THE CONVERGENCE OF ENVIRONMENTAL INFLUENCES AS POTENTIAL PRECIPITATING FACTORS OF AML-M2

by Meredith Tuttle

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Chemistry

Program

SCHOOL OF GRADUATE STUDIES

YOUNGSTOWN STATE UNIVERSITY

JUNE 2000

THE CONVERGENCE OF ENVIRONMENTAL INFLUENCES AS POTENTIAL PRECIPITATING FACTORS OF AML-M2

Meredith Tuttle

I hereby release this dissertation to the public. I understand this dissertation will be housed at the Circulation Desk of the University library and will be available for public access. I also authorize the University or other individuals to make copies of this dissertation as needed for scholarly research.

Date <u>3</u>,2000 Signature: Student 200 Approvals: Date **Dissertation** A dvisor 2000 Committee Member Date 6/2/a Date ommittee Member Graduate Studies Dean of

ABSTRACT

Acute myeloblastic leukemia is known as an insidious, often times fatal, disease; however, its etiology has not been fully elucidated. This work was conducted so as to explore the potential environmental influences that may converge and precipitate a myelodysplastic event or even a leukemic disease state. Environmental chemicals were the primary focus of this investigation, including: the fertility drug clomiphene citrate, (Clomid); and a combination of pesticides commonly applied to produce. Water samples were extracted from Berlin Lake, as well, to gauge recreational water contamination. The Berlin Lake water samples were found to contain a number of hydrocarbon contaminants; with the main supplier of such contaminants believed to be the 'fuel-dumping' of recreational crafts.

STATEMENT OF PROBLEM

This thesis attempts to marry two not unlike disciplines, pathology and environmental chemistry; in that this work explores the hematology/pathophysiology of acute myeloblastic leukemia (M2)-in relation to this disease state's etiology. And it is within the etiology of AML that this effort becomes totally intercalated with environmental chemistry. Environmental chemistry, the term itself, guite often evokes ideas or images of chemical pollutants what are they? Where are they? What chemistry/reactions are they capable of?-an area of chemistry which is, by many, never actually thought of in tandem with the medical arts. For if it were, perhaps questions such as: What is the minimum lifetime level of exposure for that compound? What chromosomal aberrations are associated with such an exposure? Are there consequences to in utero exposure? Will these compounds ever safely degrade? Would be more closely associated with this discipline. It is just such questions that will be brought to the fore in this thesis, regarding AML. The author would like to not only introduce AML as a possible "environmental disease", but to also present a somewhat rudimentary case study of a nine year old boy recently diagnosed with AML M2; a diagnosis which was critically influenced by the child's annual exposure to a contaminated water source.

i

TABLE OF CONTENTS

CHAPTER 1	How blood cells are produced1-7
CHAPTER 2	Description and function of blood cells8-16
CHAPTER 3	Acute myelogenous leukemia17-23
CHAPTER 4	The pharmaceutical suspects24-29
CHAPTER 5	The environmental suspects30-43
CHAPTER 6	The genetics44-51
CHAPTER 7	Materials and methods52-55
CHAPTER 8	Results56-61
CHAPTER 9	Concluding remarks62-65
REFERENCES	66-69
APPENDIX 1	Medical Data70 Cytogenetics71 Flow cytometry reports72 Surgical pathology reports73 Hematopathology74
APPENDIX 2	Blood values75
APPENDIX 3	Environmental data76 Map of Berlin Lake77 EPA documentation78
APPENDIX 4	IR spectra79
APPENDIX 5	Human Subjects Protocol Review Form80

Chapter 1: How Blood Cells are Produced

Hematopoietic Tissue

Blood cell production occurs at various points of or within the human body during the course of development from embryonic through adult life. Formation of the blood cells first begins within the yolk sac of the embryo; later shifting to the liver and to a lesser extent the spleen-allowing these organs to then become the dominant production sites between the second and seventh months of gestation. The liver and spleen are then superceded by the bone marrow which then serves as the main and most important site of blood cell production post-partem. Lymphocyte production is the only exception to this; for their production occurs to a greater extent in the lymphoid tissues post-partem. Hemapoietic tissue occupies all of the cavities within the bones of the neonate; with subsequent corporeal development however, this tissue becomes localised in the cavities of the upper shafts of the femur, and humerus, the pelvis, spine, skull and bones of the thorax. The total volume of hematopoietic tissue within the adult body is between one and two liters. It is referred to as red marrow primarily due to its macroscopic presentation; the bone marrow within the more peripheral regions of the body/skeleton is predominantly composed of adipose cells/adipocytes and is known as yellow marrow. Yellow marrow claims a volume of between one and two liters as well; serving as a reserve space into which hematopoietic tissue

can expand if, for example, the body should suffer an increased need for blood cells and their production. Extramedullary hemapoiesis or hemopoietic activity exclusive to the liver and spleen occurs in adult life only in rather rare pathological conditions.¹

Bone Marrow Structure

The red marrow, as found between or intermingled with the trabeculae of bone within the marrow cavitiy, proper, houses specialized connective tissue cells: reticulin fibrils, blood vessels, fat cells, nerves and macrophages-along with cells of the lymphoid and hemopoietic series. Fine reticulin fibrils help to create a supportive framework for the bone marrow components. These fibrils extend/reach from the endosteum of the bony trabeculae to the vascular sinusoids and are believed to be produced by the adventitial reticular cell.

Adventitial Reticular Cell

The abluminal or adventitial surface of the marrow's vascular sinus consists of reticular cells. These cell bodies are contiguous with the vascular sinus, thereby contributing to a portion of its adventitial coat. The adventitial reticular cell possesses extensively branched cytoplasmic processes which enwrap the outer wall of the marrow's sinus-forming an adventitial sheath.²

The reticular cells synthesize argentophilic fibers that, in conjunction with their cytoplasmic processes, reach into the hemopoietic recesses of

the/ within the marrow; these fibers help to construct a framework upon which hemopoietic cells rest. The cell bodies, their broad processes and fibers help to compose the reticulum of the marrow.² The membranes of the adventitial reticular cells are known to contain high levels of alkaline phosphatase; express CD10, CD13 and class 1 HLA antigens; are positive for the 6/19 antibody; express nerve growth factor receptors; differentiate along the smooth muscle pathway; and contain alpha smooth muscle actin, vimentin, laminin, fibronectin and collagens 1, 3 and 4. These reticular cells are commonly CD34 antigen-negative.²

Fibronectin

Fibronectin is known to localize at the sites of hemopoietic cell and marrow stromal cell attachment. Early erythroid progenitor cells attach themselves to the cell-binding domain of fibronectin. Additionally, adhesion of granulocyte hemopoietic cells to stroma is mediated for the most part by fibronectin. Such a binding can be strengthened via protein kinase C activators-phorbol esters, for example-thereby suggesting the possible involvement of integrin receptors in the cell-attachment process.²

Collagen

Collagen types 1 and 3 are produced by fibroblasts within the marrow and are associated with microvascular walls; type 4, however, is confined to endothelial-type cells and their basal lamina. Marrow derived fibroblasts along with stromal cells, synthesize collagens 1, 3, 4, 5, and 6.²

Laminin

Laminin is a multidomain glycoprotein with both mitogenic and adhesive sites; it is a main component of the marrow extracellular matrix and basement membranes. This glycoprotein reacts with collagen type 4 and assorted proteoglycans to regulate leukocyte chemotaxis. In a similar manner, CD34 positive granulocytic progenitors, mature monocytes, and neutrophils attach to laminin. Laminin is believed to have a part in strengthening adhesive interactions with integrin receptors, specifically receptors $\alpha 5\beta 1$ and $\alpha 6\beta 1$ -on the surface of hemopoietic cells within the cytomatrix.²

Thus, it becomes apparent that marrow structure is critical for proper hemopoietic activity; for it essentially provides a framework-as generated by the adventitial reticular cell population, reinforced by the likes of fibronectin, collagen and laminin-upon which or within which the hemopoietic cell hierarchy is able to attach and differentiate. It is with this structure then that the majority of the blood cell population, within the general circulation of the body, is maintained.

With this juncture in the discussion, it becomes critical to recognize and/or accept several generalisations concerning bone marrow, before hemopoiesis-as involving blood cell production and differentiation-is able to be considered. These generalisations are as follows:

1. in marrow there exists a hierarchy of hemopoietic cells;

with the primary or initial cell being referred to as the multipotential stem cell;

- stem cell differentiation is unidirectional and is closely aligned with the restriction of any cell renewal capacity;
- proliferation of the stem cells is wholly dependent upon contact with the marrow's stromal cells;
- the total overall proliferation and differentiation of stem cells is regulated by local and systemic growth factors and their accompanying inhibitors.³

Hemopoiesis

It is universally accepted that blood cells develop from a small population of stem cells or progenitor cells within marrow; which maintain their population via self-replication and also give rise to precursors of various other blood cells.¹ The progenitor cells spend the majority of their existence in an out-of-cycle Go phase; during this phase of the cell cycle they are preoccupied with DNA repair and other forms of genetic maintenance. Throughout the duration of this rather quiescent phase, the cells are less susceptible to genetic damage by ionizing radiation, alkylators, and viruses. As the number of cells reaching the terminus of the G1 phase increases-stem cells are prepared to react within an approximate thirty minute window to an array of stimuli; either carried to them via the general circulation or as produced directly in the marrow.³

Following this post-G1 accumulation and subsequent cellular activation towards differentiation, proliferative activity progressively increases. It is at this post G1 accumulation that the blood cells are said to be in the maturation compartment; in which a cascade of morphological changes occurs without cell division-to yield the mature end-cell. The range of different blood cell series which can develop from a particular precursor progressively declines as the precursor comes to possess an increased degree of differentiation.¹

The Stem Cell

The stem cell or hemopoietic stem cell is often considered as an example of the most primitive cell type. This fundamental cell is able to divide; however a subset of the stem cell population will remain unmodified during the maturation or stem cell phase. The cells that remain in this "un-specified" state are/compose the pluripotential cell population.⁴

A small number of the cells in the maturation or stem cell compartment are forever undergoing mitosis; this constant cell-set is responsible for maintaining a relatively homeostatic blood cell population. For example, when the demand for blood cells is intensified, the percentage of dividing stem cells-both uncommitted and committed-increases. This stimulus to differentiate for committed cells of each cell line, is mediated by glycoprotein inducers or hemopoietins; including erythropoietin, thrombopoietin and assorted leukopoietins.⁴

It is this complex cascade of hemopoietic events, as occurring within the bone marrow, that produces the blood cells that sustain mammalian life. Upon closer examination, however, there becomes apparent an intrinsic fragility to this system of red blood cell (RBC), platelet, and white blood cell (WBC) production; these cells-to be identified in the chapter forthcoming-are not only at the very foundation of life, but, as it will be shown, are also the first to fall victim to mutation and disease.

10°-1

Chapter 2: Description and Function of Blood Cells

Red Blood Cells

The mature red blood cell is a rather unique development in cellular evolution; for it has developed so as to exclude all biosynthetic organellessuch as nucleus, ribosomes and mitochondria. Essentially, the rbc has become a sort of hematologic minimalist, in that it possesses just enough, biochemically speaking, to adequately fulfill its role of oxygen deposition and carbon dioxide removal within the body. The rbc has developed into a rather flexible biconcave torus shape-brilliantly formed so as to maneuver through the blood vessels composing the body's microcirculation. The mature rbc will travel in upwards of 1 million times through the bodyequaling a distance of about 300 miles. A normal, mature red blood cell will measure approximately 7.8 μ m in diameter, 1-7 μ m in width and have a volume of 94 \pm 14 fL and a surface membrane area of 135 \pm 16 sg μ m. Such a surface area enables these cells to not only endure the hydraulic bending forces of non-laminar circulation, but adjust to various instantaneous contortions without damage or retardation of progress. Additionally, the biconcave shape of these corpuscles allows for a quite favorable surface area to volume ratio; thereby allowing them to travel across and/or through cylindrical capillaries only 5 μ m in diameter, via the adoption of an umbrella shape transverse to the direction of blood flow.³

Membrane Properties

The structural elements of the red blood cell membrane that make the aforementioned progress possible include:

- a lipid bilayer, composed of phospholipids and non-esterified cholesterols; providing a semipermeable barrier between the internal cell cytosol environment and the external environment of the blood stream, proper;
- 2. transmembrane proteins;
- a membrane skeleton that essentially sheathes the internal or cytosolic side of the cell-affording it (the cell) a high degree of structural stability or integrity.²

Composition

The vast majority of the membrane's phospholipids are phosphoglycerides-consisting of a glycerol backbone; the hydrophobic longchain fatty acids are anchored to glycerol's first two carbons. The residues, which determine phospholipid specificity are linked to the third carbon of glycerol by means of phosphoester linkages and are exposed at one of the lipid bilayer surfaces. The involved phosphoglycerides are of the following mix: 27% of the total phospholipids-phosphatidylethanolamine; 28%-phosphatidylcholine; 13%-phosphatidylserine, along with phosphatidylinositol. Sphingomyelin constitutes the other phospholipid contributor; it consists of a hydrophilic moiety identical to that of

phosphatidylcholine; however, the hydrophobic region is composed of ceramide. It is important to note that ceramide contains sphingosine along with a fatty-acyl side chain attached to sphingosine's amino group. In addition, cholesterol fits into the membrane in its unesterified form.² Cell Surface

The surface of the rbc is fortified via neuraminic acid residues, which impart a negative surface charge to the cell. Any deviation in cell surface charge is anything but salubrious in regards to the health of the erythrocyte. The red blood cell surface antigens are found on the glycolipids; *ie* the glycosphingolipids or upon the externally exposed portions of transmembrane proteins or their carbohydrate side chains.² Membrane Permeability

The normal erythrocyte membrane is virtually impermeable to monovalent and divalent cations. This helps to maintain a high potassium, low sodium, low calcium cellular content. Anions, however, are exchanged via the anion transport protein. The rbc cell membrane is also known to contain at least one water channel protein that facilitates the rapid movement of water molecules across the membrane; because of these channels, the erythrocyte behaves as a perfectly, or very nearly so, run osmometer. Glucose is carried via a glucose transporter protein, while larger, charged molecules do not travel across the rbc cell membrane.²

Red Blood Cell Function

The ultimate design of the erythrocyte is the ability to transport oxygen and carbon dioxide, the respiratory gases. Hemoglobin picks up oxygen in the pulmonary capillaries and delivers it, via the rbc, to tissue capillaries; within the tissues, oxygen is exchanged for carbon dioxide-a byproduct of cellular metabolism. A human, at rest, consumes approximately 250mL of oxygen and exhales around 200mL of carbon dioxide, every minute. Dissolved as a gas in plasma water, only about 5mL of oxygen can be delivered to needy tissues each minute. Whole blood is capable of delivering 200 ml of oxygen/liter, due primarily to red cell hemoglobin, to tissues within the body. For this oxygen delivery to occur, hemoglobin must bind oxygen with an intensity that allows it to be removed from pulmonary capillaries at high oxygen tensions; while still being able to deliver/unload oxygen at the decrease oxygen pressure of the tissues; hemoglobin must meet/attach to oxygen with flawless affinity.³

Platelets

Platelets are formed in the Golgi region of the cytoplasm of megakaryocytes and are released into the blood via cytoplasmic fragmentation. Thrombocytopoiesis is under the dictate of thrombopoietin. Although the majority of the blood's platelets are produced by megakaryocytes within the bone marrow, a small number is believed to be

derived from pulmonary megakaryocytes.⁴ Platelets store a number of molecules that influence platelet function, vascular tone, fibrinolysis and wound healing; these compounds are released upon platelet activation.²

The mean diameter of platelets is variable; generally the platelet is between 1.5 and 2.5 μ m across, only about 1/3 to 1/4 the diameter of rbc's. Platelets have even been observed to possess filopodia-or long, thin processes extending outward from the platelet body proper.² Platelets possess a glycocalix, which extends 14 to 20 μ m from the cell surface. This 'coat' is believed to consist of membrane glycoproteins, glycolipids, mucopolysaccharides and adsorbed plasma proteins. The platelet surface is host to a network of indentations, thought to represent openings of the cell's open canalicular system, a complex channel system that communicates through out the cell. In addition, platelets, in an electric field, react or move as is they were influenced by a net negative surface charge. This net negative surface charge is created, in part, by sialic acid residues attached to proteins and lipids along the cell-surface. The overall electrostatic repulsion created via this charge, is believed to aide in the prevention of at-rest platelets from adhering to others or the negatively charged cells of the endothelium.²

Membrane Properties

The plasma membrane is a trilaminar unit consisting of a bilayer of phospholipids within which is embedded cholesterol, glycolipids and assorted glycoproteins. This membrane is believed to house the Na⁺ and Ca⁺² ATPase pumps, which are integral in controlling the platelets' ionic environment. The phospholipids, which help to create and stabilize the plasma membrane, are distributed in a rather asymmetrical pattern; with those negatively charged phospholipids, phosphotidylserine in particular, are known to accelerate the coagulation cascade. Additionally, select membrane phospholipids are enriched with arachidonic acid; thereby providing a repository of arachidonic acid ready for release and subsequent conversion into thromboxaneA2, often referred to as TXA2.²

Organelles

The sol-gel zone or platelet interior, houses two types of granules: the α granule and the dense bodies; along with sparse mitochondria and glycogen deposits. The α granules outnumber the dense bodies within the platelet; are contained by a membrane and hold hydrolytic enzymes-including acid phosphatase, β -glucuronidase, and cathepsin; the dense bodies are enriched in serotonin and derived from α -granules.⁴ They also contain ATP and ADP in a 2:3 ratio respectively. Storage of these adenine nucleotides is believed to be done via a vertical stacking of the molecules' rings. The planar hydroxyindole rings of serotonin may also aide in the

construction of these aggregates.⁴ Decrease of the contents of the dense granules, from activated platelets, is part of a fundamental positive feedback reaction for platelet aggregation; based upon ADP being a rather strong platelet agonist and serotonin a weak agonist.⁴

Function

The platelet, in response to strong activators, such as: adhesion to exposed collagen with blood vessels following a vascular trauma; adhesion to atherosclerotic blood vessel walls following plaque rupture; thrombin and/or elevated collagen concentrations²; undergoes a biochemically prescribed sequence of events. This sequence includes: a distortion of shape; adhesiveness; primary aggregation; secondary aggregation; and release reactions. The sequence realizes completion if the inducer is requisitely strong with no accompanying inhibitors. If the inducer should be weak, however, with subsequent activation of one or more inhibitors, then the response can stop and actually reverse. The inducer also helps to predict whether the response sequence is followed in its entirety. This hemostatic process is inclusive of/to the activation of the blood coagulation response, as well.⁴

White Blood Cells

Classification of Lymphocytes

Mature lymphocytes, although originating from a common parent cell, are divided into several functional types. These functional types include: Tcells, B cells and the intriguingly titled natural killer (NK) cells; however, the scope of this discussion will be narrowed to include only T and B-cells.² T-cells

T-lymphocytes are the predominant lymphocyte in blood and lymph. In the lymph nodes, T-lymphocytes are known to localize within the dense corona of lymphoid follicles in addition to congregating in the interfollicular and subfollicular zones; within the spleen, they are found within the outer mantle of the periarteriolar sheath. When sensitized T-cells are activated, they produce lymphokines; furthermore, upon activation, T-cells are able to behave as effectors, helpers and/or suppressors. Effector T-cells are integral in the delayed hypersensitivity reaction along with the graft-verushost reaction; whereas helper T-cells promote or enhance antibody production by B-lymphocytes; and suppressor T-cells inhibit antibody production by B-cells.⁴

T-cells possess CD2, CD4 and CD8 receptors; these receptors are simply adhesion molecules and/or signal transducers. The CD2, CD4 and CD8 receptors react with a number of cell surface ligands, including the lymphocyte function-associated antigens (LFAs), LF1 and LF3. As an example of this relationship, consider the following: the conjugation of CD2 to LF3 ligands promotes nonspecific adhesion of T-cells to antigen

presenting cells (APCs) and by doing so, facilitates antigen recognition and T-cell activation. In complement, the interplay between CD4 or CD8 receptors with MHC (major histocompatibility complex) proteins reinforces the bond strength of specific T-cells to APCs. Following this contact, T-cell recognition by the T-cell antigen receptor (TCR) and APC binding through MHC complementarity induces lymphocyte effector function; for example, cytolysis, or lymphokine production. Following this biochemical crescendoing, the T-cell involved, disengages from the APC, creating a vacant site for the attachment of additional antigen-specific resting T-cells.³ B-cells

B-cells are relatively short-lived, and originate from within the bone marrow. They have a number of surface immunoglobin receptors, (lgM, lgA, lgD. lgG, lgE), and fundamental in the construction and maintenance of the humoral defense system.⁴ B-cells have developed so as to be able to recognize a seemingly infinitesimal number of potential antigens; and following contact with the antigen, they convert to plasma cells; with the function of the plasma cell ultimately being antigen-secretion. When a B-cell is activated, via antigen contact with an Ig receptor, a clone of antibody-secreting plasma cells is produced. A minority of the activated cells divide only briefly; however, they will survive as 'long-lived memory cells'.³

Chapter 3: Acute Myelogenous Leukemia (AML)

Pathophysiology of AML

In prefacing the definition of AML, acute myeloid leukemia, it is necessary to define the cancer, leukemia. Leukemia is a malignancy of the blood-forming cells; occurring when immature or mature cells multiply uncontrollably within the bone marrow. This condition is identified as lymphocytic or myeloid depending upon which cell-line is altered. Leukemia is then considered to be acute or chronic; acute leukemia being characterized by a disease in rapid progression with a predominance of blastic or highly immature cells; whereas chronic leukemia signals a disease developing at a much slower rate with an increased number of mature cells.¹ More specifically then, acute myeloid leukemia is identified as the rapidly progressing neoplastic growth of immature myeloid cells or myeloblasts; and because the nonlymphoid cell-lines are involved, this malignancy is equally recognized as acute nonlymphocytic leukemia or ANLL (ACS). Briefly then, the myeloid cell lines include the following sequences of cell maturation within the bone marrow:

*stem cell \rightarrow myeloid stem cell \rightarrow erythroblast \rightarrow reticulocyte \rightarrow erythrocyte

*stem cell \rightarrow myeloid stem cell \rightarrow megakaryoblast \rightarrow promegakaryocyte \rightarrow megakaryocyte \rightarrow thrombocyte *stem cell → myeloid stem cell → myeloblast → basophil
*stem cell → myeloid stem cell → myeloblast → eosinophil
*stem cell → myeloid stem cell → myeloblast → neutrophil
*stem cell → myeloid stem cell → monoblast → promonocyte → monocyte → macrophage.²

Thus, surveying the number of rather complicated cell-differentiation schemes, it becomes increasingly clear that there exists a rather extensive list of site combinations where a perversion of cell-development can occur. For example, a derangement in the myeloid cell line at a pluripotential/stem cell, gives rise to a disease sequelae of vastly different dynamics than would a derangement occurring further along the differentiation scheme.³ However, any sort of renegade or neoplastic proliferation of cells such as myeloblasts, erythroblasts and the like, not only encourages genetic misprints in these unchecked cells-but by the sheer numbers of cells being 'over-produced'-healthy marrow cells are dislodged. This usurping of cell position, within the marrow matrix, manifests itself within the patient as anemia, neutropenia and thrombocytopenia.²

Anemia-a reduction in the quantity of the oxygen-carrying pigment or hemoglobin, within the blood; the main symptoms include: excessive tiredness and fatigability, breathlessness on exertion and poor resistance to infection.

