)$	C(22)-C(23)	1.378 (3)
C(23)-C(24)	$1.382(4)$	$\mathrm{C}(23)$ - H (23)	0.92 (3)
$\mathrm{C}(24)=\mathrm{C}(25)$	1.368(4)	C(24)-H(24)	0.92 (3)
c(25) - $\mathrm{C}(26)$	1.381 (3)	C(25)-H(25)	1.03 (2)
c(26)-H(26)	0.95 (2)		
C(21)-N-C(3)	120.54 (16)	C(21) - $\mathrm{M}=\mathrm{H}(1 \mathrm{Na}$	115.3 (24)
C(3)-H-H(1)	114.2(14)	C(1) -O(1)-C(4)	117.83(18)
0(2)-c(1)-0(1)	123.45(19)	$0(2)-c(1)-c(2)$	124.90(29)
O(1)-C(1)-C(2)	111.65 (17)	C(1)-C(2)-C(3)	111.36(17)
C(1) $-\mathrm{C}(2)=\mathrm{H}(28)$	$109.1(12)$	c(3)-C(2) - $\mathrm{H}^{\text {(28) }}$	109.5(12)
C(1)-C(2)-E(2A)	107.1 (11)	C(3)-C(2)-E(2A)	109.8(11)
$\mathrm{H}(2 \mathrm{~B})=\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	111.0(17)	N-C(3)-C(13)	114.74 (15)
$\mathrm{n}-\mathrm{C}(3)-\mathrm{C}(2)$	$107.57(16)$	c(11)-c(3)-c(2)	111.17(15)
$\mathrm{N}=\mathrm{C}(3)-\mathrm{H}(3)$	105.7(11)	C(11) - C(3)-H(3)	103:3(10)
c(2)-C(3)-H(3)	109.2(10)	C(22)-0(4)-C(6)	117.3 (2)
O(1)-C(4)-H(4C)	$105(2)$	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	114 (2)
H(4C) - $\mathrm{C}(4)-\mathrm{H}(49)$	223 (3)	$0(1)-C(4)-\mathrm{H}(4 \mathrm{~A})$	113 (2)
$\mathrm{H}(4 \mathrm{Cl}) \mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108 (3)	(48) - $\mathrm{C}(4)$ - $\mathrm{F}(4 \mathrm{~A})$	9361
O(4)-C(6)-H(6C)	108.3 (16)	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{A}(6 \mathrm{~B})$	$103.7(17)$
H(6C)-C(6)-H(6B)	11112)	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.8 (199)
H(6C)-C(6)-H(6A)	$111(2)$		113 (2)
$\mathrm{C}(16)=\mathrm{C}(11)=\mathrm{C}(12)$	$119.18(19)$	C(16)-C(11)-C(3)	120.32 (18)
$\mathrm{c}(12)-\mathrm{c}(11)-\mathrm{c}(3)$	121.49(17)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.5 (2)
$\mathrm{C}(12)=\mathrm{C}(12)-\mathrm{H}(12)$	118.2(12)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{B}(12)$	121.3 (13)
$\mathrm{c}(14)-\mathrm{c}(13)-\mathrm{c}(12)$	$120.1(2)$	$\mathrm{C}(14)$ - $\mathrm{C}(13)-\mathrm{H}(13)$	$120.5(15)$
C(12)-C(13)-8(13)	119.4(15)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	119.8 (2)
C(15)-C(14)-E(14)	118.7(15)	$\mathrm{C}(13)-\mathrm{C}(14)$ - (14) $^{\text {(1) }}$	121.4(15)
c(14)-c(15)-C(16)	$120.0(2)$	C(14)-C(15)-H(15)	117.3(15)
C(16)-C(15)-H(15)	122.6 (15)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	121.3(2)
C(15)-C(16)-H(16)	121.2(14)	C(11)-C(16)-H(16)	117.4 (14)
C(26)-C(21)-N	$123.88(17)$	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	117.82 (18)
M-C(21)-C(22)	118.26(17)	C(23)-C(22)-O(4)	125.24 (19)
$\mathrm{C}(23)-\mathrm{C}(22)=\mathrm{C}(21)$	120.8(2)	O(4)-C(22)-C(21)	$113.96(17)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	119.8 (2)	C(22)-C(23)-H(23)	$116.7(16)$
C(24)-C(23)-H(23)	123.5(16)	c(25)-c(24)-C(23)	120.4 (2)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	119.0(17)	$\mathrm{C}(23)-\mathrm{C}(24)$ - $\mathrm{H}(24)$	120.6 (17)
c(24)-c(25)-C(26)	120.0 (2)	C(24)-C(25)-E(25)	$121.7(13)$
$\mathrm{C}(26)-\mathrm{C}(25)$ - H (25)	119.2(13)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	121.2(2)