Neutropenia-a decrease in the number of neutrophils in the blood; resulting in an increased susceptibility to infections.

> Neutrophils-a variety of white blood cell, distinguished by a lobed nucleus and the presence in its cytoplasm of fine granules that stain purple with Romanovsky stains. The neutrophil is capable of phagocytizing bacteria and contributes to the body's defense against infection

> Romanovsky stains-a group of stains used in the microscopic examination of blood cells, consisting of variable mixtures of thiazine dyes; such as azure B with eosin. Romanovsky stains communicate characteristic patterns, on the basis of which blood cells are classified. This group of stains includes stains of: Leishmann, Wright, May-Grunwald, and Giemsa.

Thrombocytopenia-a reduction in the number of platelets within the blood. This condition results in bleeding into the skin, spontaneous bruising, and prolonged bleeding after injury. Thrombocytopenia may result from failure of platelet production or their excessive

destruction.⁵

Clinical Presentation of AML

The general clinical signals that may indicate the development of AML, within a patient, include: pallor, fatigue, weakness, palpitations and dyspnea (heavy or laboured breathing) upon exertion-all being symptoms which communicate anemia. Whereas, easy bruising, petechiae (red skin spots signifying bleeding into the skin), epistaxis (nosebleed), gingival bleeding, conjunctional hemorrhages and prolonged bleeding following superficial skin injuries, are symptoms characteristic of thrombocytopenia. In addition, fever is present in the majority of patients upon diagnosis; as is palpable splenomegaly and/or hepatomegaly.¹

Although there are many combinations of/profiles of symptoms at diagnosis, perhaps the most accurate and fail-safe infrastructure to construct a diagnosis around is the hematological findings/CBC numbers and the initial personality of the bone marrow.

A bone marrow biopsy of a patient suspected of developing AML, will always contain leukemic blast cells.² Myeloblasts are identified within the biopsy via three pathognomonic features: reactivity with a series of histochemical stains; the presence of Auer rods within the cells; and/or reactivity with specific monoclonal antibodies against epitopes found on the surface of the myeloblasts.² Additionally, normal erythropoiesis,

megakaryocytopoiesis and granulopoiesis are significantly reduced or nonexistent within the biopsy. The aspirate of marrow may also contain isolated clusters of erythroblasts or megakaryocytes.²

The blood values of a patient suspected of developing AML-often communicate a suspicious WBC level; many times being either superelevated or subnormal. The myeloblast population within the blood is not necessarily valuable in determining the extent of leukemic cell infiltration into the body, but is valuable in gauging disease progression. Blast counts in excess of 100,000 cells/µL indicate the potential for a terminal progression and scream of the risk of the formation of 'leukoocclusions' within blood vessels of the lungs and brain. Such CNS vessel occlusion, by gummy accretions of sticky myeloblasts, contributes, if not, precipitates, life-threatening neurological damage; for example, fatal cerebral hemorrhage.³

Types of AML

Acute cases of myelogenous leukemia are classified according to the French-American-British (FAB) identification scheme. The type of AML is assigned a label of M1-M7; accompanying each designation is a set of hematological thresholds that must be met to allow for such a diagnosis. The categories and hematologic criteria conform to the following:

AML M1-Myeloblastic leukemia: At least 30% of the nonerythroid cells within the marrow are recognized as myeloblasts;

with a minimum of 3% of blasts staining for myeloperoxidase or granule phospholipid via treatment with Sudan Black.

AML M2-Myeloblastic leukemia with maturation: At least 30% of the nonerythroid marrow cells are myeloblasts; promyelocytes account for more than 10% of the population and monocytic elements more than 20%.

AML M3-Promyelocytic leukemia (APL): The majority of marrow cells are abnormal hypergranular promyelocytes; Auer rods may be present within a small percentage of these promyelocytes.

AML M4-Myelomonocytic leukemia (AMML): At least 30% of the nucleated marrow cell population are blasts; with granulocytics accounting for more than 20% of the nonerythroid marrow cells.

AML M5-Monocytic leukemia (AMoL): At least 30% of the entire nonerythroid marrow cell population are monoblasts, promonocytes or monocytes. In the M5A subtype, a minimum of 80% of all monocytic cells are monoblasts.

AML M6-Erythroleukemia (AEL): A minimum of 50% of the nucleated marrow cell population are erythroid precursor cells; in addition, at least 30% of the remainder of nonerythroid cells are blasts.

AML M7-Megakaryoblastic leukemia (AMegL): The marrow biopsy displays at least 30% of the cells present to be of megakaryocytic lineage.³

As mentioned within the preface, a specific case of pediatric AML M2myeloblastic leukemia with maturation-will be the primary focus of this discussion. Chapter 4: The Pharmaceutical Suspects What was the precipitating factor/s to the development of AML in this case study?

As spoken to within the preface-this thesis, ultimately, is an expanded case study; the focus being a then nine year old male, diagnosed with AML M2. Having characterized the disease state in chapters preceding, the question of HOW? arises. More precisely, how exactly is a child at risk for developing leukemia-myelogenous leukemia at that? The first possibility to be explored is maternal/paternal chemical exposure, followed by infant chemical exposure.

When analysing the chemical exposure of the diagnosed young man and his parents, it becomes obvious, quite rapidly, that two pharmaceutical agents are of paramount importance to this discussion; sulfisoxazole and clomid (clomiphene citrate). Sulfisoxazole is somewhat suspect in that, as an infant, this young man received 18gm, in <5 days, as treatment for otitis media; 18gm, in <5 days, in a pediatric context, is considered an overdose.⁶ Of equal, if not greater, suspicion is clomiphene citrate or clomid, a fertility drug taken by the mother, to induce ovulation. Clomid regimens, as will be presented, are notorious in their ability to encourage fetal/neonatal structural malformations; in conjunction with chromosomal abnormalities and leukemia within the neonate.⁷

Clomid

Clomid, is identified by its manufacturer, Hoechst, as an orally administered, nonsteroidal, ovulatory stimulant; chemically identified as 2-[p-2(chloro-1,2-diphenylvinyl-phenoxy]triethylamine citrate. Clomid or clomiphene citrate, is a mixture of two geometric isomers, [cis(zuclomiphene) and trans(enclomiphene)] containing from 30-50% of the cis-isomer.⁷

Clomid has the potential to interact with those tissues rich in estrogenreceptors; these tissues include, but are not limited to, the hypothalamus, pituitary, ovary and endometrium. This drug may also compete with estrogen for estrogen-receptor binding sites and may retard the renewal of intracellular estrogen-receptors. Essentially, clomid initiates an endocrine cascade ending in a preovulatory gonadotropin surge, pre-empting follicular rupture. The first event in this cascade is a marked increase in the release of pituitary gonadotropins. This increase encourages steroidogenesis and folliculogenesis; thereby promoting the growth of the ovarian follicle and increases in circulating estradiol levels.⁷

Although such an endocrine cascade may be the exact desired result-a number of the risks and contraindications may unfavourably skew the benefit/risk ratio of clomid therapy. The outward or obvious upon parturition, malformations which are experienced by the subject of this study, include: undescended testicles, inguinal hernia and umbilical hernia.

All three of these structural abnormalities are specifically cited within the physician's package insert for clomid, as possible risks. In addition, the risk of neoplasms and chromosomal disorders are cited: the neoplasms listed directly include neuroectodermal tumour, thyroid tumour, hepatoblastoma, and most importantly for this discussion, leukemia. It is also worthy of mention, that clomiphene citrate is contraindicated for women known to suffer from organic intracranial lesions-such as pituitary tumour.⁷ In the instance of the nine year old subject, his mother has been diagnosed with just such an intracranial lesion, a pituitary tumour; her diagnosis preceded her clomid therapy.

In addition to the mother's anovulatory condition, the child's father was identified as suffering from oligospermia. The parameters for oligospermia are between 0.5-20 million sperm/ml⁸; with normal serum gonadotropins and testosterone. However, although clomid/clomiphene may be taken at doses up to 100mg/day, in treatment of male infertility, due to a miscommunication, the child's father took two times the prescribed dose during treatment. It has been suggested that extremely high or low concentrations of clomid/clomiphene negatively impact both sperm motility and fertilising capacity.⁹ Please consider the risks that begin to intensify for the fetus-considering that both parents are

receiving clomiphene therapy and one is receiving two times the prescribed dosage. If there was "acceptable risk" with exclusively mother receiving fertility therapy, did the line between benefit and risk become a bit muddled when father began treatment, and two times the treatment at that?

Sulfisoxazole

Sulfonamides

Sulfonamides, the general category of pharmaceuticals to which sulfisoxazole belongs, are synthetic derivations of p-

aminobenzenesulfonamide. A benzene ring with a sulfonamide group and a primary amino group *para* to the sulfur side-chain, impart antibacterial activity to the compounds. Substitution of the N⁴-amino group with groups e.g. radicals, that may be easily converted to a free amino group within the body, allow the compound to retain antibacterial activity. Furthermore, any substitutions within the N¹-amide group produce compounds different in solubility, protein binding, tissue distribution, and rates of metabolism and excretion. The most effective sulfonamides are those obtained via substitution of heterocyclic groups in the N¹ position.⁶

Sulfonamides are principally bacteriostatic; in that they directly disrupt bacterial utilization of p-aminobenzoic acid (PABA) within the biosynthesis of tetrahydrofolic acid cofactors. This interference is possibly due to sulfonamides being structural analogs of p-aminobenzoic acid; thereby

being capable of competitively inhibiting dihydropterate synthase.

Dihydropterate synthase catalyses dihydropteric acid formation from PABA and pteridine. Dihydropteric acid is a tetrahydrofolic acid precursor. The bacteriostatic potential of the sulfonamides is only realised against microbes that synthesize their own folic acid.⁶ Thus sulfonamides are effective against gram positive bacteria, including: strains of *Staphylococci*, *Streptococci*, *Bacillus anthracis*, *Clostridium tetani*, *Clostridium perfringens*, along with a number of strains of *Nocardia asteroides* and *Nocardia brasiliensis*. The gram negatives which thay are effective against include: *Enterobacter*, *Escherichia coli*, *Klebsiella*, *Proteus mirabilis*, *Proteus vulgaris*, *Salmonella* and *Shigella*.⁶

Sulfisoxazole

Sulfisoxazole, the sulfonamide specific to this discussion, shares the actions and uses of the sulfonamides. However, there exist a number of adverse reactions with this sulfa drug, as with many others. The most pertinent, here, being the sulfonamide-induced blood dyscrasias: agranulocytosis, hemolytic, aplastic or megaloblastic anemia, leukopenia, thrombocytopenia and eosinophilia.¹⁰ The blood dyscrasias are believed to be provoked by both an immunologic reaction, involving haptene formation and destruction by antibodies, and an idiosyncratic mechanism. It has been demonstrated that such toxic effects, from sulfa drug therapy, occur after a latent or window period, anywhere from 2 to 36 months, following

treatment.¹¹ Please consider the course of sulfa drug treatment taken by the subject: 18gm, <5 days, powder form, in a pediatric context; it is of vital importance, when analysing this therapy, to recognise that not only does this scenario constitute an overdose-but the sulfisoxazole was not prepared in the pharmacy, as the prescribed suspension. The prescription was however, filled and given to the patient's parents with minimal instruction; not enough instruction to allow them to realise that sulfisoxazole is not/should not be administered as a powder-to be sprinkled over a patient's cereal! Such miscommunication and negligence could only endager this child, and most probably set him up for an increasing susceptibility to a hematologic event, such as leukemogenesis!

Chapter 5: The Environmental Suspects

Environmental chemical exposure of both parents and child is perhaps best divided into two distinct groups of chemicals: Berlin Lake water contaminants and fruit and vegetable contaminants. The Mahoning River Basin plays a key role in this case study due to the child's repeated annual exposure to Berlin Lake water via swimming, diving and boating. Whereas preservative chemicals, common to fruits and vegetables are integral in that the child's father has worked in the produce department of a local grocery chain for nearly thirty years.

Berlin Lake

Appendix C, of the EPA's May 1, 1996 report on the Mahoning River Basin, catalogues over 495 known spills into the basin and its tributaries, between 1983-1994. Before discussing some of the more serious spills, it is essential to note that the level of sophistication or better yet, exactitude in identifying what exactly spilled and in what volume, is of an incrediblyeven frightfully low level. For example, entries of spills of "waste waterquantity unknown" or "sewage-quantity unknown" or "unknown white stuffquantity unknown" or "suspended solids, yellow material, orange stuff, illegal dumping, junk/trash"-all recorded "quantity unknown"-are representative of how the government has documented spills into a waterway, known of and used in almost exclusively a recreational capacity.

Some chemicals that have been recorded as spilling into this waterway in excess of thousands of gallons, include: 1,3-butadiene, assorted fuel oils, asbestos, ethylene glycol, propylene glycol, and 2,4,6-trinitrotoluene.¹²

The first, most obvious and unfortunately the most frequently spilled chemicals, are those, as previously mentioned, which belong under the heading of hydrocarbons or petroleum distillates. The petroleum distillates have increased toxic effects when they are aspirated into the tracheobronchial tree than when they are ingested; ingestion of between 500-1000mL may cause minor symptoms, whereas aspiration of just 1mL can lead to lethal chemical pneumonitis.⁸ Pesticides, camphor, halogenated compounds and metals, if dissolved in petroleum distillates, can significantly increase this toxicity.⁸

Petroleum distillates are recognised as fat solvents, capable of altering nerve function, potentially leading to depression, coma and convulsions. Benzene contaminants of the distillates, may potentiate adverse effects on liver, kidney and bone marrow function.¹³ Laboratory findings, based upon exposed individuals, tell of reduced RBC counts, bone marrow hypoplasia and the presence of protein and RBC's in the urine.¹³

1,3-Butadiene

1,3-Butadiene is produced during petroleum processing. It is the 36th highest volume chemical produced in this country. 1,3-Butadiene is

recognised by the DHSS as a human carcinogen. Exposure to this compound is possible via: urban or suburban air in or around chemical, plastic or rubber facilities; air contaminated from car/truck exhaust or waste incineration; cigarette smoke; drinking/swimming in water near production or waste sites; and skin contact with gasoline.¹⁴ The occupational exposure limit, as established by OSHA, for 1,3-buatdiene, is 1000ppm of air.¹⁵

Fuel Oils

Fuel oils are, obviously, a veritable hydrocarbon cocktail, produced directly from crude oil petroleum; and include kerosene, diesel fuel, jet fuel, range oil and home heating oil. Fuel oils, when spilled into water are not degraded into more benign or eco-friendly compounds, quite the contrary. Rather, these petroleum by-products may dissolve in water and/or eventually be deposited in the waterway's sediment. Furthermore, fuel oils, of any sort, are recognised as bioaccumulators-simply meaning that they accumulate in the adipose of any exposed creature-fish, bird, human, or otherwise. One of the most direct routes of exposure is the immersion or consumption into/of contaminated water. Unfortunately, prolonged and/or repeated exposure to such compounds adversely effects kidney function and interrupts the prothrombin and fibrin sequences within the blood; thereby significantly increasing clotting times.¹⁴

Used Mineral-Based Crankcase Oil

This compound differs from unused oil in that it contains additional chemicals formed via high temperature and high pressure exposure within an engine. It also contains an assortment of metals from engine parts, in addition to gasoline, antifreeze and byproducts of spent gasoline.¹⁴ When such a mixture invades the environment, it acts in much the same way as fuel oils. They find their way through waterways, accumulating in low-layer sediments, animals, fish and humans. Therefore, exposure to contaminated water or soil would be possible delivery routes into the body. And once an individual has suffered such a repeated exposure, hematological events, such as anemia, become increasingly likely to occur. In addition, used oil contains PAH's or polyaromatic hydrocarbons-which are recognised carcinogens.¹⁴

Contaminants, other than the petroleum distillates, which have been spilled into the Mahoning River Basin/Berlin Lake, include: asbestos, ethylene glycol, propylene glycol and 2,4,6-trinitrotoluene.¹²

Asbestos

The term asbestos is applied to any mineral that decomposes into fibres. Chrysotile, the most common form, is fibrous serpentine, a magnesium silicate containing 40% silica. Its fibres are tubular in crosssection and as small as 0.015μ m in diameter. Crocidolite, another form, is fibrous riebeckite, a sodium ferro-ferrosilicate, which is 41% silica. Its

fibres can be as minute as $0.08\mu m$ in diameter. A third form, amosite, is fibrous grunerite, a magnesium ferrosilicate, 49% silica. Amosite fibres are as little as 0.1µm in diameter. Asbestos also includes anthophyllite and termolite-actinolite. Uses for the various forms of asbestos include: cloth production, brake linings, cement products, paper, flooring, gaskets and paint; a total of 3 million tonnes is produced annually in the United States.¹⁶ Asbestos does not readily degrade within the environment, it merely settles-in water, soil, and within animals. Asbestos is capable of bioaccumulation. Inhalation of asbestos fibres increases the risk for lung cancer and mesothelioma, which is a cancer of the pleural membrane. Whereas, ingestion of such contaminated water, has been shown to elevate the risk for stomach, intestinal, esophageal, pancreatic and kidney cancers.¹⁷ The EPA has set a limit of 7 million fibres/L as the highest concentration of long fibres acceptable within drinking water.¹⁴ Ethylene and Propylene Glycol

Ethylene glycol and propylene glycol are clear, colourless, liquids-best described as 'syrupy' at room temperature. Both glycols are main components of anti-freeze and de-icing solutions for cars, boats and airplanes; and are used in the manufacturing of polyesters-also as solvents in the plastic and paint industries.¹²

The fatal dose of ethylene glycol is approximately 100g. Whereas the exposure limit for particulate ethylene glycol is 10mg/m³; 50ppm for

vapour.¹⁸ Ethylene glycol and its esters are distributed with metabolic water and are metabolised to oxalic acid within the body; it is this conversion that is believed to be involved in some of its toxic effects.¹⁹ The ethers of ethylene glycol, although not degraded to oxalic acid, idiopathically produce brain and kidney damage.¹⁸ The majority of the glycols produce profound acidosis.¹⁹

The pathology of a glycol poisoning may include congestion and edema of the brain, focal hemorrhagic necrosis of the renal cortex, along with hydropic degeneration of the liver and kidneys. Commonly, calcium oxalate crystals are found within the CNS (brain and spinal cord) and kidneys.¹⁸ The primary pathway of or to exposure, excluding direct contact, is via contact with contaminated water or soil.¹²

2,4,6-Trinitrotoluene

As is commonly known, trinitrotoluene is used as an explosive. The acute fatal dose is between 1-2g; while the exposure limit is 0.5mg/m³.²⁰ In an exposed organism, TNT injures almost every cell it contacts; in particular, those cells of the liver, bone marrow and kidney. Pathological findings of a TNT poisoning would most likely tell of acute, yellow atrophy of the liver, bone marrow aplasia, petechial hemorrhages and toxic nephritis. Bone marrow involvement is communicated via laboratory findings of depressed RBC counts, in conjunction with anisocytosis and poikilocytosis; there may be relative lymphocytosis, as well.²⁰

TNT enters the environment via waste-waters and solid waste products of the armament industry. This compound, like so many others, is able to, and all too frequently does, migrate via surface water and soils into groundwater. Trinitrotoluene also displays bioaccumulative capabilities; with the most likely route of exposure being contact with contaminated surface and/or ground waters.¹²

Produce Pesticides/Paternal Exposure

Paternal chemical exposure via three decades of produce handling includes, but may not be exclusive to, the following chemicals. Please note that following each chemical is a list of associated health effects linked to exposure to that particular chemical.

Acephate-found on cranberries

-carcinogenic; damages brain and nervous system Azinphos Methyl-found on apples

-damages brain and nervous system

Captan-found on strawberries

-carcinogen; damages reproductive system; causes birth

defects; damages brain and nervous systems; damages

the immune system

Carbaryl-found on peaches and oranges

-carcinogen; damages reproductive system; causes birth defects; damages brain and nervous system; interferes

with hormones

Chlordane-Cis-found on summer squash and winter squash -carcinogen; damages reproductive system; causes birth defects; damages brain and nervous system; interferes with hormones

Chlordane-*Trans*-found on summer squash and winter squash

-carcinogen; damages reproductive system; causes

birth defects; damages brain and nervous system;

interferes with hormones

Chlorothalonil-found on string beans and onions

-carcinogen; damages brain and nervous system

Chlorpyrifos-found on peaches

-damages brain and nervous system

DCPA-found on broccoli, turnip greens, turnips, lettuce romaine -carcinogen

DDE-found on spinach and potatoes

-carcinogen; damages reproductive system; causes birth defects; damages brain and nervous system; interferes with hormones

DDE, P,P¹-found on broccoli, turnip greens, lettuce romaine -carcinogenic; damages reproductive system; causes birth defects; damages brain and nervous system; interferes with hormones

DDT-found on spinach

-carcinogen

Dicloran-found on peaches

-health effects unknown

Dieldrin-found on winter squash

-carcinogen; damages reproductive system; damages

brain and nervous system; interferes with hormones;

damages the immune system

Endosulfan 1-found on summer squash

-damages brain and nervous system; interferes with

hormones

Endosulfan 2-found on summer squash

-damages brain and nervous system; interferes with

hormones

Endosulfan Sulfate-found on watermelons, cucumbers, summer

squash, winter squash

-damages brain and nervous system; interferes

with hormones

Ethion-found on grapefruit

-damages the brain and nervous system

Imazalil-found on bananas and oranges

-carcinogen; causes birth defects; damages brain and

nervous system

Iprodine-found on peaches

-carcinogen

Methamidophos-found on string beans and tomatoes

-damages brain and nervous system

Omethoate-found on tomatoes

-health effects unknown

Oxamyl-found on tomatoes

-health effects unknown

Permethrins-found on spinach and tomatoes

-carcinogen; interferes with hormones

Thiabendazole-found on potatoes, apples, bananas, grapefruit

-causes birth defects; damages brain and nervous

system

Trifluralin-found on carrots

-carcinogen; damages reproductive system;

causes birth defects; interferes with hormones;

damages immune system²¹

Of these 26 chemicals, many are classified as cholinesterase inhibitor pesticides: acephate, azinphos, chlorpyrifos, ethion, omethoate-are

recognised as being organic phosphates; whereas, carbaryl and oxamyl are recognised as carbamates.²²

Cholinesterase inhibitors are most commonly employed in agriculture to control soft-bodied insects. The organophosphorous derivatives act via combining with and subsequently inactivating acetylcholinesterase.²³ This combination is believed to occur according to the following reaction: AChe + (RO)₃PO => ROH + (RO)₂PO(AChe) => (RO)₂PO(OH) + Ache The pace of this reaction and stability of product, the cholinesterase-phosphate combination, are rather dependent upon the structure of the phosphate ester.²²

The action of the carbamates is similar in mechanism, although the combination is reversible.²²

The inactivation of cholinestrase, by these pesticides, permits acetylcholine to accumulate. This neurotransmitter build-up is not without consequence; it contributes to a rather complex sequelae. First, there exists the possibility of/for the potentiation of postganglionic parasympathetic activity; such CNS activity is corporeally expressed as: constricted pupils, stimulation of intestinal muscles along with salivary and sweat glands; constriction of bronchial muscles, contraction of the urinary bladder, slowing of the sinus node and blockage of the AV node. This initial excitation is followed by the extended depolarization of the skeletal muscles; ultimately resulting in paralysis. In conjunction, there is a

depression of the CNS, precipitating inhibition of the inspiratory centereffectively terminating respiration. The final component is variable ganglionic stimulation or blockage, expressed as either a rise or fall in bp and/or dilation or constriction of the pupils.²³

In addition to the cholinesterase inhibitor pesticides, the aforementioned 26 pesticides also include a number of chemicals that are recognised as endocrine/hormone disrupters; including carbaryl, DDT, metabolites of DDT, dieldrin, endosulfan, permethrin and trifluralin.²⁴

Hormone or endocrine disrupters are chemicals recognised to have the ability to interfere with the endocrine system of animals and humans; the compounds are able to block or even mimic the body's natural hormone signals. Thereby sending false hormone messages, interrupting real hormone messages, preventing the synthesis of the body's true hormones, and even accelerating the degradation and elimination of the true hormones. Obviously then, a number of health effects have been associated with endocrine disrupters, including: reproductive disorders, dysfunction of the immune system, cancer (breast, prostate, testicular), neurological effects, attention deficit and compromised short-term memory, decreased/low IQ's. Furthermore, it has been suggested that these chemicals may pose a very specific threat to both the developing fetus and young children; with exposure in-utero and via breast milk.²⁴

It is just such early chemical exposure that is believed to be contributing to some rather disturbing trends in childrens' health, and in the reproductive health of adults. Please consider the following:

- Childhood cancers, cancers in children <15 years of age, have risen 10% between 1974 and 1991 in the United States; cases of ALL-acute lymphoblastic leukemia, rose by 1% per year in the US from 1973 to 1994. The rate of brain cancer has increased 2% per year during the same time frame.²⁵
- 2. A number of studies have confirmed the trend of American girls entering puberty earlier than was found in past research. There is believed to be a chemical contribution to this change: for in a recent study, it was substantiated that girls, whose mothers had the highest level of PCB's and DDE in their system while pregnant, entered puberty 11 months earlier than girls whose mothers had significantly lower levels of the pesticides.²⁶
- 3. The ratio of male to female births has dramatically declined in recent decades. Although a number of theories of explanation have been offered, parental exposure to endocrine disrupters appears most likely. The endocrine disrupter theory is supported by a study conducted in Seveso, Italy; where large volumes of dioxin were released into the environment, following an industrial accident. Eight years after the

accident, 12 daughters and 0 sons were born to nine couples recognised to have had the highest levels of dioxin exposure.²⁷

- 4. Testicular cancer has increased an astonishing 55% in England and Wales between 1979 and 1991; with the diagnosis of 1,137 new cases in 1991 alone. The development of this particular form of cancer is believed to be strongly influenced by developmental aberrations of the testes in utero-with endocrine disrupters suspected as initiating such aberrations.²⁸
- 5. Oligospermia or decreased sperm count, is becoming increasingly common in men of all age brackets, throughout Europe and the US.²⁸
- 6. Breast cancer has been on the increase 1% per year since the 1940's in the US; and between 1945 and 1980, Denmark experienced a 50% increase in this form of cancer. A number of studies have drawn a direct relationship between breast cancer and exposure to endocrinedisrupting chemicals-such as DDT, dioxin and PCB's.²⁸
- In England and Wales, prostate cancer has increased 40% from 1949 to 1991.²⁸

Chapter 6: The Genetics

It has been suggested that every recognized cancer is the result of some genetic event or better yet, genetic damage. Of course, implicit to this statement is the recognition that assaults upon an individual's DNA are possible via x-rays/radiation, chemicals-misperscribed/misadministered pharmaceuticals-environmental pollutants, and viruses; for there must be some sentinel event that initiates this "cascade." When studying the cytogenetics of this particular case of AML-M2, it is not unlikely that genetic aberrations were integral in allowing disease progression (Appendix 1-cytogenetic data).

The anomalies for this leukemia patient include the following:

- 1. consistent hypodiploidy;
- 2. random, noncional chromosomal loss;
- 3. loss of Y-sex chromosome;
- 4. translocation between the long arms of chromosome 11 at 11q13 and 15 at 15q22;
- 5. translocation involving the long arms of chromosome 8 at 8q24.1 and Y at Yq12;
- 6. the presence of two cell lines within the bone marrow.

Table 6-1

Glossary of Cytogenetic Terminology²⁹

Centromere-The constriction along the length of the chromosome that is the site of the spindle fibre attachment. The position of the centromere dictates whether chromosomes are X-shaped (metacentric) or V-shaped (acrocentric).

Karyotype-Arrangement of chromosomes from a particular cell according to an established system such that the largest chromosomes are first and the smallest ones are last. A normal female karyotype is represented as 46, XX; a normal male karyotype is represented as 46, XY.

Translocation-A break in a minimum of two chromosomes with an exchange of material.

Deletion A segment of a chromosome goes missing as a result of a single break (terminal deletion) or two breaks with loss of the intervening segment (interstitial deletion).

Inversion-Two breaks occur in the same chromosome with a rotation of the interim segment. If both breaks occur on the same side of the centromere, it is known as a paracentric inversion; if the breaks are on opposite sides, it is known as a pericentric inversion.

The genes that are suspected of contributing to the development of leukemia are commonly divided into five classes:

- those genes that carry growth-stimulating signals from the cell nucleus;
- 2. genes that activate transcription or RNA synthesis within the nucleus;
- 3. genes responsible for the promotion of cell differentiation;
- genes involved in apoptosis-referring here to the programmed cell death experienced by blood cells upon completion of their functions;
- "anti-oncogenes" or those genes that suppress tumour development, under normal biochemical/genetic conditions.³⁰

Table 6-2

Primary Cytogenetic Subgroups in Acute Myelogenous Leukemia³¹

TranslocationFAB/Incidencet(8;21)-20% of M2; 6-10% of de novo AML

Clinical Morphology: auer rods, hypergranulated myelocytes, durable remissions.

t(15;17) -99% of M3; approx 10% de novo AML

Clinical Morphology: consumptive coagulopathy (DIC), durable remissions with all-trans-retinoic acid and additional chemotherapy; hypergranular variant w/coarse azurophilic granulation; microgranular variant with decreased granulation and nuclear constrictions.

Inv(16); t(16;16) ->90% of M4Eo; 7-10% de novo AML

Clinical Morphology: marrow eosinophilia w/coarse irregular basophilic granules.

t(11q23; variable) -approx 5% de novo M4 and M5 AML approx 5% t-AML

Clinical Morphology: variable morphology but w/a monocytic component; associated w/t-AML and a generally poor prognosis.

Table 6-3

Prognostic Impact of Selected Chromosome Abnormalities in de novo AML

Karyotypic Abnormality	Complete Remission Rate	Length of CR
Inv(3)	low	short
-5/5q	low	short
-7/7q	low	short
t(8;16)	low	short
t(8;21)	high	long
+8	variable	variable
t/del (11q23)	variable	short
t(15;17)	high	long
inv(16)	high	long
+21	high	variable

After digesting the aforementioned genetic information and data, some troubling aspects to this particular case of AML M2 come to the fore.

 The identification of at least two cell lines indicates that karyotypic evolution has occurred-if the karyotypes are related; however, if the two karyotypes are unrelated, this could indicate the occurrence of two independent leukemogenic events (Alimena).

Multiple clones occur more frequently in those patients with secondary leukemia (77.9%), compared to patients with ANLL de novo (10.8%). Slightly more than 33% of all cases with multiple clones had losses of part or even all of chromosome #5 and /or chromosome #7-as a first step change. However, 9:10 patients with secondary leukemia and multiple clones had involvement of the chromosomes. The second step chromosomes most often involved include #9, #17 or #21. Those patients found to express t(8;21) in addition to multiple clones, most often had loss of a sex chromosome.³²

- 2. There is a subset of ANLL patients, characterized by the presence of t(8;21) in bone marrow cells. At the Second International Workshop on Chromosomes in Leukemia, 40 such patients were reviewed, and it was recognized that:
 - A. the occurrence of the translocation was intimately related to the morphologic diagnosis of FABM2 (acute myeloblastic leukemia with maturation);
 - B. the loss of a sex chromosome was frequently associated with this translocation;

- C. the rate of both remission and survival were recognized as relatively good, most notably in cases with some normal metaphases; whereas the association of a missing sex chromosome with t(8;21) carried a poor prognosis;
- D. there was some geographic difference in the occurrence of t(8;21).³³

Of particular interest in this case: consistent hypodiploidy, loss of the Ysex chromosome, secondary chromosomal rearrangements consistent with having received chemotherapy, and a relatively low number of observed metaphases. Furthermore, the initial or diagnostic cytogenetics, do not communicate any necessarily inherited (maternal/paternal) chromosomal anomalies (breakpoints, etc); thereby raising the question of what exactly was the sentinel event in this child's life-that could have provoked a leukemogenic event? The possible suspects, in this case, are quite unfortunately becoming the usual suspects in the development of childhood cancers: pharmaceuticals (in-utero, neonate exposure, or both), and the external environment (exposure to contaminated food, water, soil).

Chapter 7: Materials and methods

The portion of this case study concerned with assessing any external environmental influence was initiated on 10.22.98, 12 days after the patient's admission to hospital; under the original diagnosis of pancytopenia/aplastic anemia. This data was collected over seven days; and includes water samples from Berlin Lake (Appendix 3), and soil samples from the lawn of the patients home (Appendix 3).

Materials

All of the solvents used within the context of this study were pesticide grade (Fisher Scientific, Fairlawn, NJ). Additional reagents included: 100mesh silicic acid (Mallinckrodt Chemical Works, St. Louis, MO); 80-200 mesh alumina, anhydrous sodium sulfate (Fisher Scientific, Fairlawn, NJ) and sodium chloride (VWR Scientific, Westchester, PA). The analytical standards used within this case-study, were purchased from Supelco, Inc (Bellefonts, PA) or Ultra Scientific (North Kingstown, RI). The helium and nitrogen were ultra pure carrier grade. The filters employed for the preparation of the water samples were type GMF grade filters, 47mm, (Whatman, Maidstone, England); the accompanying polyurethane foam plugs were purchased from Graseby Anderson (Cleveland, OH).

The water filters were precleaned via baking at 450°C for a minimum of 20h in a muffle furnace; they were then wrapped in 'cleaned' aluminum foil and sealed in plastic bags. The polyurethane foam plugs were prepared for use via soxhlet extraction, 18h in acetone; followed with soxhlet extraction in petroleum ether, 18h. Upon completion of the cleaning protocol, the polyurethane foam plugs were dried, via low heat, in a dry seal dessicator; following which they were stored in glass jars with teflon-lined lids. The silicic acid was 'cleaned' via baking at 140°C, 24h; and before its use, it was deactivated with 1.7% water. The adsorption alumina was 'cleaned' via overnight baking at 450°C; prior to its use, it was deactivated with 6% water and stored in a glass jar with a teflon-lined lid. The anhydrous sodium sulfate was prepared in a similar manner, with overnight baking at 450°C and stored in a glass jar with a teflon-lined lid. Any sodium chloride crystals used, were prepared via a petroleum ether rinse, followed-up with a dichloromethane rinse; and then dried at 140°C. Boiling chips, used throughout this protocol, were prepared by soxhlet extraction with petroleum ether in a cellulose thimble, 12h; they were then dried at 140°C and stored in a glass jar with a teflon-lined lid.

Sample Collection and Work-up

Soil

The lawn sample was collected 10.22.98; stored in cleaned aluminum foil within a labeled plastic bag at 4°C until further work-up was possible.

The soil, was later thawed and manually mixed, to promote homogeneity. Approximately 15.721g of the soil was mixed with sodium sulfate to remove any water. The dried soil was spiked with 452ng PCB-103, transferred to a 'clean' cellulose thimble and extracted, via soxhlet with dichloromethane, 24h. The extract was then reduced via rotary evaporation, transferred into hexanes and concentrated under nitrogen, to 2ml.

The extract was then cleaned via an alumina column composed of a glass wool plug, on top of which was $2g Al_2O_3$ and $1 \text{ cm } Na_2SO_4$. The alumina column was pre-prepared with 5ml of 5% dichloromethane in petroleum ether. The sample was then added to the column and eluted with 20ml 5% dichloromethane in petroleum ether. The resulting eluent was then concentrated and solvent exchanged into iso-octane under nitrogen.

Water

Water samples were collected in cleaned 4L solvent jugs, from locations in and around Berlin Lake (Appendix 3). The samples were stored at 4°C until extraction was possible.

The polyurethane foam plugs were extracted via soxhlet, in petroleum ether, for 24H. The filters, prior to use, were refluxed in dichloromethane for 18h.

The water samples were transferred into individual stainless steel canisters (Coca-Cola Bottling Company of Northern Ohio, Youngstown, Ohio). The water samples were pushed, via nitrogen pressure, through a 47mm GMF water filter, in attempt to remove any particulate matter; each sample required several filters, due to high levels of particulate matter. The water filters were then wrapped individually in cleaned aluminum foil and stored in plastic bags at -10°C.

The filters were soxhlet extracted with dichloromethane 24h. The extracts were then reduced to 5-10ml and solvent exchanged into isooctane via rotary evaporation. The entire sample inventory was reduced individually to 1ml under nitrogen. The samples were cleaned using a silicic acid/alumina column; a glass column was dry-packed with a first layer of 3g silicic acid (1.7% water added), followed by a second layer of 2g adsorption alumina (6% water added), and a third layer of 2cm anhydrous sodium sulfate.

Chapter 8: Results

The spectra, as collected for this particular case study, may be found in Appendix 4. The following analyses of the data were made possible through these references: (it is important to note that IR analysis done in this manner is non-specific)

• The IR Wizard on the web;³⁴

Spectrometric Identification of Compounds 5th ed.
 Appendix C: Characteristic Group Absorptions.
 R.M. Silverstein, G.C. Bassler, J.C. Morrill;
 John Wiley and Sons, Inc. New York:1991.³⁵

K-Soil

*collected 10.22.98

*sample run 4.29.99

*peaks of interest: 1300-1050 cm⁻¹ possible functional groups include esters and/or lactones;

2900 cm⁻¹ possible functional groups include –CHO, -

CH3, -CH2.

K-soil

*collected 10.22.98

*sample run 4.30.99

*peaks of interest: 1300-1050 cm⁻¹ possible functional groups include

esters and/or lactones;

2900 cm⁻¹ possible functional groups include –CH₃, -

 CH_2 .

Filter 3-B Feed

*collected 10.22.98

*sample run 5.3.99

*peaks of interest: 2354 cm⁻¹ possible functional groups include –NH₂⁺,

 $-NH^+$, $=NH^+$, $P \cdot H$.

Syringe B Feed

*collected 10.22.98

*sample run 5.3.99

*peaks of interest: 2945.6 cm⁻¹ possible functional groups include –CH₃,

-CH₂;

1100 cm⁻¹ possible functional groups include P-O-alkyl,

-COH, ROCOCOR, C=S, S=O.

Filter 4 B Feed

*collected 10.22.98

*sample run 5.2.99

*peaks of interest: 2400 cm⁻¹ possible functional groups include NH_2^+ ,

 NH^+ , = NH^+ , P·H.

Filter 2 B Feed

*collected 10.22.98

*sample run 5.3.99

*peaks of interest: 2350 cm⁻¹ possible functional groups --NH₂⁺, NH⁺, P-H.

Filter 1 B Feed

*collected 10.22.98

*sample run 5.2.99

*peaks of interest: 2900 cm⁻¹ possible functional groups include –CH₃, -

 $CH_2;$

500 cm⁻¹ possible functional groups include C-I alkyl.

C-Feed

*collected 10.25.98

*sample run 4.30.99

*peaks of interest: 2900 cm⁻¹ possible functional groups include –CHO, -

 CH_3 , $-CH_2$;

1300-1050 cm 1 possible functional groups include esters and/ or lactones.

Filter 1 B Feed

*collected 10.25.98

*sample run 5.4.99

*peaks of interest: 2250 cm⁻¹ possible functional groups include aromatic ketones;

1640 cm⁻¹ possible functional groups include o-amino or o-hydroxyarylketones, 6-membered rings (-NCON-).

Filter 2 B Feed

*collected 10.25.98

*sample run 5.3.99

*peaks of interest: 2960 cm⁻¹ possible functional groups include –CH₃, -CH₂

Section A/Dam Water

*collected 10.25.98

*sample run 5.18.99

*peaks of interest: 2250 cm⁻¹ possible functional groups include aromatic ketones;

1640.9 cm⁻¹ possible functional groups include o-amino or o-hydroxyarylketones, 6-membered rings (-NCON-).

Dam Water

*collected 10.25.98

*sample run 5.18.99

*peaks of interest: 2250 cm⁻¹ possible functional groups include aromatic ketones;

1640.9 cm⁻¹ possible functional groups include o-amino or o-hydroxyarylketones, 6-membered (-NCON-).

Beyond Dam

*collected 10.25.98

*sample run 5.4.99

*peaks of interest: 2080.9 cm⁻¹ possible functional groups include –N=C=S;

1640.9 cm⁻¹ additional possibilities include C=N

(conjugated cyclic), C=N and/or -C=C-C=N-.

C Feed

*collected 10.25.98

*sample run 4.29.99

*peaks of interest: 2950 cm $^{-1}$ possible functional groups include –CH₃, -

 $CH_2;$

1500-1030 cm $^{-1}$ possible functional groups include esters and/or lactones.

Syringe C Feed

*collected 10.25.98

*sample run 5.3.99

*peaks of interest: 2950 cm⁻¹ possible functional groups include $-CH_3$, -

 $CH_2;$

1050 cm⁻¹ possible functional groups include P-O-alkyl, C=S, S=O, C-OH, ROCOCOR. Please note when reading the data collected, that the main objective of the collection/analysation of such samples was to provide further evidence for the presence of these chemicals; these chemicals/functional groups are already recognised contaminants of the Mahoning River Basin (EPA). Therefore, this summary is presented to merely lend support to the casual correlation between chemical contaminants and AML. It is this correlation that is being discussed within this thesis.

Chapter 9: Concluding Remarks

It would be virtually impossible, as well as completely academically irresponsible, to compose a definitive statement as to how this case of pediatric AML-M2 arose; however, as this thesis is a single case-study, it is able to contribute several documented casual-although perhaps not so casual-links to chemical exposure and increased risk for leukemogenesis

If the reader goes beyond the necessarily limited focus of this single case-study, he/she will be able to find scores of articles/recent publications that are able to claim direct links between chemicals and cancer. Thus, if this study's documentation should be met with any degree of incredulity, it may behoove the reader to consider the following:

1. Children whose homes and/or yards were treated with pesticides are believed to be at a greater risk for developing childhood cancer, according to a study published February 27, 1995 in The American Journal of Public Health. The researchers, involved with this study, compared home pesticide use in >52 cases of childhood cancer in Denver, CO, between 1976 and 1985 with those of 222 healthy children with similar demographic profiles. Children from birth through 14 years of age, whose yards were routinely treated with herbicides and/or insecticdes, had a 4-fold increased risk of soft tissue sarcomas and malignant tumours of the connective tissues.

compared to their healthy contemporaries. Furthermore, the study found that in-utero exposure to pest-strips, during the 3rd trimester of pregnancy, increased a neonate's risk for developing leukemia three times (University of N. Carolina www.enn.com).

- 2. A review of 61 studies, published in BioEssays 1999, concluded that the sharp decline in average sperm density, in the western world, may be even more dramatic than previously believed. For the University of Copenhagen, 1992, found a 50% decline in sperm density between 1938 and 1990. A later reanalysis of this, conducted by the University of Missouri-Columbia, proposes that the decline most likely exceeds 50%. It is believed that this startling trend may be attributable, in part, to inadequate amounts of available estrogen; realising of course, that estrogen is necessary for the production of healthy sperm (www.cm.com).
- 3. High blood levels/concentrations of organochlorines (DDT, DDE, PCB) have been associated with gene mutations identified in patients diagnosed with pancreatic cancer. Patients with a formal diagnosis of pancreatic cancer were 5-10 times more likely to display elevated organochlorine blood levels-compared to those patients hospitalized for medical conditions other than cancer. Additionally, concentrations of both DDT and DDE were most elevated in those patients expressing mutations in the gene K-ras; K-ras is suspected

of being a target for carcinogens. In Spain, where this study was conducted, 78-100% of analysed meat samples were found to contain DDE; while 50% of the fish samples contained PCB (Lancet 1999; 354:2125-2129).