Table B-2

Anisotropic displacement parameters [$\AA \times 103$] for 1. The anisotropic displacement factor exponent takes the form: $-2 \Pi^{2}\left\{\left(h a^{*}\right)^{2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$

	011	022	033	023	013	012
H	55(1)	47 (1)	53 (1)	-1(1)	18 (1)	-8(1)
O(1)	61 (1)	82 (1)	53 (1)	11 (1)	6 (1)	-6(1)
c(1)	57 (1)	59(1)	43 (1)	-8(1)	11(1)	-7(1)
O(2)	66 (1)	$108(1)$	60 (1)	9(1)	17(1)	-17(1)
C(2)	62 (1)	54 (1)	46 (1)	-3(1)	12 (1)	$0(1)$
C(3)	51 (1)	47 (1)	44 (1)	-1(1)	10(1)	= 5 (1)
O(4)	66 (1)	49 (1)	82 (1)	$1(1)$	9 (1)	-12(1)
C(4)	84 (2)	92 (2)	54 (1)	16 (1)	6 (1)	7 (2)
C(6)	82 (2)	$57(2)$	127 (3)	9 (2)	4(2)	-17(1)
C(11)	53 (1)	43 (1)	46 (1)	-3(1)	15 (1)	-1(1)
c(22)	59(1)	50 (1)	55 (1)	1 (1)	13 (1)	-1(1)
c(23)	73 (1)	67 (1)	50 (1)	2 (1)	$9(1)$	11(1)
C(14)	88 (2)	64 (1)	61 (1)	15 (1)	$30(1)$	11(1)
c(15)	80 (2)	70(2)	74 (2)	9(1)	29 (1)	-16(1)
C(16)	64 (1)	64 (1)	61 (1)	2(1)	14 (1)	-15(1)
C(21)	57 (1)	45 (1)	39 (1)	5(1)	9(1)	2 (1)
C(22)	58 (1)	45(1)	50 (1)	5 (1)	3 (1)	2(1)
c(23)	84(2)	$52(1)$	64 (1)	-6(1)	-3(1)	9(1)
c(24)	90 (2)	$69(2)$	64 (1)	-7(1)	12 (1)	29 (1)
C(25)	69 (2)	72 (2)	64 (1)	6 (1)	18 (1)	20 (1)
C(26)	$62(1)$	52(1)	55 (1)	6 (1)	12 (1)	2 (1)

Table B-3

Hydrogen coordinates ($\mathbf{1 0} \mathbf{0}^{4}$) and isotropic displacement parameters $\left(\AA^{\mathbf{2}} \times 10^{\mathbf{3}}\right)$ for 1.

	\mathbf{x}	y	z	U(eq)
H(3)	1491(19)	4804 (11)	430 (20)	49 (5)
H(2B)	2766 (19)	3785 (14)	-450(20)	62 (6)
(1) 2 ()	4040 (20)	4284(12)	300 (20)	60(6)
H(26)	669 (19)	5536 (14)	2050 (20)	57 (5)
H(12)	4080 (20)	4701 (14)	3490 (20)	64 (6)
H(13)	4120 (20)	3875 (14)	5650 (30)	$79(7)$
H(16)	800 (20)	3625 (15)	1610 (30)	85 (7)
H(25)	-270 (20)	6473 (14)	$3540(20)$	78 (7)
H(15)	690(20)	2793 (16)	3820 (30)	86 (8)
H(1N)	3670 (20)	5629 (12)	1270 (20)	$54(6)$
H(14)	2520 (20)	2917 (16)	5760 (30)	85 (7)
H(6C)	4280 (20)	8097 (17)	1980 (30)	87 (8)
H(23)	2980 (20)	7864 (18)	3850 (30)	90 (8)
H(24)	950 (20)	$7647(18)$	4430 (30)	95 (8)
H(4C)	730 (40)	5490 (20)	-3960(40)	152 (14)
H(6B)	5590 (30)	7592 (17)	2070 (30)	97 (9)
H(6A)	4990 (30)	$7790(20)$	3650 (40)	125 (12)
\#(4B)	2200 (40)	5340(20)	-4300(40)	145 (14)
H(4A)	2010 (40)	$6030130)$	-3450(50)	167 (16)

Table B-4

Observed and calculated structure factors for 1.

年 k 10\%o 1070 10:

 -

Table B-4

Continued.

- * * * *

Continued.

Table B-4

Continued.