4. The organophosphate pesticide, chlorpyrifos, is one of 40 such compounds, currently being reviewed by the EPA; in attempt to determine the health risks it may represent, primarily for children. Chlorpyrifos, produced by Dow Chemical Co., is recognised on the market as Dursban and/or Lorsban; Dursban and Lorsban are found in over 800 products with applications inside of homes and hospitals. The EPA estimates that 20 million to 24 million pounds of this chemical are applied annually. A recent study of 993 adults found that 8 in 10 urine samples contained quantifiable amounts of chlorpyrifos. Even more alarming, is the finding that of 89 children studied, 9 of 10 urine samples tested positive for chlorpyrifos-in quantifiable amounts, as well (www.MSNBC.com).

The ubiquitous character of chemical contamination is absolutely alarming; misplaced, misused chemical compounds dominate our lives and more importantly, the lives of our children. Forty percent of all human deaths are directly linked to some sort of environmental influence: radiation, air pollution, soil pollution, organochlorines, endocrine disrupters. To deny this control that chemical contaminants exact upon

the globe is simply foolhardy. Quite simply then, exposure to chemicals damages DNA; and damaged DNA misreads coding signals; genetic misreads precede genetic mutations and genetic mutations precede cancer-this much is indisputable.

REFERENCES

- 1. Firklin, Frank, et al. DeGruchy's Clinical Haemotology in Medical Practice 5th ed. 1997.
- McKenzie, Shirlyn. Textbook of Haemotology 2nd ed. Williams and Wilkins: Baltimore, 1996.
- 3. Jandl, James. *Blood: Pathophysiology.* Blackwell Scientific Publications: Oxford, 1991.
- 4. Miale John. *Laboratory Medicine Haemotology* 6th ed. The C.V. Mosby Company: London, 1982.
- 5. The Bantam Medical Dictionary rev. ed. Bantam Books: New York, 1990.
- 6. *Physicians' Desk Reference.* Medical Economics Company, Inc.: New Jersey, 1989.
- 7. Hoechst Marion Roussel-information insert for Clomid (clomiphene citrate tablets USP): prescribing information as of February 1996.
- 8. The Merck Manual 14th ed. Merck & Co, Inc. New Jersey: 1982.
- 9. Chan SYW, Wang CCL & Tang LCH: Effect of clomiphene citrate on human spermatozoal motility and fertilizing capacity in vitro. Fertil Steril 1985; 43:773.
- 10. Palva IP & Koivisto O: Agranulocytosis associated with trimethoprimsulphamethoxazole. Br Med J 1971; 4:301.
- 11. Pisciotta AV: Drug induced leukopenia and aplastic anemia. Clin Pharmacol Ther 1971; 12:13.
- 12. <u>www.epa.com</u>
- 13. Couri D & Milks M: Toxicity and metabolism of the neurotoxic hydrocarbons n-hexane, 2-hexanone, and 2,5-hexanedione. Annu Rev Pharmacol Toxicol 1982; 22:145.
- 14. <u>www.atsdr.cdc.gov</u>
- 15. <u>www.mentor.net</u>
- 16. Leineweber JP: Fiber toxicity. J Occup Med 1981; 23:431.

- 17. Anderson HA & Selikoff IJ: Biological effects of mineral fibers and particulates. Environ Hel Perspect 1980; 34:1.
- 18. Jacobsen D *et al.*: Studies in ethylene glycol poisoning. Acta Med Scand 1982; 212:11.
- 19. Brown CG *et al.:* Ethylene glycol poisoning. Ann Emerg Med 1983; 12:501.
- 20. Rickert DE *et al.:* Dinitrotoluene: Acute toxicity, oncogenicity, genotoxicity and metabolism. CRC Crit Rev Toxicol 1984; 13:217.

21. <u>www.foodnews.com</u>

- 22. Lotti M & Becker CE: Treatment of acute organophosphate poisoning. J Toxicol 1982; 19:121.
- 23. Barrett DS *et al:* A review of organophosporous ester-induced delayed neurotoxicity. Vet Hum Toxicol 1985; 27:22.
- 24. Colburn T & Clement C (1992) Chemically Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection. Princeton, New Jersey: Princeton Scientific Publishing.
- 25. Schmidt CW: Childhood cancer: A growing problem. Env Heal Persp 106: A18-A23.
- 26. Herman-Giddens ME *et al.:* Secondary sexual characteristics and menses in young girls seen in office practice. Pediatrics 99; 505:502.
- Davis DL et al. Reduced Ratio of male to female births in several Industrial countries: A sentinel health indicator? JAMA 279: 1018-1023.
- 28. Skakkbek NE et al.: Germ cell cancer and disorders of spermatogenesis: An environmental connection? APMIS 106: 3-12.
- 29. Rowley JD. (1989) Chromosome Abnormalities in Human Cancer. Practice and Principles of oncology 3rd ed. Lippencott.
- 30. Cline MJ: NE J Med. 330:5; 528-529.

- 31. Geddes AA, Bowen DT, Jacobs A. Clonal karyotype abnormalities and Clinical progress in the myelodysplastic syndrome. Br J Haemotol. 1990; 76:194-202.
- 32. Alimena G (1984) Cancer Genetics: Cytogenetics 11:300-351.
- 33. Hagemeijer A *et al.* (1984) Cancer Genetics: Cytogenetics 11: 280-290.
- 34. The IR Web Wizard-sponsored by DanetGmbH
- 35. Silverstein RM, Bassler GC, Morrill JC: Spectrometric Identification Of Components 5th ed. Appendix C: Characteristic group absorptions. John Wiley and Sons, Inc. New York:1991.

APPENDIX 1

Medical Data: Cytogenetics, Flow cytometry reports, Surgical pathology reports, Hematopathology reports

CYTOGENETICS

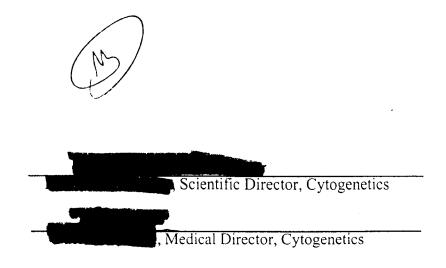
NORTHSIDE MEDICAL CENTER TOD CHILDREN'S HOSPITAL BEEGHLY MEDICAL PARK

DEPARTMENT OF LABORATORY MEDICINE

CYTOGENETICS AND MOLECULAR GENETICS LABORATORY (330) 740-3765 / 3756

CYTOGENETICS REPORT

PATIENT POPULATION + DATE OF BIRTH :5/31/89 HOSPITAL NUMBER :0272192 ACCESSION NUMBER :10-11-231M-98 LOCATION : DOCTOR : REFERRAL :Pancytopenia/ AML SPECIMEN TYPE :Bone Marrow SPECIMEN COLLECTION DATE : 10/11/98 SPECIMEN RECEIVED DATE : 10/11/98 PRELIMINARY DATE :11/9/98 FINAL DATE :11/10/98

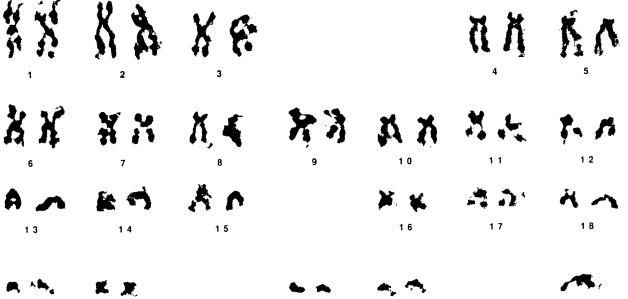

STAINING METHOD :GG CULTURES ANALYZED : 4 CELLS KARYOTYPED : 4 RESOLUTION :475 Bands

<45	45	46	47	>47	Total
5	4	11	0	0	20

CYTOGENETIC DIAGNOSIS :45,X,-Y[3]/46,XY[17]

COMMENTS:

All observations were made from direct, overnight, and T-cell and B-cell stimulated cultures. Two cell lines were detected in this specimen. The first cell line (3/20) contained a modal number of 45 chromosomes including one X chromosome. However, each cell in this line was missing the Y chromosome. Although loss of the Y has been shown to be a normal age-related phenomenon in older males, this finding is not common in a patient of this age. Loss of the Y has been described in AML, often as a secondary change. The second cell line 17/20) was the normal male karyotype.


Forum Health / Northside Medical Center Department of Cytogenetics

Patient Name: Accession No.:10-11-231M-98 Karyotype Designation: Date of Birth:5/31/89 Referring Doctor Doctor Drawn Slide List:6A 173.7x4.6 (2) kary Resolution:500 Bands

BR ns an 2 3 5 23 2 хи ха 为为 Ą a a 11 7 9 10 12 8 = 局引 17 18 13 14 15 16 **X** N. 🚿 🖉 Ð 19 20 21 22 х

Forum Health / Northside Medical Center Department of Cytogenetics

itient Name:I ecimen #3)
ccession No.:11-9-252M-98
iryotype Designation:46,XY[1]
ite of Birth:5/31/89
eferring Doctor:
ctor Drawn:
ide List:8A 137.5x22.1(1)kary
esolution:500 bands

21

19 20

2 2

X Y

	Page 1		
CHILDREN'S CANCER GROUP	DLACE LABEL HERE		
CYTOGENETICS REPORTING FORM	STUDY ID: 2961 - E - 10		
To be completed by the Institutional Cytogeneticist	REG #. 50095		
and submitted to the Group Operations Center.	PT NAME: M		
×	(E/10)		
l = Male 2= Female	·		
Lab case No.:	-		
Date/time specimen collected:	$\frac{1}{3}$		
M M D D			
Date/time specimen received:	7 3 AM/2M		
	• • •		
Type of specimen: check all that apply (fill out separate	e form for each type of tissue)		
bone marrow aspirate	lymph node		
bone marrow biopsy	other (specify)		
peripheral blood			
If unsatisfactory results, check boxes			
	towingted at N		
	ntaminated, etc.) 15 cc; clotted		
$ \cdot $ interphase nuclei present but few or no) metaphases		
poor quality metaphases and/or inade please fill in the processing informatio	quate banding (Note: even though unsatisfactory resu n on the back of the page).		
Note: Even if the study was inadequate, please fill in the pro	pressing information on the back of this page		
	cossing mormation on the back of this page.		
Additional Comments			
Only I metaphase observed	in 10 cultures.		
Patients first top was clonar	45 X-V March Dal		
ter (which is	(,,,) / / +6,xy, me		
top contained fewer metoph	23es (216XY (13]).		
	·		

Forum Itealth	-Tool Children's
Name of Institution	Hoipital

	11/201
Cytogeneticist/Date	

CHILDREN'S CANCER GROUP CYTOGENETICS REPORTING FORM

ť

PLACE	LABEL	HERE	
Children th	_		-
STUDY ID: 2961 - E	E - 10		
REG #: 60095			
PT NAME.		•	
		(E/10)

÷

Page 2 of.

PROCESSING INFORMATION (Fill in the number of cells obtained from each processing method A, B, C, or D.)

	A	В	С	D	TOTAL NO.
NORMAL	0	0	i		1
CLONE-1					
CLONE-2					
CLONE-3					
ABNORMAL NONCLONAL					
TOTAL NO.	Ö	0	1	0	1

Specify type of processing and the type of banding used for each of the lettered boxes above.

- A. Direct GTG
- B. Overight 676
- C. B-Cell Shaulated GTG
- D. Ticell stimulated GTG

List karyotypes of each clonal and nonclonal cell (ISCN 1995. DO NOT include cells with random loss as nonclonal abnormal cells.)

NORMAL: 46, XY (1)
CLONE-1:
CLONE-2:
CLONE-3:
NONCLONAL-1:
NONCLONAL-3:

CCG 3/28/97

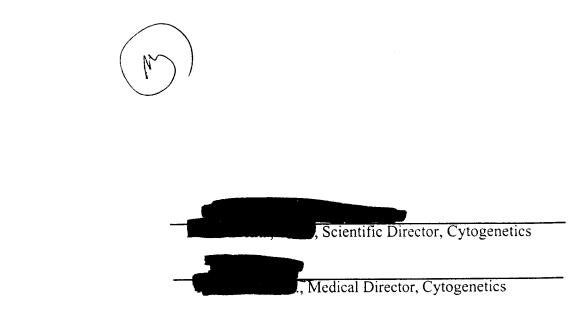
NORTHSIDE MEDICAL CENTER TOD CHILDREN'S HOSPITAL BEEGHLY MEDICAL PARK

DEPARTMENT OF LABORATORY MEDICINE

CYTOGENETICS AND MOLECULAR GENETICS LABORATORY (330) 740-3765 / 3756

CYTOGENETICS REPORT

PATIENT DATE OF BIRTH :5/31/89 HOSPITAL NUMBER :0272192 ACCESSION NUMBER :11-23-268M-98 LOCATION : DOCTOR : REFERRAL :AML SPECIMEN TYPE :Bone Marrow SPECIMEN COLLECTION DATE : 11/23/98 SPECIMEN RECEIVED DATE : 11/23/98 PRELIMINARY DATE :12/9/98 FINAL DATE :12/10/98


STAINING METHOD :GTG CULTURES ANALYZED : 1 CELLS KARYOTYPED : 1 RESOLUTION :525 bands

<45	45	46	47	>47	Total
0	0	1	0	0	1

CYTOGENETIC DIAGNOSIS :46,XY[1]

COMMENTS:

Ten cultures were initiated on this specimen including direct, overnight and T- and B-cell stimulated cultures. Only one metaphase was observed in the T-cell stimulated culture and was apparently the normal male karyotype. However, due to poor growth of the specimen, the possibility of chromosomal mosaicism involving abnormal cell lines cannot be excluded.

500 Gypsy Lane · Youngstown, Ohio 44501 · Phone (330) 740-3767 · Fax (330) 740-3790

NORTHSIDE MEDICAL CENTER TOD CHILDREN'S HOSPITAL BEEGHLY MEDICAL PARK

DEPARTMENT OF LABORATORY MEDICINE CYTOGENETICS AND MOLECULAR GENETICS LABORATORY (330) 740-3765 / 3756

CYTOGENETICS REPORT

ATIENT ATE OF BIRTH :5/31/89 IOSPITAL NUMBER :0272192 ACCESSION NUMBER : 12-9-277M-98 LOCATION OCTOR : REFERRAL : AML SPECIMEN TYPE :Bone Marrow SPECIMEN COLLECTION DATE : 12/9/98 SPECIMEN RECEIVED DATE : 12/9/98 PRELIMINARY DATE :1/7/99 FINAL DATE :1/11/99

STAINING METHOD : GTG
CULTURES ANALYZED : 3
CELLS KARYOTYPED : 4
RESOLUTION : 550 bands

	Cells counted							
<45	45	46	47	>47	Total			
0	6	16	0	0	22			

CYTOGENETIC DIAGNOSIS : 46,XY

COMMENTS:

Normal Male Karyotype.

All observations were made from T and B cell stimulated cultures. Please note that although 6/22 cells were appodiploid, all displayed random, nonclonal chromomal loss.

No chromosome abnormalities were demonstrable at this level of resolution. Please remember that this analysis does not eliminate the possibility of single cell defects, chromosomal mosaicism involving abnormal cell lines of low frequency or small chromosomal structural abnormalities.

, Scientific Director, Cytogenetics

Medical Director, Cytogenetics

500 Gypsy Lane · Youngstown, Ohio 44501 · Phone (330) 740-3767 · Fax (330) 740-3790

WESTERN RESERVE CARE SYSTEM

Forum Health / Northside Medical Center Department of Cytogenetics

Patient Name Accession No.:12-9-277M-98 Karyotype Designation:46,XY Date of Birth:5/31/89 Referring Doctor: Doctor Drawn: Slide List:6A 152.4x10.5kary(2) Resolution:550 bands

.

NORTHSIDE MEDICAL CENTER TOD CHILDREN'S HOSPITAL BEEGHLY MEDICAL PARK

DEPARTMENT OF LABORATORY MEDICINE CYTOGENETICS AND MOLECULAR GENETICS LABORATORY (330) 740-3765 / 3756

CYTOGENETICS REPORT

<4

0

3

PATIENT : 5/31/89 DATE OF BIRTH : 5/31/89 HOSPITAL NUMBER : 0272192 ACCESSION NUMBER : 12-30-294M-98 LOCATION DOCTOR : REFERRAL : AML SPECIMEN TYPE :Bone Marrow SPECIMEN COLLECTION DATE : 12/30/98 SPECIMEN RECEIVED DATE : 12/30/98 PRELIMINARY DATE :1/15/99 FINAL DATE :1/18/99

20

STAINING METHOD : GRG CULTURES ANALYZED : 2 CELLS KARYOTYPED : 4 RESOLUTION : 550 Bands

	<u> </u>	Jens co	ountea		
5	45	46	47	>47	Total

0

0

-11- ----

17

CYTOGENETIC DIAGNOSIS : 46,XY

COMMENTS:

Normal Male Karyotype. All observations were made from T cell stimulated cultures.

No chromosome abnormalities were demonstrable at this level of resolution.

Please remember that this analysis does not eliminate the possibility of single cell defects, chromosomal mosaicism involving abnormal cell lines of low frequency or small chromosomal structural abnormalities.

Scientific Director, Cytogenetics

, Medical Director, Cytogenetics

500 Gypsy Lane · Youngstown, Ohio 44501 · Phone (330) 740-3767 · Fax (330) 740-3790

WESTERN RESERVE CARE SYSTEM

Forum Health / Northside Medical Center Department of Cytogenetics

Patient Name: Accession No.:12-30-294M-98 Karyotype Designation:46,XY Date of Birth:5/31/89 Referring Doctor Doctor Drawn: Slide List:6A 129.2x5.8 (2) kary Resolution:575 Bands

12 10 16 17 18 1 5 13 22 21 х 19 20

NORTHSIDE MEDICAL CENTER TOD CHILDREN'S HOSPITAL BEEGHLY MEDICAL PARK

DEPARTMENT OF LABORATORY MEDICINE CYTOGENETICS AND MOLECULAR GENETICS LABORATORY (330) 740-3765 / 3756

CYTOGENETICS REPORT

PATIENT DATE OF BIRTH :5/31/89 HOSPITAL NUMBER :0272192 ACCESSION NUMBER :2-18-37M-99 LOCATION :Pediatric Oncology DOCTOR : SPECIMEN TYPE : Bone Marrow SPECIMEN COLLECTION DATE : 2/18/99 SPECIMEN RECEIVED DATE : 2/18/99 PRELIMINARY DATE : 3/18/99 FINAL DATE : 3/18/99

STAINING METHOD : GIG CULTURES ANALYZED : 8 CELLS KARYOTYPED : 6 RESOLUTION : 550 Bands

Cells counted						
<45 45 46 47 >47 Total						
2	1	17	0	0	20	

CYTOGENETIC DIAGNOSIS : 46,XY

COMMENTS:

Normal Male Karyotype.

All observations were made from direct, overnight and T and B cell stimulated cultures. Although not clonal, several structural abnormalities were detected in the T-cell stimulated cultures which included: one cell than apparent translocation between the long arms of chromosomes 11 (at band 11q13) and 15 (at band

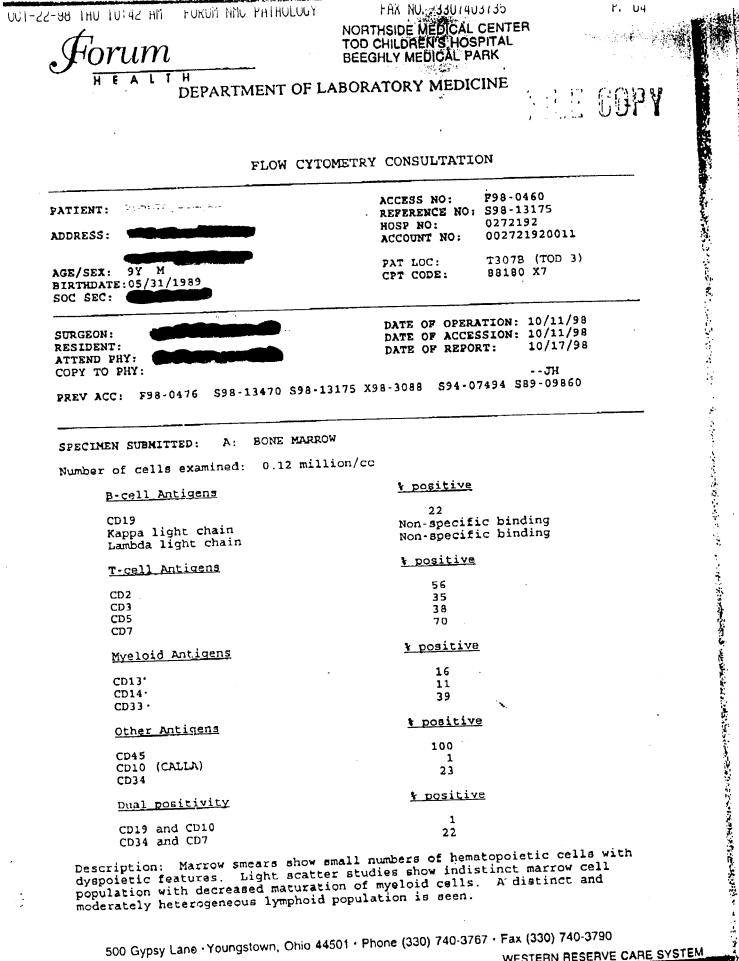
No chromosome abnormalities were demonstrable at this level of resolution. Please remember that this analysis does not eliminate the possibility of single cell defects, chromosomal mosaicism involving abnormal cell lines of low frequency or small chromosomal structural abnormalities.

, Scientific Director, Cytogenetics Medical Director, Cytogenetics

500 Gypsy Lane · Youngstown, Ohio 44501 · Phone (330) 740-3767 · Fax (330) 740-3790

الأرابي المستجرين المراجع

Forum Health / Northside Medical Center Department of Cytogenetics


Patient Name. Accession No.:2-18-37M-99 Karyotype Designation:46,XY Date of Birth:5/31/89 Referring Doctor: Doctor Drawn: Slide List:1A 156.3x20.6(2).kary Resolution:550 Bands

XX K ふや パズ ") $\Lambda \hat{\eta}$ 5 76 へな ુહ્ 15 13 18 14 16 17 K 🛋 🕺 XX 20 22 x 19 21

Ē

FLOW CYTOMETRY REPORTS

.

Company of the state of the sta

WESTERN RESERVE CARE SYSTEM

Ł

FLOW	
	CYTOMETRY CONSULTATION
ADDRESS:	ACCESS NO: F98-0476 REFERENCE NO: S98-13470 HOSF NO: 0272192 ACCOUNT NO: 002721920011
AGE/SEX: 9Y M BIRTHDATE:05/31/1989 SOC SEC:	PAT LOC: T307B (TOD 3) CPT CODE: 88180 X5
SURGEON: RESIDENT: ATTEND PHY:	DATE OF OPERATION: 10/16/98 DATE OF ACCESSION: 10/16/98 DATE OF REPORT: 10/16/98
COPY TO PHY: PREV ACC: \$98-13470 \$98-13175	jt X98-3088 S94-07494 S89-09860
	ETROPERITONEAL LYMPH NODE, NEEDLE BIOPSY
	Method:
Viability: 90%	
Number of cells examined: 0.05	* positive
B-cell Antigens	0.4
CD19 Kappa light chain Lambda light chain	0.2 0.1
Other Antigens	* positive
CD45 CD10 (CALLA)	8 0.6
Dual positivity	<u>t positive</u>
CD19 and CD10	0.3
Description: Cell suspension	hows few lymphoid cells intermixed with lls. Light scatter studies show no distinct
moderate amount of fed blood te lymphoid population.	
moderate amount of fed blood te lymphoid population. INTERPRETATION: LEFT RETROPERITONEAL LYMPH NODI IMMUNOPHENOTYPIC ANALYSIS, MOI SEE COMMENT.	E, NEEDLE BIOPSY, FLOW CYTOMETRIC NOTYPIC LYMPHOID POPULATION NOT IDENTIFIED,
moderate amount of fed blood te lymphoid population. INTERPRETATION: LEFT RETROPERITONEAL LYMPH NODI IMMUNOPHENOTYPIC ANALYSIS, MOI SEE COMMENT. COMMENT: Due to small sample monoclonal lymphoid population recommended for diagnostic eva	size a limited study was performed. No
moderate amount of fed blood te lymphoid population. INTERPRETATION: LEFT RETROPERITONEAL LYMPH NODI IMMUNOPHENOTYPIC ANALYSIS, MOI SEE COMMENT.	No

3-98 FRI 10:03 AM FORUM NMC PATHOLOGY	FAX NU, 330740	3135	۲.
Forum H E A L T H DEPARTMENT OF L	NORTHSIDE MEDICA TOD CHILDREN'S HO BEEGHLY MEDICAL	DSPITAL PARK	CC
			3
FLOW CYTO	METRY CONSULTATI	ON	
PATIENT;	ACCESS NO:	F98-0482	
ADDRESS:	REPERENCE NO: BOSP NO: Account no:	0272192 002721920011	
AGE/SEX: 9Y M BIRTHDATE:05/31/1989	PAT LOC: CPT CODE:	T307B (TOD 3) 88180X9	
SOC SEC:			
SURGEON: RESIDENT:	DATE OF OPERA DATE OF ACCES	TION: 10/20/98	
SURGEON:	DATE OF OPERA DATE OF ACCES DATE OF REPORT	SION: 10/20/98	

SPECIMEN SUBMITTED: A: BONE MARROW AND PERIPHERAL BLOOD

Number of cells examined:

<u>B-cell Antigens</u>	1 positive	* positive
CD19	3.2	11.6
Kappa light chain	Non-specific	Non-specific
Lambda light chain	Non-specific	Non-specific
<u>T-cell Antigens</u>	t positive	<u>t positive</u>
CD2	68.1	63.6
CD3	56.5	56.5
CD5	56.4	56.4
CD7	91.5	80.4
Mveloid Antigens	t positive	• positive
CD13	12.6	14.7
CD14	2.2	9,1
CD33	27.7 (gated)	29.5
Other Antigens	<pre>* positive</pre>	<pre>\$ positive</pre>
CD45	93.2	99.5
CD10 (CALLA)	1.5	<1
CD34	16.3	14.1

Method: FACS Lyse

500 Gypsy Lane · Youngstown, Ohio 44501 · Phone (330) 740-3767 · Fax (330) 740-3790

のなどないたがないまでは、「というようからない」とないくないまたとないまでは、いいいいいいいい

Fc) <i>1</i>	UI	n	
ī	4 F	Δ	T	н

DEPARTMENT OF LABORATORY MEDICINE

1

- The County of the County of

FLOW CYTOMETRY CONSULTATION

PATIENT: I والمستعملين والمتأثر ACCESS NO: L99-0068 **REFERENCE NO:** ADDRESS: HOSP NO: 0272192 ACCOUNT NO: 002721920094 AGE/SEX: 9Y M PAT LOC: PED. HEMONC BIRTHDATE: 05/31/1989 CPT CODE: 8818089 SOC SEC: 4 SURGEON: DATE OF OPERATION: 02/18/99 **RESIDENT:** DATE OF ACCESSION: 02/18/99 ATTEND PHY: DATE OF REPORT: 02/19/99 COPY TO PHY: = - CW PREV ACC: F98-0591 S98-17346 X98-3909 F98-0564 S98-16359 F98-0543 S98-15570 X98-3529 X98-3394 R98-00245 F98-0482 S98-13639 F98-0476 S98-13470 F98-0460 S98-13175 X98-3088 S94-07494 S89-09860 SPECIMEN SUBMITTED: A: BONE MARROW Method: FACS lyse Number of cells examined: % positive B-cell Antigens CD19 1 Kappa light chain Non-specific staining Lambda light chain Non-specific staining T-cell Antigens % positive CD2 4 CD3 7 CD5 4 Myeloid Antigens % positive CD13 6 CD14 8 CD33 18 Other Antigens % positive CD45 41 CD10 (CALLA) <1 CD34 2 Dual positivity % positive CD19 and CD10 <1

500 Gypsy Lane · Youngstown, Ohio 44501 · Phone (330) 740-3767 · Fax (330) 740-3790

SURGICAL PATHOLOGY REPORTS

	SURGICAL PATHOLOGY REPORT
PATIENT:	ACCESS NO: 598-13175
ADDRESS:	HOSP NO: 0272192 ACCOUNT NO: 002721920011
AGE/SEX: 9Y M BIRTHDATE:05/31/1989 SOC SEC:	PAT LOC: T307B (TOD 3) CPT CODE: 88305/88311/88313 X2
SURGEON: RESIDENT: ATTEND PHY: COPY TO PHY:	DATE OF OPERATION: 10/11/98 DATE OF ACCESSION: 10/12/98 DATE OF REPORT: 10/17/98
PRE OP DX: R/O METS OPERATION: BIOPSY POST OP DX: ALL, R/O HISTORY: POSS. AL PREV ACC: X98-3088	METS.
FINAL DIAGNOSIS: BONE MARBOW, BIOPSY,	MILD PANHYPOPLASIA WITH DYSPOIESIS, SUGGESTIVE OF
TOXIC MYELOPATHI, S COMMENT: Sections of showing 30% cellular changes of the marro solution. All cellu shift to the left wi Occasional small age atypical morphology numbers of histiocy reticular fibrosis. trabeculae appear us The histolo prolonged storage i dyspoietic features myelopathy. No evi present. A repeat cytometric immunoph evaluation if pancy analysis report F95	of bone marrow biopsy reveal a generous segment of induced rity. There are moderate artifactual and degenerative ow presumably due to prolonged marrow storage in RPMI that components appear represented but there is a moderate the moderate dyspoietic features of all three cell lines. The state of lymphoid cells are noted which appear to have gregates of lymphoid cells are noted which appear to have . Also noted scattered within the marrow are increased this cells. There also appears to be a focal increase in No blastic infiltrates, or granulomata are noted. Bony nremarkable. Stainable iron stores are essentially absent gic features are somewhat obscured by artifacts induced by and hypocellularity suggest the possibility of a toxic dence for acute blastic leukemia or aplastic anemia is bone marrow biopsy and bone marrow aspiration for flow bone marrow biopsy is recommended for more definitive ytopenia persists. See also Flow Cytometry immunophenotypi

um

H

۰۰.

ł

EALTH

MA HU. 3301403135

NORTHSIDE MEDICAL CENTER TOD CHILDREN'S HOSPITAL BEEGHLY MEDICAL PARK

DEPARTMENT OF LABORATORY MEDICINE

.

「おおおおおおおをまた」というというというというできた。 しょうかいにんたいできたのである」

F. UC

SURGICAL PATHOLOGY REPORT

PATIENT: '	, - 	ACCESS NO:	S98-:	L3639
ADDRESS:		HOSP NO: Account No:		-
AGE/SEX: 9Y BIRTHDATE:05, SOC SEC: 20	/31/1989	PAT LOC: CPT CODE:	T3071 88309	3 (TOD 3) 5 X4/88311 X4
SURGEON: RESIDENT: ATTEND PHY: COPY TO PHY:		DATE OF OPERAT DATE OF ACCESS DATE OF REPORT	SION:	10/20/98
	PANCYTOPENIA BILATERAL BONE MARROW ASPIRATE SAMS	AND BX.		ADB
PREV ACC:	F98-0476 S93-13470 F98-0460 S98 S89-09860	9-13175 X98-308	38 S94	1-07494
TISSUES REMOV	TED: A: RT. ASIS B: LT. ASIS C: RT. PSIS D: LT. PSIS		<u></u>	
INTRA/EXTRA (CONSULT: INTRA/EXTRA MEXICO SCHOOL OF MEDIC		IVERS	ITY OF NEW
				13222888222222222
MYELODYSPLAS B. LEFT ANTE MYELODYSPLAS C. RIGHT POS MYELODYSPLAS D. LEFT POST	NOSIS: TERIOR BONE MARROW BIOPSY, DYSPO STIC SYNDROME (SEE COMMENT). ERIOR BONE MARROW BIOPSY, DYSPO STIC SYNDROME (SEE COMMENT). STERIOR BONE MARROW BIOPSY, DYSPO STIC SYNDROME (SEE COMMENT). STIC SYNDROME (SEE COMMENT).	IETIC BONE MARI POIETIC BONE MA	ROW ST	JGGESTIVE OF SUGGESTIVE OF
The biopsies cellularity). Micromegakary of emperipole and show dysp arrest with c increased and Erythroid pre features. Or	e bone marrow biopsies (A,B,C,D are normocellular to mildly hyp Megakaryocytes are present a vocytes and uninucleate megakar esis is also noted. Myeloid an objectic maturation. The myeloid only scattered mature myeloid c d comprise approximately 10 to ecursors appear somewhat decrea n PAS stained sections, the M:E ased number of histocytes are p	percellular fo: nd showed dyspo yocytes are ide d erythroid pre d series show n ells present. 15% of nucleate sed and show m ratio is appre	r age pieti entif ecurs near Blas ed ma ild d oxima	(80 to 90% c morphology. ied. Rare foci ors are present maturation ts appear rrow cells. yspoietic telv 4:1.

500 Gypsy Lane · Youngstown, Ohio 44501 · Phone (330) 740-3767 · Fax (330) 740-3790 WESTERN RESERVE CARE SYSTEM

HEMATOPATHOLOGY REPORTS

-

ΨŤ

MAA-03-99 I	UE TO: TO HIT FURUTI MIL PATHULUUT	HA NU. 3301403135	r, uz
11-02-1	998 4:05PM FROM UNNH PATH LA	B 505 272 0740	P.2
	Description of Onthology/	Patient Name:	
	Department of Pathology/ e Reference Laboratories	Medical Record #: (00000)004255/	/6
	omas Bivd NE	DOB: 05/31/1989 Age: 9 YRS	Sex: M
	erque, NM 87100	Account Number: 0111067435	
•		Ordered by: Accession No.: HR-98-001169	
		Accession No.: HR-98-001169 Date Collected: 10/23/98	
Directo			
	HEMAT	OPATHOLOGY	
Diagnosis	S 1		
	PERIPHERAL BLOOD:	CULVERS AND DADE DI ACTS	
	PANCYTOPENIA WITH DYSFOLETIC PONE MARROW TOUCH PREPARATION AN	CHANGES AND MARE BEASTS	
	NALIGNANT BONE MARROW INFILT	PATE (SEE COMMENT)	
	Dictated by:		
	Reported: 11/0	2/98 Electronic Signature(s))
	HLE:CL :CL		
Comment:	my line manual infiltrate	of large cells is morphological	lly malignant 6 desposietic
	and is not compatible with a rea changes in the peripheral blood	ourgests that the marrow malig	nancy likely
	such a musicil procose (s)	ich as high drads myelogyspidsi	al. nowever, we
	were unable to characterize the	phenotype of the large inmatur	e appearing
	cells by inmunoperovidese staini	ng.	
		where a monost hope marrow exam	ination with
	To better characterize this disc further material for special stu	idias would be helpiul. IL 0 P	One markow
		mararial spit IDI LIUW Cycomet	110 0110
		AYAAAAAAAA WAXIG DE USELULI A	
		WYANG CHOULD DE MAGE LUL PULI	
	stains and immunchistochemistry biopsy would be useful (fresh c	The sold from . An unitsing bone	INGLION CONS
	biopsy would be useful (fresh c	Alle Can Sometimes De Lacovered	E. BAN

assistance on the optimal method of transporting/processing these specimens. This case was reviewed and discussed with Dr. Katby Foucar MD Who concurs with

Referral Accession Number:

the interpretation.

Received: 1 slide labeled "98-62-IP", 2 slides labeled "98-63-IP", 5 slides labeled "598-13639" and 1 block labeled "N13639-B".

for flow/cytogenetic studies). We shall be glad to provide any further

Peturned: 8 slides and 2 block.

Clinical Data:

The patient is a previously healthy nine year old male. He presents with a two-month history of feeling rundown. A complete blood count revealed pancytopenia. Peripheral blood parameters on 10-26-98 reported as follows at the referring institution;

Copy To:

Report Date/Time: 11/02/98 1602 Continued ...

Patient Name:

Medical Record #: (00000)004256776 Referral ID #:

Page: 1 Location: REF

11-02-19	UE IU:ID AM FUKUM NMU PHIHU 998 4:06PM FROM UNMH PATH	LULI FHX NU. H LAB 505 272 0240	3301403135	Υ, UJ P. 3
Tricore 2211 Lo	Department of Pathology/ e Reference Laboratories omas Bivd NE erque, NM 87106	Patlent Name: Medical Record DOB: 05/31/1985 Account Numbe Ordered by: Accession No.: Date Collected:	HR-98-001169	эх: М
Directo	or: Carlos and Carlos a	Date Complete		
	HEN	IATOPATHOLOGY		
Clinical	Datas			
	Peripheral blood smear: WRC: 1.5 X 10E3/mm3 PEC: 3.1 X 10E6/mm3 Hgb: 9.4 g/d1 Hct: 27 % Plts: 63 X 10E3/mm3	MCV1 85 Cl RDW-CV: 13 %	Neut: 3.3 % Lymph: 75 % Mono: 15 % Eo: 0 % Baso: 6 %	
Νοτ ρήσις	Peripheral Blood Smeat: The blood smear shows pancy anisopoikilocytosis. Plate Neutrophils are markedly re identified.	duced but show norma	aj granulation. Rai	orma. Se blasts are
	Done Marrow Aspirate/Touch	prep-Clot and Diops	λ:	
	Slides depict touch preps a paucicellular but show nume and delicate chromatin. Ma	ind hone marrow core	biopsy. Touch pr	eps are lls with fine o seen

The bone marrow core biopsy shows variable cellularity, overall approximately 80% cellular. Megakaryocytes are easily identified but in many cases are small and somewhat atypical. The marrow is involved by a diffuse interstitial infiltrate of large, abnormal hematopoietic appearing cells. These cells show round to slightly irregular nuclear contours, vesicular chromatin, occasional nucleoli and scant to moderately abundant cytoplasm. The erythroid lineage is decreased. Multiple large lymphoid aggrégates are identified.

Immunophenotype:

Immunohistochemical stains performed on paraffin-embadded tissue at the University of New Mexico reveal the following: myeloperoxidase stains occasional mononuclear cells, mainly with morphology suggestive of promyelocytes or myelocytes. There is rare, equivocal staining of the abnormal cells. CD34 stains blood versels and a small minority of the abnormal cells. CD3 and CD20 stain lymphocytes. Hemoglobin A stains rare, scattered islands of erythroid precursors.

Reviewed by:

Copy To:

Report Date/Time: 11/02/98 1602 Continued . . . Patient Name:

Medical Record #: (00000)004256776 Referral ID #: is j

Location; REF _ Page; 2

11-02-1998 4:06PM

CETENTINES NO STATE

FROM UNMH PATH LAB 505 272 0240

UNM Department of Pathology/ Tricore Reference Laboratories 2211 Lomas Blvd NE Albuquerque, NM 87106

Patient Name: Medical Record #: (00000)004256776 DOB: 05/31/1989 Age: 9 YRS Account Number: 0111067435 Ordered by: 🐕 HR-98-001169 Accession No.: **Date Collected:**

1. X 1. Marka 1.5

Sex: M

10/23/98

HEMATOPATHOLOGY 19.

Referral MD:

Forum Health 500 Gypsy Lane Box 240 Youngstown, OH 44501-0240

Physician Review/Verification:

With the exception of "Bankad only" specimens, this diagnosis is based on the staff pathologist's review of the report, all microscope slides, and (if performed) flow cytometric studies and electron microscopic images.

Copy To: 🌑

Report Date/Time: 11/02/98 1602 End of Report

Patient Name:

Medical Record #: (00000)004256776 Referral ID #:

Page: 3 Location; REF

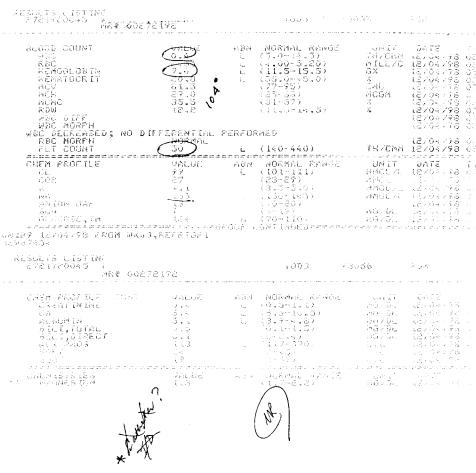
APPENDIX 2

BLOOD VALUES

D	ISPLAY RESULTS		RESULTS DISPLAY	808
			9 TOD3 T314A PDM	PT NO: 2721920045
AD	M DT: 11/18/98	PT STS: IA	ISOL: I	MR NO: 00272192
				DOWN, ACROSS 1 OF 1
		?1	?2	23 24
_	BLOOD COUNT	VALUE	ABN NORMAL RANGE	UNIT DATE TIME
?	WBC	0.4	L (5.0-14.5)	TH/CMM 11/30/98 05:00
-		PHONED TO*MR AT	0725 BY NMB	,
?	RBC	2.43	L (4.00-5.20)	MILL/C 11/30/98 05:00
?	HEMOGLOBIN	7.2	L (11.5-15.5)	G& 11/30/98 05.00
?	HEMATOCRIT	20.3	L (35.0-45.0)	¥ 11/30/98 05:00
?	MCV	83.6		CMU 11/30/98 05:00
?	MCH	29.6	(25-33)	MCGM 11/30/98 05:00
?	MCHC	35.4	(31-37)	⅔ 11/30/98 05:00
?	RDW	12.7	(11.5-14.5)	
?	WBC DIFF			11/30/98 05:00
?	WBC MORPH			11/30/98 05:00
	WBC DECREASED;	NO DIFFERENTIAL		
		GROUP (CONTINUED ON NEXT PAGE	
!	(PF14) PATIENT	MENU		!(PF5) DETAIL
/-				! (PF9) SAVE
	PF17) PRINT ALL		PF8 DOWN	!(PF12) GRAPH
	(PF16) DISPLAY	MENU		
REL	DRTG01			

	ISPLAY RESULTS M DT: 11/18/98	PT S	TS: IA	9	TOD	ISOL: I	MR NO	: 00272192
?	BLOOD COUNT PLT COUNT	CONT	?1 VALUE 34			PAGE 2 ?2 NORMAL RANGE (140-440)		?4
~	CHEM PROFILE		VALUE		ABN	NORMAL RANGE		
?	CL K		102			(101-111)	MMOL/L	11/30/98 05
: ?	K NA		3.4		L	(3.5-5.0)	MMOL/L	11/30/98 05
?	BUN		137 5		-	(136-145)	MMOL/L	11/30/98 05
?	GLUCOSE, TM		5 107		L	(6-19)	MG/DL	11/30/98 05
?	PROTEIN, TOT.		5.1		L	(70-110) (6.0-8.5)	MG/DL GM/DL	11/30/98 05
?	ALBUMIN		2.8		L	(3.9-4.8)	GM/DL GM/DL	-//••••
?	CA		8.3		L	(8.5-10.5)	MG/DL	
?	CREATININE		0.3		L	(0.5-1.1)	MG/DL	, ,
			GROUP	CON	TINUE	D ON NEXT PAGE		
1	(PF14) PATIENT	MENU	1		MAX	UP		!(PF5) DE7
/1			!	PF7		_		!(PF9) SAV
	PF17) PRINT ALL (PF16) DISPLAY		NS !	PF8	DOWN	I		!(PF12) GI

	ISPLAY RESIDUTS M DT: 11/18/98	PT	STS:	M IA	9	RESULT TOD3	IS	PDM SOL: I		: 002721	80 .9200 .92	
	CHEM PROFILE BILI, TOTAL ALK PHOS SGOT TRIGLYCERIDE CO2	CONT) [[]	L VALUE D.6 L16 L7 L19 26		? ABN L	PAGE 2 NORMAL (0.1-1.5) (117-390) (0-37) (<200) (23-29)	? RANGE	U/L U/L MG/DL	7 DATE 11/30/9 11/30/9 11/30/9	8 05 8 05 8 05	:00 :00 :00 :00
?	CHEMISTRIES MAGNESIUM			VALUE		ABN L	NORMAL (1.7-2.2)		UNIT MG/DL	DATE 11/30/9	TIMI 8 05	


	END OF DISPLAY	
! (PF14) PATIENT MENU	! PF6 MAX UP	!(PF5) DETAIL
(PF17) PRINT ALL SCREEN	! PF7 UP NS	!(PF9) SAVE !(PF12) GRAPH
! (PF16) DISPLAY MENU		(1112) OIGEN

REDRTG01

.