$\stackrel{\square}{8}$	
$\stackrel{9}{0}$	
-	
"	
*	
\pm	
8	
-	
9	
M	
*	
4	
$\stackrel{\square}{\square}$	
8	
\rightarrow	
*	
4	
$\stackrel{0}{4}$	
\%	
8	
m	
\pm	
4	
3	
${ }_{0}^{*}$	
${ }_{\text {\% }}^{\substack{\text { m }}}$	
\cdots	
\pm	
\pm	

Table B-4 Continued.

APPENDIX C

CRYSTALLOGRAPHY DATA FOR 2

Table C-1

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2.

c1-C(14)	1.731(4)	H-C(21)	$1.386(4)$
m-C (3)	1.446 (4)	H-4(1w)	0.82 (3)
O(1)-C(1)	1.325 (4)	O(1) -C(4)	1.451 (5)
c(1) -o(2)	$1.203(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	1.514 (5)
$\mathrm{C}(2)-\mathrm{O}(3)$	1.400(4)	$\mathrm{c}(2)-\mathrm{C}(3)$	1.545 (4)
C(2)-8(2)	0.92 (3)	O(3)-C(5)	1.417(4)
c(3)-C(11)	$1.514(4)$	C(3)-E(3)	1.03 (3)
O(4)-C(22)	1.368 (4)	$O(4)-c(6)$	1.421(5)
C(4)-K(4)	0.9600	C(4)-H(48)	0.9600
C(4)-E(4C)	0.9600	$\mathrm{C}(5)-\mathrm{C}(5 \mathrm{~A})$	0.9600
C(5)-E(58)	0.9600	C(5)-H(5C)	0.9600
$C(6)-\mathrm{E}(6 \mathrm{~A})$	1.04 (9)	C(6) - B (6C)	0.99 (5)
$\mathrm{C}(6)-\mathrm{H}$ (58)	1.16 (10)	$\mathrm{C}(11)$-C(12)	1.375(5)
c(11)-C(16)	1.388 (4)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.377 (5)
C(12)-E(12)	0.90 (4)	$\mathrm{e}(13 \mathrm{l}-\mathrm{C}(14)$	1.375 (6)
C(13)-H(13)	1.07 (4)	C(14)-C(15)	$1.356(6)$
$\mathrm{c}(15)-\mathrm{C}(16)$	1.380 (6)	C(15)-7(15)	0.94 (5)
$\mathrm{C}(16)$ - E (16)	0.91 (3)	e(21)-C(26)	$1.391(5)$
$\mathrm{c}(21) \mathrm{c}(22)$	$3.404(5)$	C(22)-C(23)	1.389(6)
C(23)-C(24)	1.385 (7)	C(23)-H(23A)	0.9300
$\mathrm{C}(24)-\mathrm{C}(25)$	1.350(7)	$\mathrm{C}(24)$ - H (24)	1.11 (4)
c(25)-c(26)	1.396 (6)	C(25)-L(25)	0.90 (4)
C(26)-E(26)	0.55 (4)		
C (21) - $\mathrm{H}+\mathrm{C}(3)$	120.5 (3)	C(21) - $\mathrm{M}-\mathrm{H}(1 \mathrm{~N})$	114 (2)
C(3)-8-E(1M)	113 (2)	$C(1)-O(1)-c(4)$	$117.2(3)$
$o(2)-C(1)-O(1)$	123.7 (3)	O(2)-C(1)-C(2)	124.4 (3)
$o(1)-c(1)-c(2)$	111.9 (2)	$0(3)-\mathrm{C}(2)-\mathrm{c}(1)$	$111.913)$
$0(3)-\mathrm{C}(3)-\mathrm{C}(3)$	106.0 (2)	C(1)-C(2)-C(3)	110.4 (2)
O(3) -c(2)-m(2)	109.7(17)		110.5 (18)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{E}(2)$	108.1(17)	c(2)-O(3)-C(5)	113.0 (3)
E-C (3)-C(11)	112.9(2)	\#-C(3)-C(2)	109.3(2)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(2)$	$111.9(2)$	$\mathrm{w}-\mathrm{C}(3)-\mathrm{H}(3)$	$109.8(15)$
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{H}(3)$	109.1(15)	C(2)-C(3)-H(3)	103.5(15)
$\mathrm{c}(22)-\mathrm{O}(4) \times \mathrm{C}(6)$	118.6 (4)	O(1)-C(4)-8(4A)	109.5
O(1)-C(4)-E(4B)	109.5	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5
O(1) -C(4)-H(4C)	109.5	$\mathrm{H}(4 \mathrm{~A})$ - $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5
H(4B)-C(4)-H(4C)	109.5	$0(3)-C(5)-8(5 A)$	109.5
$0(3)-\mathrm{C}(5)-\mathrm{B}(58)$	109.5	H(5A)-C(5)-H(58)	109.5
$0(3)-\mathrm{C}(5)-\mathrm{B}(5 \mathrm{C})$	109.5	$\mathrm{H}(\mathrm{SA})-\mathrm{C}(5)=\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108 (4)
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{E}(6 \mathrm{C})$	107 (3)	H(6A)-C(6)-H(6C)	116 (6)
0 (4)-C (6)-8(68)	106 (4)	\#(6A) -C (6)-7(68)	115 (7)
H(6C) -C (6)-EI(68)	105 (5)	$\mathrm{C}(12)-\mathrm{C}(11)$-c(16)	117.5 (3)
$\mathrm{c}(12)-\mathrm{C}(11)-\mathrm{C}(3)$	119.1 (3)	c(16)-c(11)-c(3)	123.4 (3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	122.2 (4)	$\mathrm{C}(11) \cdot \mathrm{C}(12)=\mathrm{H}(12)$	119(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	119 (2)	C(14)-C(13)-C(12)	119.0 (4)
C(14)-C(23)-8(13)	121(2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{R}(13)$	120 (2)
$\mathrm{C}(15)=\mathrm{C}(14)-\mathrm{C}(13)$	120.1 (3)	C(15)-C(14)-C1	120.3 (3)
C(13)-C(14)-C1	119.6 (3)	C(14)-C(15)-C(16)	120.8(4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	118 (2)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	121 (2)
C(15)-C(16)-C(11)	$120.4(6)$	$\mathbf{C (1 5) - C (1 6) - R (1 6) ~}$	122.6(19)
C(11)-C(16)-H(16)	116 (2)	A-C(21)-C(26)	123.2 (3)
H-C(21)-C(22)	118.2(3)	C(26) - C (21)-C(22)	118.5 (3)
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(21)$	114.5 (3)	$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(23)$	125.0 (3)