SLGGD COUNT WEC RBC HEMOGLGBIN HEMATOCRIT MCV MCH MCH MCH MCH ACH ACH ACH ACH ACH ACH ACH ACH ACH A	2701798 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47	11/36/98 03:00 0.4** 7.2** 80.3** 83.6 83.6 35.4 12.7 34*			
CHEM PROFILE CL CO2 K NA ANION GAF BUN GLUCOBE,IM Q8:31 12/01/98 FROM WK	12/01/28 05:00 102 23 3.3* 135* 10 3* 76	11/30/98 05:00 102 28 3:4* 137 107 107 107		49 49 49 49 49 49 50 50 50 50 50	
32082025 RESULTS LISTIMG 2721920045	222192	тарз	T3144	· FDM	·····
OHEM FROFILE CON FROTEIN, TOT. ILBUMIN CA CREATINIME BILT, TOTAL ALK PHOS BOUT TRIOLTCERIDE	1870 <u>1778</u> 7.9* 0.3*	(1,30778 07:00 3.1% 2.5% 0.3% 0.3% 0.3% 1.0% 1.0% 1.0%			
CHEMISTRIES MAGNERIUM VANCOMICIN VANCOMICIN SECOD BANK COMPONENT FRERES PLAT LEDER UNIT NUMBER 42FR74094PHPK	18701798 05:00 1.7 38ECIMEN 187017 187017	11/30/98 83:00 27.4 NG 22.4 1 NG 22.4 298 01.4 98 01.4 97 01.4	VEXI AASE		
08431 18701778 FROM WK Rebs7025	dis geleit RTGell				
RESULTS LISTING 2721980045 HR4 00	-7e 192	robs	7314A	ê Dê.	
ÓLOGD BANK (1984) Algún Banas Algún (2007) Algún (2007) Algún (2007) Algún (2007) Algún (2007) Algún (2007) Algún (2007) Algún (2007)	a 化化放金素	I MGL – Stevniger SVB – Ziela SVB – Liela	en de la litera de la companya de la	and a state of the state	3 - 17 - 1 - 10 1

M

(1) An experimental constraints and the second sec second sec

a for the second state of the s

.

BLOOD COUNT						
WBC	VALUE 0.4	ABN	NURMAL RAN (5.0-14.5)	3E UNIT TH/CM	M 12/05/98	1 IME 05:0
WBC CRITICAL VALUE PHONED RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF WBC MORPH	10*CF AT 2.28 6.8	0807 B L L	$\begin{array}{c} Y & VR \\ (4.00-5.20) \\ (11.5-15.5) \\ (35.0-45.0) \\ (77-95) \\ (25-33) \\ (31-37) \\ (11.5-14.5) \end{array}$	MILL/ G%	C 12/05/98	05.00
HEMATOCRIT MCV	19.2 83.9	L	(35.0-45.0) (77-95)	ж Сми	12/05/98 12/05/98 12/05/98 12/05/98	- AE: # A
MCH MCHC	29.6 35.3		(25-33) (31-37) (51-87)	MCGM X	12/05/98 12/05/98 12/05/98	05:0
WBC DIFF WBC MORPH	16.10		(11:0 14:0)	13	12/05/98	- O'5 *7
WBC MORPH WBC DECREASED; NO DIFF PL1 COUN1 CRITICAL VALUE PHONED	ERENTIAL 23	PERFOR	MED (140-440)	THZCM	M 12/05/98	05:0
CRITICAL VALUE PHONED	TO*CF AT	0807 H			14 10 10 10 10 10 10 10 10 10 10 10 10 10	
CHEM PROFILE CL CO2 K NA ANION GAP BUN	VALUE 106 24	ARM	(101-111) (22-29)		DATE L 12/05/98 L 12/05/98	1 IME 05 ::0
K NA	4.2 140		(3.5-5.0) (134-145)	MMOL Z	L 12/05/98	05:0
ANION GAP BUN	12 10		(10-20)	MGZDL	12/05/98	05:0 05:0
	EPRTGF 1	ROUP C	ONT INVED===			
JAX35012						
RESULTS LISTING 2721920045			торз	T305B	PDM	
						**** **** **** ****
CHEM PROFILE CONT GLUCOSE,TM CREATININE CA	VALUE 102	ABN	NORMAL RAN	GE UNIT MGZDL	DATE 12/05/98	TIME 05:0
CHEM PROFILE CONT GLUCOSE,TM CREATININE CA	0.3 8.9	I	(0.5-1.1) (8.5-10.5)	MG/DL MG/DL	12705798 12705798	05:0 05:0
CHEMISTRIES MAGNESIUM	VALUE 2.1	ABN	NORMAL RAN (1.7-2.2)	GE UNIT MGZDL	DATE 12/05/98	TIME 05:0
URINALYSIS	VALUE	ABN	NORMAL RAN	GE HNTT	DATE	TTMC
	=; A		(A: 00 A)		10705 200	- A O = A
URINALYSIS U PH U SP GRAVIT	5.0 1.010		(5.0-8.0) ((1.030)		12705798 12705798	02:0
U PH U SP GRAVIT BLOOD BANK ABO/RH	5.0 1.010 SPECIME 12/05	N NO: 798 05	(5.0-8.0) ((1.030) 206-1-1 5:00	DATE/TIME:	12/05/98 12/05/98 12/05/98 0	02:0
BLOOD BANK ABO/RH B*POS ANIIBDY SC	5.0 1.010 SPECIME 12/05 12/05	N NO: 798 05	(5.0-8.0) ((1.030) 206-1-1 ;:00	DATE/TIME:	12/05/98 12/05/98 12/05/98 0	02:0
BLOOD BANK ABO/RH B*POS ANIIBDY SC NEG COMPONENT	SPECIME 12/05 12/05	N NO: 798 05 798 05	206-1-1 ;:00 ;:00	DATE/TIME:	12/05/98 12/05/98 12/05/98 0	02:0
BLOOD BANK ABO/RH B*POS ANIIBDY SC NEG COMPONENT RBC-A IRAD UNIT NUMBER	SPECIME 12/05 12/05 12/05	N NO: 5798 05 5798 05	206-1-1 ;:00 ;:00 ;:00	DATE/TIME:	12705798 12705798 12705798 0	02:0 02:0 5:00
BLOOD BANK ABO/RH B*POS ANIIBDY SC NEG COMPONENT RBC-A IRAD	SPECIME 12/05 12/05 12/05 12/05	N NO: 798 05 798 05 798 05 798 05	206-1-1 ;:00 ;:00 ;:00 ;:00	DATE/TIME:	12/05/98 0	5:00
BLOOD BANK ABO/RH B*FOS ANIIBDY SC NEG COMPONENT RBC-A IRAD UNIT NUMBER 42FX76287	SPECIME 12/05 12/05 12/05 12/05 12/05	N NO: 798 05 798 05 798 05 798 05	206-1-1 ;:00 ;:00 ;:00 ;:00	DATE/TIME:	12/05/98 0	5:00
BLOOD BANK ABO/RH B*FOS ANTIBDY SC NEG COMPONENT RBC-A IRAD UNIT NUMBER 42FX76287 ======BLOOD BANK/MI L3:22 12/05/98 FROM WKH5,R JAX35017 RESULTS LISTIN~	SPECIME 12/05 12/05 12/05 12/05 12/05	N NO: 798 05 798 05 798 05 798 05	206-1-1 ;:00 ;:00 ;:00 ;:00 ;:00 ;:00	DATE/TIME: EXT PAGE===	12/05/98 0	5:00
BLOOD BANK ABO/RH B*FOS ANTIBDY SC NEG COMPONENT RBC-A IRAD UNIT NUMBER 42FX76287 ======BLOOD BANK/MI	SPECIME 12/05 12/05 12/05 12/05 12/05 12/05 12/05 12/05	N NO: 798 05 798 05 798 05 798 05 15 COM	206-1-1 ::00 5:00 5:00 FINUED ON N TOD3	DATE/TIME: EXT PAGE=== T305B	12/05/98 0	5:00
BLOOD BANK ABO/RH B*FOS ANTIBDY SC NEG COMPONENT RBC-A IRAD UNIT NUMBER 42FX76787 ======BLOOD BANK/MI L3:22 12/05/98 FROM WKH5,F JAX35017 RESULTS LISTIN~ 2721920045 MR# 002721 BLOOD BANK CONTINUE	SPECIME 12/05 12/05 12/05 12/05 12/05 12/05 12/05 12/05 12/05 12/05 12/05	N NO: 798 05 798 05 798 05 798 05 798 05 798 05	206-1-1 ;:00 ;:00 ;:00 ;:00 ;:00 ;:00 ;:00 ;:0	DATE/TIME: EXT PAGE==== T305B	12/05/98 0 PDM	5:00
BLOOD BANK ABO/RH B*FOS ANIIBDY SC NEG COMPONENT RBC-A IRAD UNIT NUMBER 42FX76787 =======BLOOD BANK/MI L3:22 12/05/98 FROM WKH5,F JAX35017 RESULTS LISTIN~ 2721920045 MR# 002721 BLOOD BANK UNIT STATUS ALLOCATED	SPECIME 12/05 12/05 12/05 12/05 12/05 12/05	N NO: 798 05 798 05 798 05 798 05 798 05 798 05	206-1-1 5:00 5:00 5:00 TINUED ON N TOD3 206-1-1 5:00	DATE/TIME: EXT PAGE==== T305B	12/05/98 0 PDM	5:00
BLOOD BANK ABO/RH B*FOS ANIIBDY SC NEG COMPONENT RBC-A IRAD UNIT NUMBER 42FX76787 =======BLOOD BANK/MI L3:22 12/05/98 FROM WKH5,F JAX35017 RESULTS LISTIN~ 2721920045 MR# 002721 BLOOD BANK UNIT STATUS ALLOCATED	SPECIME 12/05 12/05 12/05 12/05 12/05 12/05 12/05	N NO: 798 05 798 05 798 05 798 05 798 05 798 05	206-1-1 5:00 5:00 5:00 5:00 TOD3 206-1-1 5:00 5:00	DATE/TIME: EXT PAGE==== T305B	12/05/98 0 PDM	5:00

		n an	. 	1998 1998 - 1999 1999 - 1999		الي المري محمد المري
		Q. 1947 (* 1966) 1		•	n an	
08:41 12/09/98 FROM :+	REERPRFS					
SEWE7964 RESULTS LISTING		· · · .				
2721920045 MR# 00278	2192		торз	T305	iB	FDM
BLOOD COUNT Wec	VALUE	ABN	NORMAL R/ (5.0-14.5)	NGE	UNIT TH/CMM	DAT 1270
CRITICAL VALUE PHONED	2-63	AT 061	15 BY AS (4.00-5.20))	MILL/C	1270
HEMOGLOBIN HEMATOCRIT	7.6 21.6 82.2 28.9	a the factor	(11.5-15. (35.0-45.((77-95)		GX X CMU	1270 1270 1270
MCH MCHC	35.2		(25-33) (31-37)		MCGM X	1270
RDW WEC DIFF Lymphocyte	11.7 96	Н	(11.5-14.: (20-44)	3)	× ×	1270 1270 1270
ATYP/REACT REC MORFH PLT COUNT	A NORMAL 7 36)	1	(140-440)		%	1270 1270 1270
CHEM PROFILE	VALUE	ABN	NORMAL RA	NGE ·	THZCMM UNIT	DATI
CL COA K	105 26 4.3		(101-111) (23-29) (3.5-5.0)		MMOL ZL MMOL ZL MMOL ZL	1270
NA ANION GAP	$\begin{array}{c} 140\\ 13\\ 16\end{array}$		<pre><136-145) <10-20)</pre>		MMOEZE MMOEZE	1270
80N 02:01 12/09/98 FROM WKJ3,		GROUP C	(6-19) CONTINUED==		MGZDL.	1270
SEWR7965 (RESULTS LISTING						
2721920045 KR# 00222	2192		 	1305		PDM
CHEM PROFILE CONT	VACUE 142	ABN H	NORMAL R6 (70-110)	NGE	UNIT MGZDL	DATI 1270'
GLUCOSE, TM CREAT IN INE CA	0.3 7.4	I	(0.5-1.1) (8.5-10.5))	MG/DL MG/DL	1270
CHEMISTRIES MAGNESIUM	VALUE 2.3	ABN H	NORMAL RA	NGE	UNIT	DATI 1270
BLOOD BANK Component	SPECIM		294-1-1		IME: 1	
PHERES PLAT LEDEP UNIT NUMBER 48ER24193PRFK	1870	9798 00	:::0			•
UNIT STATUS Allocated		7798 00				
TRASE, STOTU OK TO TRANSFUSE	(270)	9798 60):10			
				•		

RESULTS LIST N'	72172	1003	T305B	P'DM	
BLOOD COUNT WBC CRITICAL VALUE PHON RBC HEMOGLOBIN HEMATOCRIT MCV ACH MCHC RDW FLT COUNT CRITICAL VALUE PHON	ED TO*CM AT 064 7:9 22:2 84:3 29:9 35:4 12:5 20	BN NORMAL RAN L (5.0-14.5) O BY JAB L (4.00-5.20) L (11.5-15.5) L (35.0-45.0) (25-33) (25-33) (31-37) (11.5-14.5) L (140-440) O BY JAB	TH/CMM MILL/C G% % CMU MCGM X	DATE 12/11/98 12/11/98 12/11/98 12/11/98 12/11/98 12/11/98 12/11/98 12/11/98 12/11/98	000000 000000
CHEM PROFILE CL CO2 K NA ANION GAF BUN GLUCOSE CREATININE CA 08:25 12/11/98 FROM WKJ 32WB8356	VALUE A 105 4.0 137 13 0.3 0.3 0.7 ====REPORT CONT	BN NORMAL RAN	MMOL/L MMOL/L MMOL/L MMOL/L MG/DL	12/11/98 12/11/98 12/11/98 12/11/98 12/11/98 12/11/98	05
RESULTS LIST THO 2721920045	78192	горз	(305B	PDM	
CHEMISTRIES MAGNESTUM	VALUE A) 2.0	8N NORMAL RAN (1.7-2.2)	GE UNIT MGZDL	DATE 12/11/25	1 T. 055

BM pending

ARRAGE LEASE AND AND AREA TO A LARGE AND A an ing i 1.11 avr. É +in

RESULTS LISTING 2721920045 T305B TOD3 PDM MR# 00272192 ABN L (5.0-14.0, AT 0610 BY AS L (4.00-5.20) L (11.5-15.5) L (35.0-45.0) (77-95) \sim BLOOD COUNT UNIT VAL UNIT DATE TIM. TH/CMM 12/12/98 05:0 DATE CRITICAL VALUE PHONED TOXIS MILL/C-12/12/98 05:0 RBC a MILL/C-12/12/98 05:0 G% 12/12/98 05:0 % 12/12/98 05:0 CMU 12/12/98 05:0 MCGM 12/12/98 05:0 % 12/12/98 05:0 % 12/12/98 05:0 12/12/98 05:0 HEMATUCRIT 21.9 MCV 83.7 MCH (31-37) MCHC 35.1 RDW (11.5-14.5) WBC DIFF WBC MORPH WBC DECREASED; NO DIFFERENTIAL PERFORMED RBC MORPH NORMAL L (140-440) TH/LMM L ABN NORMAL RANGE UNIT DATE (101-111) MMOL/L 12/12/98 05:0 (23-29) MMOL/L 12/12/98 05:0 (3.5-5.0) MMOL/L 12/12/98 05:0 (136-145) MMOL/L 12/12/98 05:0 12/12/98 05:0 PL1 COUNT <u>(45)</u> CHEM PROFILE VALUE CL 101 ços 25 4.4 136 К NA ANION GAP 14 BUN 14 (6-19) MG/DL 12/12/98 05:0 09:55 12/12/98 FROM WKH5,REPRTGF1 WAX36212 RESULTS LISTING 2721920045 T305B PDM MR# 00272192 CHEM PROFILE GLUCOSE, TM CREATININE NORMAL RANGE (70-110) (0.5-1.1) (8.5-10.5) CONT VALUE DATE TIME 12/12/98 05:0 12/12/98 05:0 12/12/98 05:0 ABN UNIT 104 0.3 8.9 MĞ/DL MG/DL L CA MG/DL ----CHEMISTRIES ABN NORMAL RANGE (1.7-2.2) DATE TIME 12/12/98 05:0 VALUE UNIT MAGNES IUM 1.9 MG/DL

09:55 12/12/98 FROM WKH5,REPRTGF1 WAX36212

RESULTS LIST THE						1. A.	1.8
2721920045	R# 002721	192		TOD3			
BLOOD COUNT WBC CRITICAL VALUE RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF WBC MORPH							T : 0:
CRITICAL VALUE RBC #HEMOGLOBIN	E PHUNED	TO*JE AI 2.90 8.8×A	0700 H L L	Y BRM (4.00-5.20) (11.5-15.5)	MILL/C G%	12/15/98	0
HEMATOCRIT		24.6	Ē	(35.0-45.0) (77-95)	X CMU	12/15/98 12/15/98	ŏ
MCH MCHC RDW		30.2		(25-33) (31-37) (11-5-14-5)	MCGM X X	12/15/98 12/15/98 19/15/98	80 00
WBC DIFF					74	12/15/98 12/15/98	ŏ
WBC MORPH WBC DECREASED; PLT COUNT WBC CRITICAL VALUE RBC HEMOGLOBIN HEMATOCRI1 MCV MCH MCHC KDW 18 12/15/98 FRO	NU DIFF	ERENTIAL		(MED (140-440)		12/15/98	<u>-</u> <u></u>
CRITICAL VALUE	E PHONED	TO*ČS AT	0745 B	Y JK (4.00-5.20)	MILLYC	12/14/98	20
HEMOGLOBIN HEMATOCRI1 MCV		20.6 83.5	L L	(11.5-15.5) (35.0-45.0) (77-95)	CMU	12/14/98 12/14/98 12/14/98	000
MCH MCHC		29.9 35.7		(25-33) (31-37)	MCGM X	12/14/98 12/14/98	ŏ
			GROUP C	CONTINUED	*	12/14/78	
18 12/15/98 FRO	DM WKH5,F	REPRTGF 1					
(36705		·					
(36705		·		торз			
(36705 RESULTS LISTI 2721920045 MK BLOOD COUNT		192 VALUE	ABN	TOD3 NORMAL RANGE	T305B	PDM	 T
(36705 RESULTS LISTI 2721920045 MK BLOOD COUNT		192 VALUE	ABN	TOD3 NORMAL RANGE	T305B	PDM DATE	 T
(36705 RESULTS LISTI 2721920045 MR BLOOD COUNT WBC DIFF WBC MORPH WBC DECREASED; PLT COUNT CRITICAL VALUE	Řŧ ŌŌ2Ż21 CONT ; NO DIFF E PHONED	VALUE VALUE ERENTIAL 12 TO*CS AT	ABN PERFOR 0745 B	TOD3 NORMAL RANGE (140-440) 3Y JK	Т305В : UNIT : ТН/СММ	PDM DATE 12/14/98 12/14/98 12/14/98	T O O O
CHEM PROFILE KESULTS LISTI 2721920045 MR BLOOD COUNT WBC DIFF WBC MORPH WBC DECREASED; PLT COUNT CRITICAL VALUE CHEM PROFILE CL CO2 K	Řŧ ŌŌ2Ż21 CONT ; NO DIFF E PHONED	VALUE VALUE ERENTIAL 12 TO*CS AT VALUE 104 24 4.0	ABN PERFOR 0745 B	TOD3 NORMAL RANGE (140-440) Y JK NORMAL RANGE (101-111) (23-29) (3.5-5.0)	T305B UNIT TH/CMM UNIT MMOL/L MMOL/L MMOL/L	PDM DATE 12/14/98 12/14/98 12/14/98 12/14/98 DATE 12/15/98 12/15/98 12/15/98	
CHEM PROFILE CL CD2 CD2 CD2 CHEM CD2 CHEM CHEM CHEM CHEM CHEM CHEM CHEM CHEM	Řŧ ŌŌ2Ż21 CONT ; NO DIFF E PHONED	192 VALUE ERENT IAL 12 TO*CS AT VALUE 104 24 4.0 138 14 15/	ABN PERFOR 0745 B	TOD3 NORMAL RANGE (140-440) Y JK NORMAL RANGE (101-111) (23-29) (3.5-5.0) (136-145) (10-20) (6-19)	T305B UNIT TH/CMM UNIT MMOL/L MMOL/L MMOL/L MMOL/L MMOL/L MMOL/L	PDM DATE 12/14/98 12/14/98 12/14/98 12/14/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98	
CHEM PROFILE CL CL CL CL CL CA CA CA CA CA CA CA CA CA CA CA CA CA	Řŧ ŌŌ2Ż21 CONT ; NO DIFF E PHONED	VALUE VALUE TO*CS AT VALUE 104 24 4.0 138 14 15 100 0.3 8.8	ABN PERFOR 0745 B	TOD3 NORMAL RANGE (140-440) Y JK NORMAL RANGE (101-111) (23-29) (3.5-5.0) (136-145) (10-20) (4-19) (70-110) (0.5-1.1)	T305B UNIT TH/CMM UNIT MMOL/L MMOL/L MMOL/L MMOL/L MG/DL MG/DL MG/DL	PDM DATE 12/14/98 12/14/98 12/14/98 12/14/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98	
CHEM PROFILE CL CC2 KEALION GAP CL CC2 K CRITICAL VALUE CL CL CC2 K NA ANION GAP BUN GLUCOSE,TM CREATININE CA ALBUMIN BILI,TOTAL	Řŧ ŌŌ2Ż21 CONT ; NO DIFF E PHONED	192 VALUE ERENT IAL 12 TO*CS AT VALUE 104 24 4.0 138 14 15 100 0.3 8.8 3.4 3.7	ABN PERFOR 0745 B ABN L L	TOD3 NORMAL RANGE (140-440) 3Y JK NORMAL RANGE (101-111) (23-29) (3.5-5.0) (136-145) (10-20) (4-19) (70-110) (0.5-1.1) (8.5-10.5) (3.9-4.8) (0.1-1.5)	T305B UNIT TH/CMM UNIT MMOL/L MMOL/L MMOL/L MG/DL MG/DL MG/DL MG/DL MG/DL MG/DL MG/DL MG/DL MG/DL	PDM DATE 12/14/98 12/14/98 12/14/98 12/14/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98	
CHEM PROFILE CL CL CL CL CREATION GAP CL CC2 K CREATININE CREATININE CA CL CC2 K CC2 CL CC2 CC2	Řŧ ŌŌ2Ż21 CONT ; NO DIFF E PHONED	192 VALUE ERENT IAL 12 TO*CS AT VALUE 104 24 4.0 138 14 15 100 0.3 8.8 3.4	ABN PERFOR 0745 B ABN L	TOD3 NORMAL RANGE (140-440) 3Y JK NORMAL RANGE (101-111) (23-29) (3.5-5.0) (136-145) (10-20) (4-19) (70-110) (0.5-1.1) (8.5-10.5) (3.9-4.8)	T305B UNIT TH/CMM UNIT MMOL/L MMOL/L MMOL/L MMOL/L MG/DL MG/DL MG/DL MG/DL MG/DL MG/DL MG/DL	PDM DATE 12/14/98 12/14/98 12/14/98 12/14/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98 12/15/98	