Table C-1

Continued.

$C(21)-C(22)-C(23)$	$120.5(4)$	$C(24)-C(23)-C(22)$	$119.6(4)$
$C(24)-C(23)-E(23 A)$	120.2	$C(22)-C(23)-H(23 A)$	120.2
$C(25)-C(24)-C(23)$	$120.5(4)$	$C(25)-C(24)-H(24)$	$129(2)$
$C(23)-C(24)-E(24)$	$112(2)$	$C(24)-C(25)-C(26)$	$121.0(5)$
$C(24)-C(25)-R(25)$	$124(3)$	$C(26)-C(25)-H(25)$	$115(3)$
$C(25)-C(26)-C(21)$	$119.9(4)$	$C(25)-C(26)-H(26)$	$121(2)$
$C(21)-C(26)-E(26)$	$119(2)$		

Table C-2

Anisotropic displacement parameters [$\AA \times 103]$ for 2. The anisotropic displacement factor exponent takes the form: $-2 \Pi^{2}\left[\left(h a^{*}\right)^{2} \mathbf{U}_{11}+\ldots+2 h k a^{*} b^{*} \mathbf{U}_{12}\right]$

	011	022	033	023	013	012
c1.	139 (1)	123 (1)	127 (1)	67 (1)	39 (1)	$61(1)$
U	49 (1)	56 (2)	72 (2)	-2(1)	13 (1)	-4(1)
O(1)	73 (1)	69 (1)	56 (1)	13 (1)	1 (1)	-11(1)
C(1)	51 (2)	51 (2)	59 (2)	$8(2)$	12 (2)	1 (1)
0 (2)	99 (2)	61 (1)	73 (2)	3 (1)	$8(2)$	-8(1)
C(2)	44 (2)	59 (2)	$60(2)$	20 (2)	3(1)	-2(1)
O(3)	56 (1)	80 (1)	$71(1)$	29 (1)	0 (1)	$8(1)$
C(3)	43 (1)	$61(2)$	54 (2)	$3(2)$	-2 (1)	-3(1)
$0(4)$	55 (1)	84(2)	108(2)	12 (2)	23 (1)	-18(1)
C(4)	105(3)	104(3)	59 (2)	$6(2)$	-1(2)	-20(2)
C (5)	62 (2)	102 (3)	111 (3)	36 (3)	-5(2)	24 (2)
C(6)	92 (3)	114 (4)	130 (5)	18 (3)	18(3)	-42(3)
C(11)	44(1)	55 (2)	54 (2)	1(1)	-1(1)	1(1)
C(12)	64(2)	63 (2)	$69(2)$	$10(2)$	-7(2)	-4(2)
C(13)	85 (3)	67 (2)	90 (3)	15 (2)	11 (3)	2(2)
C(14)	84 (3)	73 (2)	68 (2)	20 (2)	$21(2)$	24(2)
C(15)	68 (2)	$110(3)$	58 (2)	5 (2)	-3(2)	36(2)
C(16)	51 (2)	75 (2)	63 (2)	-2 (2)	-4(2)	E [2]
C(21)	47 (2)	$78(2)$	47 (2)	$4(2)$	4(2)	5 (1)
c(22)	51 (2)	$91(2)$	62 (2)	17 (2)	$10(2)$	3 (2)
C(23)	68 (2)	127 (4)	80 (3)	37 (3)	24(2)	9(2)
c(24)	97 (3)	145(5)	66 (2)	28 (3)	28(2)	33 (3)
C(25)	87 (3)	115 (3)	59 (2)	-9(3)	1(2)	35 (3)
C (26)	62 (2)	87 (2)	54 (2)	-1 (2)	-2(2)	11 (2)

Table C-3

Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{\mathbf{2}} \mathbf{x 1 0}$) for 2.

	x	y	\%	U (eq)
H(17)	7010 (20)	987 (15)	6010 (40)	43 (8)
H(2)	$9420(20)$	1703 (14)	4750 (40)	43 (7)
H(3)	8130 (20)	2011 (14)	6840 (40)	49 (7)
[B $^{(4)}$	8220	1425	-386	134
[(48)	7290	1027	647	134
(4)	848	688	277	134
H(5x)	10464	406	6999	138
H(58)	10822	1070	6030	138
H(5C)	10303	448	5043	138
H(6A)	4840 (70)	-520(40)	6650(130)	200(30)
E(6C)	3790 (40)	200 (20)	6890 (70)	97 (14)
[(12)	$8860(30)$	3005 (18)	5320 (50)	71 (11)
[173)	8540 (40)	4030 (20)	3850 (60)	98 (13)
H(15)	5830 (40)	3020 (19)	1680 (60)	94 (12)
n(16)	$6130(20)$	2096 (14)	$3550(40)$	$42(7)$
H(23A)	3748	924	8964	110
H(24)	3410 (30)	1970 (20)	10070 (60)	89 (12)
H (25)	4920 (40)	2830 (20)	9140 (60)	93 (14)
H(26)	6420 (30)	2577 (17)	7450 (40)	62 (9)
H(68)	4490 (60)	-120(40)	8700 (130)	180(30)

Table C-4

Observed and calculated structure factors for 2.

Continued.

Table C-4

Continued.

Table C-4

Continued.

Table C-4

Continued.

 *

Table C-4

Continued.

$\stackrel{1}{8}$	
-	
8	
\cdots	
$*$	
\sim	-nmonromonomt
$\stackrel{\text { a }}{ }$	
\%	
\%	
\cdots	
\cdots	
4	-rnmornmotomen*
*	
-	
g	
\cdots	
\pm	
4	
*	
\%	
$\frac{9}{2}$	
\cdots	
*	
9	- mmonem*ommmm
$\stackrel{\text { - }}{\square}$	
$\underset{\sim}{0}$	
$\stackrel{5}{6}$	
-	
4	
$=$	

CRYSTALLOGRAPHY DATA FOR 3

Table D-1

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 3.