•

, 5

WAX38705

CHEM PROFILE CL K NA BUN GLUCOSE,TM PROTEIN,TOT ALBUMIN CA CREATININE BILI,TOTAL ALK PHOS SGOT CO2		VALUE 102 4.3 112 111 5.9 3.3 8.8 0.3 1.9 1885 285	ABN H L L H H	(101-11) (3.5-5.) (136-14) (70-110) (6.0-8.) (3.5-10) (0.5-10) (0.5-10) (0.1-11) (117-39) (0-37) (23-29)	1) 0) 5) 5) 8 5) 1) 0)	MMOL MMOL MG/D GM/D GM/D MG/D MG/D MG/D U/L U/L MMOL	/L 12/14/ /L 12/14/ /L 12/14/ L 12/14/ L 12/14/ L 12/14/ L 12/14/ L 12/14/ L 12/14/ L 12/14/ L 12/14/ L 12/14/	988 055 000 9988 055 000 9988 055 000 9988 055 000 9988 055 000 9988 0055 000 9988 0055 000 9988 0055 000 0055 00000000
CHEMISTRIES MAGNESIUM MAGNESIUM		VALUE 1.9 1.9	ABN	NORMAL (1.7-2. (1.7-2.	RANGE 2) 2)	UNI MG/DI MG/DI	T DATE L 12/15/ L 12/14/	TIME 98 05:1 98 05:0
IMMUNOLOGY TOXO IGG	na ao ao ao ao ao ao 40 40 20 20 20	VALUE		NORMAL (NEG)	RANGE	UN I IU/M	T DATE L 12/14/	TIME 98 05:0
JAX36705		FRIGE I						E AND
RESULTS LISTING 2721920045 M	R# 0027219	2		מנ	3	T305B	PDM	
IMMUNOLOGY TOXO IGG TOXO IGM	CONT	VALUE C	ABN N CONVALE CONSIDE	NORMAL	RANGE		T DATE L 12/14/ ULD BE T R SPECIME ICATED.	N IN 2
BLOOD BANK COMPONENT PHER PLT LEDP UNIT NUMBER 42FR74238PHPK UNIT STATUS TRANSFUSED TRNSF.STATU OK TO TRANSFUS					DAT	TE/TIME:	12/14/	98 05:C
BLOOD BANK COMPONENT PHER PLT LEDP =====BLOO)	IRAD	D OF MIC SPECIME 12/14	ROZBLO EN NO: 798 08	OD BANK 371-1-1 :00	REPORT DAT	TE/TIME:	12/14/98	08:00
.4:18 12/15/98 FR(JAX36705	OM WKHS,RE	PRTGF 1						
RESULTS LISTING 2721920045 MI	R# 0027219					ТЗ05В	PDM	
BLOOD BANK UNIT NUMBER 42FR67191PHPK UNI1 STATUS ALLOCATED TRNSF.STATU OK TO TRANSFUS	CONTINUED	SPECIME 12/14 12/14		371-1-1 100 :00		TE/TIME:	12/14/98	08:00

à.	aa.	18	ί.	1.5	i	у v	~~s	
	878	1.5	20	()	3			

	1.0	020	221	92	

3003 (0005

111

ė Dei

BLOOD COUNT WEC CRITICAL VALUE FHONED Rec Hengglobin Hematolin Mov Actor Rec Mov PLT	тажав ат тажав ат ес. 1 ес. 1 ес. 1 ес. 1 ес. 1 ес. 1 ес. 1	68N 0335 B L	NORMAL RANGE (5.0-14.5) (4.00-0.20) (4.00-0.20) (1.5-15.5) (3.0-45.0) (27-95) (52) (52) (1.0-14.0)	UN IY TRZCHM MILL ZC GZ X CMU Z X Z X CMU	DATE 71 12/18/98 05 12/18/98 05 12/18/98 05 12/18/98 05 12/18/98 05 12/18/98 05 12/18/98 05 12/18/98 05 12/18/98 05
CHEMIFROFILE CL CO2 K NA GNICH CAP APN ULUCUSE IM ULUCUSE IM ULUCUSE IM DE CA SECHA OT	VALUE 101 21 3.4 134 15 17 12 134 15 17 134 15 17 134 15 17 134 15 17 15 16 16 16 16 16 16 16 16 16 16 16 16 16	й ВМ L L L L с (с	NORMAL RANGE (101-111) (23-29) (3.5-5.0) (136-145) (10-20) (3-145) (3-145) (3-145) (3-145) (3-145) (3-145) (3-145)	UNIT MMOLZL MMOLZL MMOLZL MMOLZ MMOLZ MMOLZ MMOLZ MOLZC MOZOL MOZOL MOZOL	DATE TI 12/18/98 05 12/18/98 05
08142 12718728 280M WK83,6 38003188 228192040 228192040 384 008221	ERRIGE . .28	·	i GL G	- 302.000	÷ (744)

化化化物 化化化物 化化化物	weiten wit	的复数 网络教教会 医心疗法		14 A A AL	
a tha Canton Sa Calanta	Ĵ a Ż	s and strategic k	0.0200	36716796	$N_{\rm eff}$

ESULTS LISTING mr# 0025	72192		торз	ТЗ05В	PDM	*9) 44 - 1
BLOOD COUNT WBC RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF POLY % STAB % LYMPHOCYTE	30.0	ABN L L L L	(5.0-14.5) (4.00-5.20) (11.5-15.5) (35.0-45.0) (77-95) (25-33) (31-37) (11.5-14.5)	UNIT TH/CMM MILL/C G% % CMU MCGM % %	DATE 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98	T000000000000
WBC DIFF POLY % STAB % LYMPHOCYTE MONOCYTES % METAMYELOC. MYELOCYTE % WBC MORPH TOXIC GRAN*MOD*DOHLE RBC MORPH PLT COUNT	16 46 27 5 3 3	L H	(50-70) (2-6) (20-44) (2-9)	* * * * *	12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98	000000000000000000000000000000000000000
RBC MORPH PLT COUNT	SLT*POLY 31	L	(140-440)	TH/CMM	12/23/98	05 05
beit alle beit som ande som alle beit ble bei be						
CHEM PROFILE CL 21 12/23/98 FROM WKHS	VALUE 105					
CHEM PROFILE CL 21 12/23/98 FROM WKH5 (38023	VALUE 105 5,REPRTGF1	ABN ROUP C		UN IT MMOL /L		
CHEM PROFILE CL 21 12/23/98 FROM WKHS (38023 CHEM PROFILE CONT CO2 K	VALUE 105 5,REPRTGF1 22192 VALUE 30 2.7	ABN ROUP C ABN H L	NORMAL RANGE (101-111) ONTINUED TOD3 NORMAL RANGE (23-29) (3.5-5.0)	T305B	DATE 12/23/98 PDM	T1 05 71
CHEM PROFILE CL 21 12/23/98 FROM WKHS (38023 CHEM PROFILE CONT CO2 CHEM PROFILE CONT CO2 K CRITICAL VALUE PHONE NA ANION GAP BUN GLUCOSE, TM CREATININE CA ALBUMTN	VALUE 105 5,REPRTGF1 VALUE 30 2.7 ED TO*MS AT (144 12 26 113 0.4 8.9 3.1	ABN ROUP C ABN H L 0700 E H H L L	NORMAL RANGE (101-111) CONTINUED TOD3 TOD3 (23-29) (3.5-5.0) (3.5-5.0) (3.5-5.0) (10-20) (4-19) (10-20) (6-19) (70-110) (0.5-1.1) (8.5-10.5) (3.9-4.8)	UNIT MMOL/L T305B UNIT MMOL/L MMOL/L MMOL/L MG/DL MG/DL MG/DL MG/DL MG/DL MG/DL MG/DL	DATE 12/23/98 PDM DATE 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98	T15 T05 T055 5555555 00 00555555
CHEM PROFILE CL 21 12/23/98 FROM WKHS (38023 CHEM PROFILE CONT CO2 CHEM PROFILE CONT CO2 K CRITICAL VALUE PHONE NA	VALUE 105 5,REPRTGF1 VALUE 30 2.7 ED TO*MS AT (144 12 26 113 0.4 8.9 3.1 1.6 0.6 399 590 60	ABN ROUP C ABN H L	NORMAL RANGE (101-111) ONTINUED TOD3 NORMAL RANGE (23-29) (3.5-5.0)	T305B	DATE 12/23/98 12/23/98 DATE 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98 12/23/98	

\:21 12/23/98 FROM WKH5,REPRTGF1 \38023

2721920086 MR# (00272192	503	73058 	日田符
BLOOD COUNT WRC RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW PLT COUNT	VALUE 3.0 3.22 9.8 9.8 9.8 9.8 9.5 30.5 35.3 12.2 80	$\begin{array}{c ccccc} ABN & NORMAL & RAN \\ L & (5.0-14.5) \\ L & (4.00-5.20) \\ L & (11.5-15.5) \\ L & (35.0-45.0) \\ & (77-95) \\ & (25-33) \\ & (31-37) \\ & (11.5-14.5) \\ L & (140-440) \end{array}$	TH/CMN MILL/C G% CNU MCGM % X TH/CMN	1 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05
CHEM PROFILE CL CO2 K NA ANION GAP BUN GLUCOSE,TM CREATININE	UALUE 105 28 3.6 142 13 10 96 0.3	ABN NORMAL RAN (101-111) (23-29) (3.5-5.0) (136-145) (10-20) (6-19) (70-110) L (0.5-1.1)	IGE UN IT MMOL /L MMOL /L MMOL /L MMOL /L MGC /DL	DATE TIM 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05 12/31/98 05
21 12/31/98 FROM 0 80830	JKJ3,REPRTOF1	END OF REPORT====	2 an an 20 an	
ULTS_LISTING		торЗ	тзо5в Н	EM
721920086 MR# 008	272192		UN IT	DATE TIME
721920088 MR# 008 3LOOD COUNT WBC RBC HEMOGLOBIN HEMATOCRIT MCH MCH MCH MCH MCH RDW WBC DIFF POLY % CTAP %	VALUE 2.2 3.50 10.6 29.8 85.2 30.4 35.6 12.4 79 20	ABN NORMAL RANGE L (5.0-14.5) L (4.00-5.20) L (11.5-15.5) L (35.0-45.0) (77-95) (25-33) (31-37) (11.5-14.5) H (50-70) H (20-44)	MILL/U GX CMU CMU MCGM X X X	01/03/99 01/03/99 05 00 01/03/99 05 00 01/03/99 01/03/99 01/03/99 01/03/99 01/03/99 01/03/99 01/03/99 01/03/99 01/03/99 05 00 01/03/99 05 00 01/03/99 05 00 01/03/99 05 00 01/03/99 05 00 01/03/99 05 00 01/03/99 05 00 00 00 00 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 00
721920088 MR# 008 SLOOD COUNT WBC RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF POLY % STAB % LYMPHOCYTE	VALUE 2.2 3.50 10.6 29.8 85.2 30.4 35.6 12.4 79 20 1	(31-37) (11.5-14.5) H (50-70) H (2-6) L (20-44)	MILL/U G% CMU MCGM % % % % % % % % % % % % % % % % % % %	01/03/99 05 00 01/03/99 05 00
721920088 MR# 008 SLOOD COUNT WBC RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCH MCH MCH MCH MCH MBC DIFF POLY % STAB % LYMPHOCYTE WBC MORPH TOXIC GRAN RBC MORPH TOXIC GRAN RBC MORPH PLT COUNT ====================================	VALUE 2.2 3.50 10.6 29.8 85.2 30.4 35.6 12.4 79 20 1 NORMAL 139 20 1 VALUE 98 26 4.1 134	$(31-37) \\ (11.5-14.5) \\ H (50-70) \\ H (2-6) \\ L (20-44) \\ L (20-44) \\ ABN NORMAL RAN \\ L (101-111) \\ (23-29) \\ L \\ (23-29) \\ L \\ L \\ (101-111) \\ (23-29) \\ L \\ L \\ (101-111) \\ (23-29) \\ L \\ (23-29) \\ L \\ (23-29) \\ L \\ (23-29) \\ L \\ (33-29) \\ L \\ (33-29)$	MILL/L G% CMU MCGM % % % % % % % % % % % % % % % % % % %	01/03/99 05 00 01/03/99 05 00
721920088 MR# 008 SLOOD COUNT WBC RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCH MCH WBC DIFF POLY % STAB % LYMPHOCYTE WBC MORPH TOXIC GRAN RBC MORPH PLT COUNT CHEM PROFILE CL CO2 K NA STAB CL CO2 CD CD CD CD CD CD CD CD CD CD	VALUE 2.2 3.50 10.6 29.8 85.2 30.4 35.6 12.4 79 20 1 NORMAL 139 20 1 VALUE 98 26 4.1 134	(31-37) (11.5-14.5) H (2-6) L (20-44) L (20-44) ABN NORMAL RAN L (101-111) L (20-22)	MILL/L G% CMU MCGM % % % % % % % % % % % % % % % % % % %	01/03/99 05 00 01/03/99 05 00

•

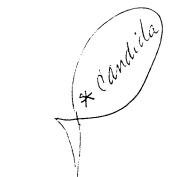
RESULTS265811N- MR# 002721	92		TOD3	ТЗО5В	HEM	
BLOOD COUNT WBC CRITICAL VALUE PHONED	VALUE 1.6 TO*JV AT	ABN L 0710 e	(5.0-14.5) (Y JAB	THZCMM	DATE 01/02/99	T IM 05:5
RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF	3.41 10.2 29.6 86.7 30.0 34.5 12.7	L. L.	(4.00-5.20) (11.5-15.5) (35.0-45.0) (77-95) (25-33) (31-37) (11.5-14.5)	X CMU MCGM X	01/02/99 01/02/99 01/02/99 01/02/99 01/02/99 01/02/99 01/02/99 01/02/99	000000000000000000000000000000000000000
FOLY X STAB X EOSINOPHIL X BASOPHIL X LYMPHOCYTE METAMYELOC. RBC MORPH SLT*TEAR DROP*SLT*POLY	57 35 3 1 3 1	H	(50-70) (2-6) (0-4) (0-2) (20-44)	% % % % %	01/02/99 01/02/99 01/02/99 01/02/99 01/02/99 01/02/99 01/02/99 01/02/99	0000000
PLT COUNT	125	<u>[.</u>	(140-440)	ТН/СММ	01/02/99	05:5
CHEM PROFILE CL	VALUE	ABN	NORMAL RANGE		DATE	T IME 05:5
)9:08 01/02/99 FROM WKH1,R JAX39298	EPRTGF 1	NUUr U				
RESULTS L1ST1** 2721920088 MR# 002721	92		торз	T305B	НЕМ	
CHEM PROFILE CONT CO2 K NA ANION GAP BUN GLUCOSE,TM CREATININE	VALUE 25 3.9 135 15 7 179	L. H	(23-29) (3.5-5.0) (136-145) (10-20) (6-19) (70-110)		01/02/99 01/02/99 01/02/99 01/02/99	05525
CREATININE	0.2	L.,	(0.5-1.1)	MGZĎĽ	ŏ1/ŏ2/99	ŏ5 ie

.

>9:08 01/02/99 FROM WKH1,REPRTGF1 JAX2920

JLTS LISTING 721920102 MR# 002721	92	торз	ТЗ12В	PDM	
LOOD COUNT WBC RITICAL VALUE PHONED	VALUE ABN 0.1 L TOXJV AT 0700 B	NORMAL RANGE (5.0-14.5) Y GKLJ	UNIT THZCMM	DATE 01/11/99	TIME :
RBC HEMOGLOBIN HEMATOCRIT MCV	3.49 L 10.6 L 30.0 L	(4.00-5.20) (11.5-15.5) (35.0-45.0) (77-95)	MILL/C G% % CMU	01/11/99 01/11/99 01/11/99 01/11/99	05:00 05:00 05:00
-OOD COUNT WEC RITICAL VALUE PHONED RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF WBC DIFF WBC MORPH 3C DECREASED; NO DIFF PLT COUNT	30.5 35.5 13.3	(25–33) (31–37) (11.5–14.5)	MCGM X X	01/11/99 01/11/99 01/11/99 01/11/99	05:00 05:00 05:00
WBC MORPH 3C DECREASED; NO DIFF PLT COUNT	ERENTIAL PERFOR	MED (140-440)	ТН/СММ	01/11/99 01/11/99	05:00 05:00 €
HEM PROFILE ALBUMIN DILI,TOTAL BILI,DIRECT	VALUE ABN 3.6 L 1.3 0.4	NORMAL RANGE (3.9-4.8) (0.1-1.5) (0-0.4)	UNIT GM/DL MG/DL MG/DL	DATE 01/11/99 01/11/99 01/11/99	TIME 10:30 10:30 10:30
HEM PROFILE ALBUMIN PILI, TOTAL BILI, DIRECT ALK PHOS SGPT SGOT CL 01/11/99 FROM WKH1.F	179 39 18 103	(117-390) (0-45) (0-37) (101-111)	UZL UZL UZL MMOLZL	01/11/99 01/11/99 01/11/99 01/11/99 01/11/99	10:30 10:30 10:30 05:00
- 557					9 800 100 200 200 200
ЛТS LISTIN 221920102 №№№ 002721 МК∯ 002721	92	торз	ТЗ12В	FDM	
IEM PROFILE CONT CO2 K NA ANION GAP BUN GLUCOSE TM GLUCOSE TM CREATININE	VALUE ABN 24 3.1 L 138	NORMAL RANGE (23-29) (3.5-5.0) (136-145)	UNIT MMOLZL MMOLZL MMOLZL	DATE 01/11/99 01/11/99 01/11/99	TIME 05:00 05:00 05:00
ANIUN GAP BUN GLUCOSE,TM CREATININE	14 7 93 0.3 L	(10-20) (6-19) (70-110) (0.5-1.1)	MG/DL MG/DL MG/DL	01/11/99 01/11/99 01/11/99 01/11/99	05:00 05:00 05:00
HEMISTRIES VANCOMYCN,P PREALBUMIN VANCOMYCIN	VALUE ABN 20.1 14.6 L 4.4 L	NORMAL RANGE (5-40) (20-43) (5-40)	UNIT uG/ML MG/DL MCG/ML	DATE 01/11/99 01/11/99 01/11/99 01/11/99	10:30 10:30

01/11/99 FROM WKH1,REPRTGF1 557


LTS LISTING 21920102 MR# 00272	192		*OD3	T312B	PDM		
OOD COUNT WBC 1TICAL VALUE PHONED	0.1	L. (5	VORMAL RANGE 5.0-14.5) CM	UNIT TH/CMM	DATE 01/18/99	TIME 05:00	а х •
RBC HEMOGLOBIN HEMATOCRIT MCV MCH	2.65 7.8 22.7 85.4	L (4 L (1 L (3 (7	+.00-5.20) L1.5-15.5) 35.0-45.0) 27-95)	MILL/C G% % CMU	01/18/99 01/18/99	05:00 05:00 05:00	х х
MCHC RDW WBC DIFF WBC MORPH	2913 3413 11.8	E) []	25-33) 31-37) L1.5-14.5)	MCGM X X	01/18/99 01/18/99 01/18/99 01/18/99 01/18/99	05:00	
C DECREASED; NO DIFI	FERENTIAL PER	FORME	D L40-440)	THZCMM	01/18/99	05:00	t _{a.}
EM PROFILE CL CO2 K NA ANION GAP BUN GLUCOSE,TM	101 28 3.9 136 11 7	(1 (2) (3) (1) (4)	URMAL RANGE L01-111) 23-29) 3.5-5.0) 136-145) L0-20) 5-19) 20-110)	MMOL /L MMOL /L MMOL /L MMOL /L	01/18/99 01/18/99	05:00 05:00 05:00 05:00 05:00	
01/18/99 FROM WKH1, 54	=====;;;;;;	° CÓŇ	IT INÜËD=====				
LTS LISTIN 21920102 MR# 00272	192		TOD3	T312B	PDM		
EM PROFILE CONT CREATININE		BN N _ (0	(ORMAL RANGE).5-1.1)	UNIT MG/DL	DATE 01/18/99	TIME 05:00	

.