cl-c(14)	1.740(6)	M-C (21)	1.403(7)
\%-C(3)	1.440(7)	N-H(18)	0.65 (5)
O(1)-C(1)	1.334(7)	O(1)-C(4)	1.453 (8)
c(1)-0(2)	$1.201(6)$	$\mathrm{c}(1)-\mathrm{C}(2)$	1. 516 (8)
C(2)-0(3)	1.405 (6)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.543 (7)
C(2)- H (2)	1.01 (5)	$0(3)-C(5)$	1.420 (7)
$\mathrm{C}(3)-\mathrm{C}(11)$	1.515 (8)	c(3)-E(3)	1.00 (5)
$O(4)=C(22)$	1.358(7)	$O(4)-C(6)$	1.424(8)
C(4)-H(4)	0.9600	C(4)-E(48)	0.9600
C(4)-7(4C)	0.9600	c(5)-E(5A)	0.9600
	0.9600	C(5)-H(5C)	0.9600
C (6) - H (6C)	0.94 (6)	c (6) - H (68)	0.97 (6)
C(6)-其(6x)	1.35 (11)	c(11)-C(12)	$1.372(7)$
C(11)-C(16)	1.379(8)	c(12)-C(13)	1.384(9)
C(12)-E(12)	1.02 (5)	C(13)-C(14)	1.356 (9)
C(13)-E(13)	2.02(7)	c(14)-C(15)	1.362 (10)
C(15)-c(16)	1.384(9)	C(25)-H(15)	1.27(9)
C(16)-E(25)	1.00(6)	c(21)-C(22)	1.381 (8)
c(21)-C(26)	1.393 (8)	C(22)-C(23)	1.373 (9)
C(23)-C(24)	1.376 (12)	C(23) -E (33)	0.9300
c(24)-C(25)	1.338(2.3)	C(24)-H(24)	0.98 (8)
C(25)-C(76)	1.390 (20)	C(25)-H(25)	0.85 (6)
c(26)-4 ${ }^{\text {(25) }}$	1.04(4)		
$\mathrm{C}(21)-\mathrm{H}-\mathrm{C}(3)$	221.2 5 (5)	C(22)- H - n (2m)	106 (4)
	120(3)	$\mathrm{c}(1)-\mathrm{o}(1)-\mathrm{c}(4)$	117.6(5)
O(2)-C(1)-o(1)	122.9(6)	$0(2)-C(1)-C(2)$	125.8(6)
$0(1)-C(1)-C(2)$	111.3(5)	o(3)-c(2)-c(1)	111.1 (5)
$0(3)=C(2)-C(3)$	105.9(4)	C(1)-C(2)-C(3)	110.2 (5)
O(3)-C(2)-E(2)	111(3)	c(1) -C(2)-H(2)	110 (3)
$\mathrm{C}(3)=\mathrm{C}(2)-\mathrm{S}(2)$	108 (2)	C(2)-O(3)-C(5)	112.8 (5)
W-C(3)-E(22)	112.6(5)	H-C(3) C (2)	109.5(5)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{c}(2)$	111.8(5)	H-C(3)-H(3)	111(3)
$\mathrm{c}(11)-\mathrm{c}(3)-\mathrm{H}(3)$	108 (3)	c(2)-c(3)-E(3)	103 (3)
$\mathrm{c}(22)-0(4)-\mathrm{c}(6)$	118.3(7)	O(1) - C (4)-H(4,	109.5
O(1)-C(4)- $\mathrm{H}^{(48)}$	109.5	H(4A) - $\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5
O(1)-C(4)-H(4C)	109.5	H(4A) -C(4)-E(4C)	109.5
H(4B) - $\mathrm{C}(4)-\mathrm{E}(4 \mathrm{C})$	109.5	O(3)-C(5)-H (5A)	109.5
$0(3)-C(5)=$ (58$)$	109.5	H(5A) - $\mathrm{C}(5)-\mathrm{A}(5 \mathrm{~B})$	109.5
O(3)-C(5)-स(5c)	109.5	H(5A)-C(5)-T(5C)	109.5
\#(5B)-C(5)-H(5C)	109.5	O(4)-C(6)-H(6C)	108 (4)
O(4)-C(6)- $\mathrm{S}(6 \mathrm{~B})$	108 (4)	H(6C)-C(6)-R(68)	217 (6)
$0(4)-C(6)-5(6 x)$	101(4)	H(6C)-C(6)-E(6A)	105 (6)
H (68) - $\mathrm{C}(6)-\mathrm{E}(6 \mathrm{~A})$	116 (6)	C(12)-C(11)-C(16)	118.3 (6)
C(12)-C(11)-C(3)	123.2 (5)	$\mathrm{c}(16)-\mathrm{c}(11)-\mathrm{C}(3)$	118.5 (5)
$c(11)=C(12)-C(13)$	119.8 (6)	C(11)-C(12)-E(12)	126 (3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	114 (3)	C(14)-C(13)-C(12)	120.7 (6)
$\mathrm{C}(14)=\mathrm{C}(13)-\mathrm{z}(13)$	120 (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{R}(13)$	119 (3)
$\mathrm{c}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.9 (6)	$\mathrm{C}(15)-\mathrm{C}(14)$ - Cl	119.4 (7)
$\mathrm{C}(13)=\mathrm{C}(44)-\mathrm{Cl}$	119.7 (6)	c(14)-C(15)-C(16)	118.3 (7)
C(14)-C(15)-8(15)	129 (4)	C(16)-C(25)-2(15)	113 (4)
$\mathrm{C}(15)-\mathrm{C}(16)=\mathrm{C}(11)$	121.9(7)	c(15)-c(16)-8(16)	121 (3)
C(11)-C(16)-7(16)	117 (3)	c(22)-c(21)-C(26)	119.1 (6)
C(22)-C(21)-4	119.2(6)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{N}$	121.7 (6)
O(4)-C(22)-C(23)	124.8(7)	$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(21)$	114.4(5)

Table D-2

Anisotropic displacement parameters [$\AA \times 103]$ for 3. The anisotropic displacement factor exponent takes the form: $-2 \Pi^{2}\left\{\left(h a^{*}\right)^{\mathbf{2}} \mathbf{U}_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$

	011	022	033	023	013	012
C1	$143(2)$	137(2)	127 (2)	-63 (2)	$39(2)$	-65 (1)
4	$51(3)$	67 (3)	72 (4)	2 (3)	9 (3)	$9(3)$
O(1)	75 (3)	94(3)	61 (3)	-16(2)	4 (2)	10(2)
c(1)	50 (3)	69 (4)	65 (4)	-4(4)	9 (3)	-2(3)
C(2)	49 (3)	64 (4)	61 (4)	-18(3)	-4(3)	-3(3)
O(2)	102(3)	70.13)	82(3)	3 (3)	$12(3)$	17 (2)
O(3)	$59(2)$	85(3)	79 (3)	-20(3)	-3(2)	-11(2)
c(3)	$46(3)$	69 (4)	62 (4)	0 (3)	0 (3)	3 (3)
O(4)	$72(3)$	87 (3)	105 (4)	-16(3)	20(3)	19 (2)
C(4)	112 (6)	114(6)	$64(4)$	-8(4)	-8(4)	24 (5)
C(5)	65 (4)	112 (5)	122(7)	-30(5)	-4(5)	-23(4)
c(6)	92 (6)	116 (7)	125(9)	-11(7)	11(6)	28 (6)
c(11)	45 (3)	59 (3)	59 (3)	(3)	-3(3)	-4(3)
C(12)	56 (3)	76 (4)	59 (3).	6 (4)	-5 (4)	-7 (3)
c(13)	67 (4)	112 (6)	61 (4)	-8(4)	-5(4)	-32(5)
c(14)	96(5)	75 (5)	72 (5)	-24(4)	$26(4)$	-35(4)
c(15)	84 (5)	$76(5)$	88 (5)	-5 (4)	13(5)	-7 (4)
e(16)	67 (4)	71 (4)	72 (4)	-13(4)	-9(4)	-3(4)
C(21)	50(3)	88 (4)	49(3)	-5 (3)	2(3)	-6(3)
C(22)	49 (3)	100 (5)	$69(4)$	-21(4)	9 (3)	-7(4)
c(23)	79 (5)	122 (7)	$90(5)$	-33(6)	14(5)	-10 (4)
C(24)	87 (6)	164(10)	63 (5)	-17(6)	27 (4)	-27(7)
C(23)	91 (6)	128 (9)	64 (3)	10 (6)	-7(5)	-30(6)
C(26)	58 (4)	97 (5)	62 (4)	$5(4)$	-2 (3)	-3 (4)

Table D-3

Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{\mathbf{2}} \mathbf{x} 10^{\mathbf{3}}\right)$ for 3.

	\mathbf{x}	\boldsymbol{Y}	=	U(eq)
H(2)	-1953(42)	-9033(25)	-8172 (73)	60 (18)
\#(2)	-4476(38)	-8262 (23)	-6772(57)	46 (14)
H(3)	-3125 (39)	-7980 (23)	-8852 (72)	58 (15)
H(4)	-3214 (6)	-8569(4)	-1683 (9)	145
H(68)	-2287 (6)	-8973 (4)	-2712 (9)	145
H(4C)	-3481 (6)	-9308(4)	-2331 (9)	145
日(5)	-5463 (5)	-9598(4)	-9075 (10)	150
(58)	-3826 (5)	-8933 (4)	-8115 (10)	150
H(5C)	-5311(5)	-9551(4)	-7118(10)	150
H(6C)	1167 (57)	-9910(29)	-8982 (91)	89 (23)
H(68)	165 (53)	-10488(31)	-8844 (91)	86 (23)
H(6A)	481 (66)	-10048 (44)	-11041(146)	166 (34)
H(12)	-1084 (40)	-7954 (23)	-5331 (61)	$50(14)$
H(13)	-701 (54)	-6968(26)	-3838(85)	$95(20)$
H(15)	-3713(70)	-5934(44)	-6072(112)	159 (32)
H(16)	-3917(50)	-7015 (27)	-7481 (77)	74 (18)
H(23A)	1236 (6)	-9082(5)	-11041(11)	116
H(24)	1480 (64)	-8078(38)	-12047(106)	115 (27)
H(25)	9 (55)	-7198(35)	-11138(89)	86 (29)
H (26)	-1450(36)	-7379(21)	-9496(51)	33 (11)

Table D-4

Observed and calculated structure factors for 3.

\%	
E	
$\stackrel{0}{4}$	
\cdots	
$*$	
a	
*	
8	
+	
\cdots	
\cdots	
4	
$\stackrel{-8}{8}$	
,	
$\stackrel{-0}{-1}$	
\cdots	
4	
4	
8	
8	
**	
4	
\pm	
8	
,	
\%	
*	
*	
4	

Table D-4

Continued.

 "荅

 15 172

Table D-4

Continued.

h k 107e 1007a 10.

Table D-4

Continued.

 -

h $k 140 \mathrm{Fe} 10 \mathrm{Fa} 100$

Continued.

k $k 120 \%$ 105a 20 a
h k 1070 10\%a 10.

苦荿

Table D－4

Continued．

\％	\％	1	13\％	F\％	10.0	＊	i	1	1070	Ora	10.	b	＊	1	\％	Pe	108	b	k	1		6F＊	106	b	k	1	Fe	Fe	10.
4	6	7	$3 \pm$	3	2 F	4	．	1	33	33	33	3	，	！	46	73	10	4	2	－	42	13	10	1	5	${ }^{8}$	\％	4	1
5	6	7	${ }^{1}$	Fid	F	3	8	7	37	11	22	4	0	\＃	23	45	22	1	3	θ	0	4	1	2	5	E	耍	3	1
\％	6	7	46	$\underline{3}$	輷	4	＊	3	0	31	1	1	1	\＃	17	24	17	2	3	＊	13	42	13	3	5	－	17	\％	47
＊	7	7	174	156	$\stackrel{4}{2}$	0	－	7	36	53	13	2	1	，	24	39	24	3	3	－	26	27	26	0	5	－	0	$4{ }^{4}$	2
1	\％	7	0	34	1	1	3	7	19	11	19	3	1	0	32	13	18	4	\cdots	－	34	57	33	1	6	－	0	10	4
$\overline{3}$	${ }^{7}$	7	30	2＊	19	2	，	7	63	70	10	4	1	8	21	57	20	0	4	－	28	36	27	2	6	θ	9	\％	1
$\underline{3}$	7	\％	34	49	24	3	4	7	61	69	118	－	3	8	0	49	1	1	4	8	\％	26	，		6	8	24	15	둘
4	\％	팔	5	59	16	1	10	7	16	27	16	1	2	－	33	96	${ }^{3}$	2	＋	＊	，	26	，	1	？	${ }^{\text {B }}$	29	57	$3{ }^{3}$
5	7	？	44	㫶	23	9	11	7	6	74	12	3	2	d	47	62	15	3	4	\＃	17	32	17	2	，	0	16	6	15
1	8	$\underline{1}$	0	도운	\pm	0	0	\％	129	120	6	3	2	\＃	25	40	25	4	4	\square	31	54	31						

[^0]: $\overline{{ }^{a} \mathrm{R}_{1}(\mathrm{~F})=\Sigma \mid}\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right||/ \Sigma| \mathrm{F}_{\mathrm{o}} \mid$ with $\mathrm{F}_{\mathrm{o}}>4.0 \sigma(\mathrm{~F})$.
 ${ }^{b}{ }_{w R}\left(\mathrm{~F}^{2}\right)=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}^{2}\right)^{2}\right]\right]^{1 / 2}$ with $\mathrm{F}_{0}>4.0 \sigma(\mathrm{~F})$, and $\mathrm{w}^{-1}=$ $\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)^{2}+(\mathrm{W} \cdot \mathrm{P})^{2}+\mathrm{T} \cdot \mathrm{P}$, where $\mathrm{P}=\left(\operatorname{Max}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3, \mathrm{~W}=0.0272$, and $\mathrm{T}=0.00$.

[^1]: ${ }^{a} \mathrm{R}_{1}(\mathrm{~F})=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$ with $\mathrm{F}_{\mathrm{o}}>4.0 \sigma(\mathrm{~F})$.
 ${ }^{b}{ }_{w R}\left(\mathrm{~F}^{2}\right)=\left[\Sigma\left[w\left(\mathrm{~F}_{0}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}^{2}\right)^{2}\right]\right]^{1 / 2}$ with $\mathrm{F}_{0}>4.0 \sigma(\mathrm{~F})$, and $\mathrm{w}^{-1}=$ $\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)^{2}+(\mathrm{W} \cdot \mathrm{P})^{2}+\mathrm{T} \cdot \mathrm{P}$, where $\mathrm{P}=\left(\operatorname{Max}\left(\mathrm{F}_{0}^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3, \mathrm{~W}=0.0753$, and $\mathrm{T}=0.34$.