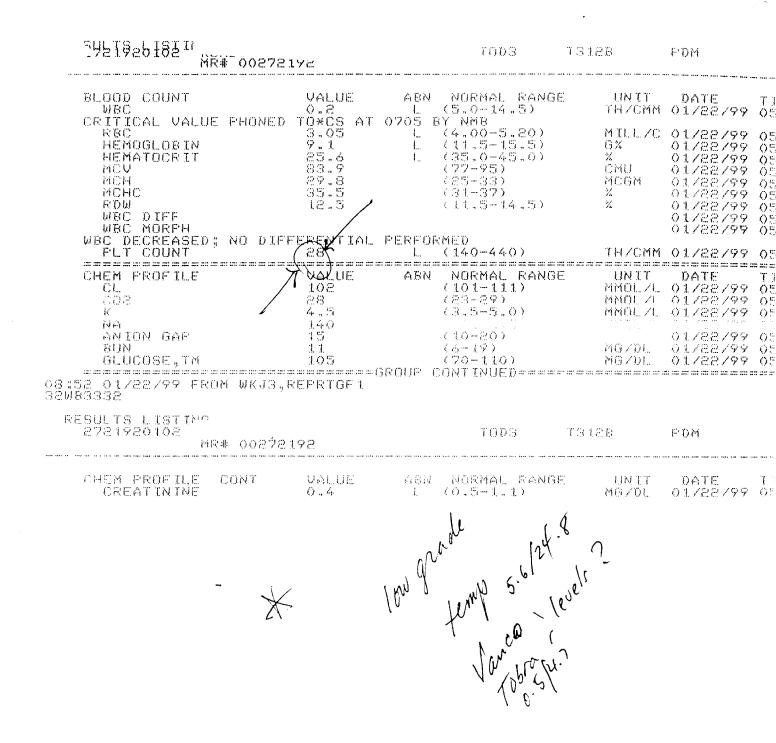
Ę.,

01/18/99 FROM WKH1,REPRIGE1

2721920102 NR# 002221	92				••• ••• •••
BLOOD COUNT WRC	VALUE ABN 0.1 L	(5, 0 - 14, 5)	UNIT THZCMM	DATE 01/20/99	TIM 05:
CRITICAL VALUE PHONED RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCH CHC RDW WBC DIFF WBC MORPH	3.63 L 10.9 L 31.2 L 86.0 30.1 35.0 12.6	(4.00-5.20) (11.5-15.5) (35.0-45.0) (77-95) (25-33) (31-37) (11.5-14.5)	MILLZC G% X CMU	01/20/99 01/20/99 01/20/99 01/20/99 01/20/99 01/20/99 01/20/99 01/20/99 01/20/99	000000000000000000000000000000000000000
WBC DECREASED; NO DIFF FLT COUNT	ERENTIAL PERFOR	RMED (140-440)	THZCMM	01/20/99	
CHEM PROFILE CL CO2 K NA ANION GAP BUN GLUCOSE,TM 14 01/20/99 FROM WKJ3,R	30 H 4.2 137 13 11 110 GR0UP C	NORMAL RANGE (101-111) (23-29) (3.5-5.0) (136-145) (10-20) (6-19) (70-110) CONTINUED	MMOL ZL MMOL ZL MMOL ZL MG ZDL MG ZDL	DATE 01/20/99 01/20/99 01/20/99 01/20/99 01/20/99 01/20/99 01/20/99	055555
33012					
33012 ESULTS LISTING 2721920102 MR# 002721	92	D3 T3	128	EOM	

Cor

·



\$57 \

14 01/20/99 FROM WKJ3,REPRIGEL

RESULTS LISTING 2721920102 MR# 00272:	192		тарз	T312B	PDM	
BLOOD COUNT WBC CRITICAL VALUE PHONED RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF WBC MORPH	0.3 TO*AC AT 3.35 10.0 28.8 85.9 29.9 34.8 12.8		(4.00-5.20) (11.5-15.5) (35.0-45.0) (77-95) (25-33) (31-37) (11.5-14.5)	THÝCẢM MILLÝC G% X CMU MCGM X	01/21/99 01/21/99 01/21/99 01/21/99 01/21/99 01/21/99 01/21/99 01/21/99 01/21/99	00000000000000000000000000000000000000
WBC DECREASED; NO DIFF RBC MORPH PLT COUNT CHEM PROFILE CL CD2 K NA ANION GAP BIN	NUKMAL 50 VALUE 29 4.2 138 14 10	ABN L	(140-440) NORMAL RANGE	UNIT MMOL/L MMOL/L MMOL/L MMOL/L	01/21/99 01/21/99 01/21/99 01/21/99 01/21/99 01/21/99 01/21/99 01/21/99	05:0 05:0 05:0 11ME 05:0 05:0
RESULTS LISTING 2721920102 MR# 002721 CHEM PROFILE CONT GLUCOSE, TM CREATININE				T312B UNIT MG/DL	PDM DATE 01/21/99	T IME 05:0 05:0

1:19 01/21/99 FROM WKH5,REPRYGF1 AX32018

08:52 Ol/22/99 FROM UKJ3, REPRIOFI 38683338

RESULTS LIST ^{TMC} 2721920102 MR# 002721	.92		торз	T315B	FDM	
RLOOD COUNT WRC	VALUE 0.1	1 6	NORMAL RANGE	UNIT TH/CMM	DATE 01/24/99	TIME 05:00
CRITICAL VALUE PHUNED RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF MCC DIFF	TO*DB AT 2.62 7.9 22.4 85.4 30.3 35.4 12.0		NMB 4.00-5.20) 11.5-15.5) 35.0-45.0) 77-95) 25-33) 31-37) 11.5-14.5)	MILL/C G% X CMU MCGM X X	$\begin{array}{c} 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\\ 01/24/99\end{array}$	05:00 05:00 05:00 05:00 05:00 05:00 05:00 05:00 05:00
WEC DECREASED; NO DIF	FERENTIAL 60	PERFORM	1ED (140-440)	TH/CMM	01/24/99	05:00
1:33 01/24/99 FROM WKH1,	VALUE 104 26 4.1 140 14 13 90 REPRTGF1		NORMAL RANGE (101-111) (23-29) (3.5-5.0) (136-145) (10-20) (6-19) (70-110) ONTINUED=====	UNIT MMOL/L MMOL/L MMOL/L MMOL/L MG/DL MG/DL	01/24/99 01/24/99	TIME 05:00 05:00 05:00 05:00 05:00
JAX32564 RESULTS LIST *** 2721920102 MR# 00272	192		торз	T3128	PDM	
CHEM PROFILE CONT CREATININE	VALUE 0.4	ABN L	NORMAL RANG (0.5-1.1)	E UNIT MGZDL	DATE 01/24/99	TIME 05:0

11:33 01/24/99 FROM WKH1,REPRTGF1 WAX32564

١

.

••••

2721920094	ORDER/OCC#:	17 Z	001 LA	ST UPDATE:	
SPECIMEN TYPE:	····· ···· ···· ····		социесттан	DATE/TIME:	01/25/99 11:0
CEST NANE	VALUE	άBΝ	NORMAL RANGE	UNITS	STS
NEUTROPHI X	19.1	1	(42-75)	%	μ.:
NEUTRO ABS	ő.ő	1	(1.4-6.5)	THZEMM	E.
LYMPH X	73.9	1-1	(21-51)	X	(***
LYMPH ABS	$C_{1} \subseteq \mathbb{C}^{2}$	1	(1,2-3,4)	THZOMM	Ę.
MONONUCI	4 7		(<u>@</u> -\$)	X	I
MONONUCL ASS	$O \cup O$			THZM3	· ·
EOS X	2.3		$(-1, \cdots, 4, -)$	X	ļ
EOS ABS	0.0			THZMB	}
BASO X	0.0		$(\langle i \rangle - \hat{c} \rangle)$	X	} [™]
BASO ABS	0.Ö			THZMB	Į

SFECIMEN TYPE:		1.73797 	COLLECTION	DATEZTIME:	The Archite
TEST NAME	VALUE 175		NORMAL RANGE L18-273)	UNITS UZL	STS F

12:21 01/25/99 FROM ;+-,REERPRF6 32WB3523

RESULTS FOR:	34 34 C)	тлт	ORDER **	THMONC
2721920094 SPECIMEN TYPE:	_ORDER/OCC*:_	3/	····· ···· ···· ····	UPDATE: 01/25/99 12:2 TE/TIME: 01/25/99 11:0:
TEST NAME Sopt	VALUE 71	ABN H	NORMAL RANGE	UNITS STS U/L F

١

12:21 01/25/99 FROM ;+-,REERPRF6 32WB3524

RESULTS FOR:

.

** STAT ORDER **

THMONC

<u>4/001</u> <u>LAST UPDATE: 01/25/99 18</u>:8 COLLECTION DATE/TIME: 01/25/99 11:0 2721920094 OFDER/OCC#: SPECIMEN TYPE: VALUE NORMAL RANGE TEST NAME ABN UNITS STS------.... UPIC ACID 3.5 (3,4-7,0) MGZDL ļ::"

RESULTS FOR:

2721920094 _ORDER/OCC#: 5/001 ____LAST UPDATE: 01/25/99 12:42 SPECIMEN TYPE: COLLECTION DATE/TIME: 01/25/99 11:03

TEST NAME	VALUE	ABN	NORMAL RANGE	UNITS	STS
WEC CRITICAL VALU	0.20 E PHONED T	 L 0*CV AT 12	(5.0-14.5) 40 BY BRM	THICMM	F
RBC HEMOGLOBIN	2.60 7.71.7		(4.00-5.20) (11.5-15.5)	MILLZC G%	F
ABNORMAL RESU		TO*CV AT 1:	240 BY BRM (35.0-45.0)	%	r F
ABNORMAL RESU		TO*CV AT 1	240 BY BRM (77-95)	CMU	F.
MCH MCHC	29.8 35.7		(25-33) (31-37)	NCGM X	F
RDW Plt count	11.7	ł	(11.5-14.5) (140-440)	X THZCMM	F

12:42 01/25/99 FROM ;+-,REERPRF6 32WB3541

2721920094	ORDER/OCC*:	57	001 LA	ST UPDATE:	01/25/99 12:2 PAGE
SPECIMEN TYPE	19 19		COLLECTION	DATE/TIME:	
TEST NAME	VALUE	ABN	NORMAL RANGE	UNITS	STS
CL CO2 K NA ANION GAP BUN GLUCOSE,TM GLUCOSE,TM FROTEIN,TOT. ALBUN IN CA CREATININE BILI,TOTAL ALK PHOS SGOT	$ \begin{array}{c} 101 \\ 27 \\ 4.0 \\ 137 \\ 13 \\ 16 \\ 103 \\ 7.2 \\ 4.8 \\ 7.2 \\ 4.8 \\ 7.2 \\ 4.7 \\ 171 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47 \\ 47$	i }-1	(101-111) (23-29) (3.5-5.0) (136-145) (10-20) (6-19) (70-110) (6.0-8.5) (3.5-10.5) (8.5-10.5) (0.5-1.1) (0.1-1.5) (117-390) (0-37)	MMOL /L MMOL /L MMOL /L MMOL /L MG /DL GM /DL GM /DL MG /DL MG /DL MG /DL U/L U/L	

.

** STAT ORDER **

THMONC

2721920094	ORDER/OCC#:	57	001 L.	AST UPDATE:	01/25/99 12:8 PAGE
SPECIMEN TYPE:			COLLECTION	DATE/TIME :	
TEST NAME	VALUE	ABN	NORMAL RANGE	UNITS	STS
CL CO2 K NA ANION GAP BUN GLUCOSE,TM GLUCOSE,TM GLUCOSE,TM GLUCOSE,TM GLUCOSE,TM GA GLUCOSE,TM GA GLUCOSE,TM ALS CREATININE BILI,TOTAL ALS PHOS SGOT	$ \begin{array}{c} 101 \\ 27 \\ 4.0 \\ 132 \\ 13 \\ 16 \\ 103 \\ 7.2 \\ 4.4 \\ 7.8 \\ 0.3 \\ 0.7 \\ 171 \\ 47 \end{array} $	L. id	(101-111) (23-29) (3.5-5.0) (136-145) (40-20) (6-19) (70-110) (6.0-8.5) (3.9-4.8) (3.5-10.5) (0.5-1.1) (0.1-1.5) (112-390) (0-37)	MMOL /L MMOL /L MMOL /L MMOL /L MG /DL MG /DL GM /DL MG /DL MG /DL MG /DL U /L	

RESULTS FOR:

A 2721920094 ORDER/OCC#: 2/001 LAST UPDATE: 02/08/99 10 5 SPECIMEN TYPE: COLLECTION DATE/TIME: 02/08/99 10:0

THMONC

TEST NAME	VALUE	ABN	NORMAL RANGE	UNITS	STS
CL CO2 K ANION GAF BUN GLUCOSE,TM FROTEIN,TOT. ALBUMIN CA CREATININE BILI,TOTAL ALK FHOS SGOT	105 25 4.3 138 12 11 99 6.3 4.2 9.5 0.5 25 25	L	(101-111) (23-29) (3.5-5.0) (136-145) (10-20) (6-19) (70-110) (6.0-8.5) (3.9-4.8) (3.9-4.8) (8.5-10.5) (0.5-1.1) (0.1-1.5) (117-390) (0-37)	MMOL/L MMOL/L MMOL/L MG/DL MG/DL GM/DL GM/DL MG/DL MG/DL MG/DL U/L U/L	

10:53 02/08/99 32WB5550	FROM ;+-,REE	RPRF6			
	44 M C	ግ ሌ ሞ	○ □ D E R * *		THMONC
RESULTS FOR:	,				
2721920094	ORDER/OCC#:	1/00			02/08/99 10:5
SPECIMEN TYPE	11 #		COLLECTION DA	TE/TIME:	02/08/99 10:0
TEST NAME	VALUE	ABN	NORMAL RANGE	UNITS	STS
LDH	190		118-273)	UZL.	F

10:53 02/08/99 FROM ;+-,REERPRF6 32W65551

LTS FOR: 721920094	ORDER/OCC#:	57		AST UPDATE:	Fic	10:35 GE
CIMEN TYP				DATE/TIME (02/09/99	\$9:31
EST NAME	VALUE	ABN	NORMAL RANGE		STS	
GLOBIN (7.8	L L ABNOI TE AT	(5.0-14.5) (4.00-5.20) (11.5-15.5) RMAL RESULT PHO 1034	TH/CMM MILL/C G% NED TO	F F	
TOCRIT IORMAL RF	22.7 SULT PHONED TO	ABNORI TE AT	MAL RESULT PHON 1036 BY VR (35-0-45-0)	ED TO X	F	
· · · · · · · · · · · · · · · · · · ·	80.6 27.6 34.2		(77-95) (25-33) (31-37)	CMU MCGM X	6. 1. 1. 1.	
COUNT	12 2	ł.,	(11.5-14.5) (140-440)	X TH/CMM	F F	
5_02/09/9					,	ı
988 .TS FOR: 21920094	<pre>P FROM ;+-,RE</pre>	ERFRF6 S T A T	0 R D E R * -	* AST UPDATE:	ТНМОМС 02/09/99 — — — — — — — — — — — — — — — — — — —	GE
5986 .TS FOR: 221920094 CIMEN TYPE	<pre>P FROM ;+-,RE</pre>	ERFRF6 S T A T	0 R D E R * -	×	ТНМОМС 02/09/99 02/09/99 STS	
5 02/09/9 5986 .TS FOR: 221920094 CIMEN TYF ST NAME 01FF (ROPHIL % CROPHIL % CROPHIL % CROPHIL % ONUCL % SNUCL % SNUCL %	<pre>P FROM ;+-,RE</pre>	ERPRF3 S T A T 570	ORDER * 1 001L COLLECTION	* AST UPDATE: DATE/TIME:	ТНМОМС 02709799 02709799	GE

•

8 02/09/99 FROM ;+-,REERPRES

• •

	ULTS FOR:	n o Q	ТАТ	ORDER	ж ж	THMONC		
	2721920094	ORDER/OCC#:	270	01	LAST UPDATE:	02/09/99	10:34	
	ECIMEN TYPE:			COLLECTI	DATE/TIME:	02/09/99	AGE 1 09:31	
	TEST NAME	VALUE	ABN	NORMAL RAN	GE UNITS	STS		
•	2 ION GAP N UCOSE,TM OTEIN,TOT. BUMIN EATININE LI,TOTAL K PHOS OT	106 28 4.4 138 8 11 81 6.1 3.9 9.2 0.4 0.45 24 24	ł	(101-111) (23-29) (3.5-5.0) (136-145) (10-20) (6-19) (70-110) (6.0-8.5) (3.9-4.8) (3.9-4.8) (8.5-10.5) (0.5-1.1) (0.5-1.1) (0.1-1.5) (117-390) (0-37)	MMOL /L MMOL /L MMOL /L MMOL /L MG /DL GM /DL GM /DL GM /DL MG /DL MG /DL MG /DL U/L U/L		N	
	34 02/09/99 85982	FROM ;+-,REEF	RERE 6				1	
	ULTS FOR:	ж ж Қ	ТАТ	ORDER	06 - ₩	THMONC		
	2721920094	ORDER/OCC#:	1.70	001	LAST UPDATE:	02/09/99	10:34	

•

2721920094 ECIMEN TYPE:	ORDER/OCC#:	 COLLECTION			10:34 AGE 09:31	١ŗ
TEST NAME	VALUE 195	NORMAL RANGE	UNITS	STS F	(7) n (3) L	۰. ا

ESULTS FOR:		TENT			ТНМОМС		
2721920094	ORDER/OCC#:	3700	LAS	T UPDATE:	02/09/99	10:35	
SPECIMEN TYPE:	αταδ τους τους μαι. 		COLLECTION D	ATEZTIME:	02/09/99	GE 09:31	1.
TEST NAME	VALUE	ABN	NORMAL RANGE	UNITS	STS		
BGPT	32	(()-45)	U/L	F		

۸.

Æ

*** STAT ORDER **

. .

):35 02/09/99 FROM ;+-,REERFRF6 2WB5984

ESULTS FOR:

•••

. .

COLUTO DODA	* * S	TAT	ORDER **	
ESULTS FOR:				THMONC
2721920094	ORDER/OCC#:		001 LAS	ST UPDATE: 02/09/99 10:35
SPECIMEN TYPE		**** ***	COLLECTION	DATE/TIME: 02/09/99 09:31
TEST NAME	VALUE	ABN	NORMAL RANGE	UNITS STS
JRIC ACID	4.2		(3.4-7.0)	MGZDL F

):35 08/09/99 FROM _;;+-,REERPRF6

	•					
BLOOD COUNT WBC RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF POLY % STAB % EOSINOPHIL BASOPHIL % LYMPHOCYTE MONOCYTES % RBC MORFH SEV*ANISO*SLT* FLT COUNT	VALUE 2.0 3.20 10.3 30.3 94.5 32.2 34.1 25.6 28 10 9 1 32 20 POLY*SLT*TEAR DR 210	L L H H H H	NORMAL RANGE (5.0-14.5) (4.00-5.20) (11.5-15.5) (35.0-45.0) (77-95) (25-33) (25-33) (31-37) (11.5-14.5) (50-70) (2-6) (0-4) (0-2) (20-44) (2-9) ELL IPT*SLT*SP (140-440)	TH/CMM MILL/C G% % CMU MCGM % % % % %	DATE 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95 03/03/95	
CHEM PROFILE CL CO2	VALUE 105 25	ABN	NORMAL RANGE (101-111) (23-29)	UN IT MMOL ZL MMOL ZL	DATE 03/03/99 03/03/99	T 1 2 05 2 05
S2WE9549 RESULTS LISTING 2721920151	M WAS1,REPRTGF1		ÓÑT INÚÉD===== TOD2			
CHEM PROFILE K NA ANION GAP BUN GLUCOSE,TM CREATININE	CONT VALUE 3.6 141 15 17 83 0.4		NORMAL RANGE (3.5-5.0) (136-145) (10-20) (4-19) (70-110) (0.5-1.1)	MMOL /L MMOL /L	03/03/99	2 05 05 05 05
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		10's 54's		O O O O	
08:45 03/03/99 FR0 32WB9549	M WASI,REPRTOFI	=EN0 OF	REPORT			
BLOOD COUNT WBC CRITICAL VALUE RBC HEMOGLOBIN HEMATOCRIT MCV MCH ROW CHEM PROFILE	21 Ad 30.3 N Verified 35.3 16.5	0840 B	(4.00-5.20) (11.5-15.5) (35.0-45.0) (27-95) (25-33) (31-37) (11.5-14.5)	THICHM MILLIC GX CMU MCGM X X	03/23/99 03/23/99 03/23/99 03/23/99 03/23/99 03/23/99 03/23/99	
CHEM FROFILE CC2 K NA ANION GAP BUN GLUCOSE, TM CREATININE PHOSPHOROUS CA	VALUE 103 24 138 138 138 138 138 28 0 - 4 4 - 8 7 - 2	>) L_	NORMAL RANGE (101-111) (23-27) (3.5-5.0) (136-145) (10-20) (6-19) (70-110) (70-110) (70-110) (70-110) (70-110) (8.5-1.1) (8.5-10.5)	UNIT MMOL /L MMOL /L MMOL /L MMOL /L MG /DL MG /DL MG /DL MG /DL MG /DL	0ATE 03/23/99 03/23/99 03/23/99 03/23/99 03/23/99 03/23/99 03/23/99 03/23/99 03/23/99	00000000

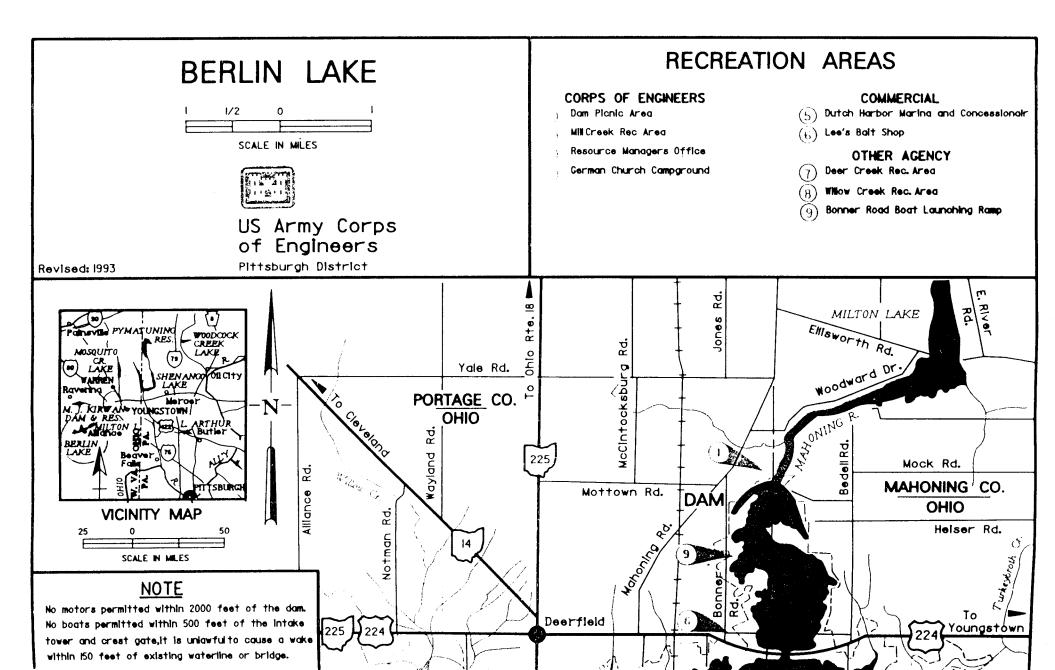
08:48 03/23/99 FROM WKJ3,REFRIGE1

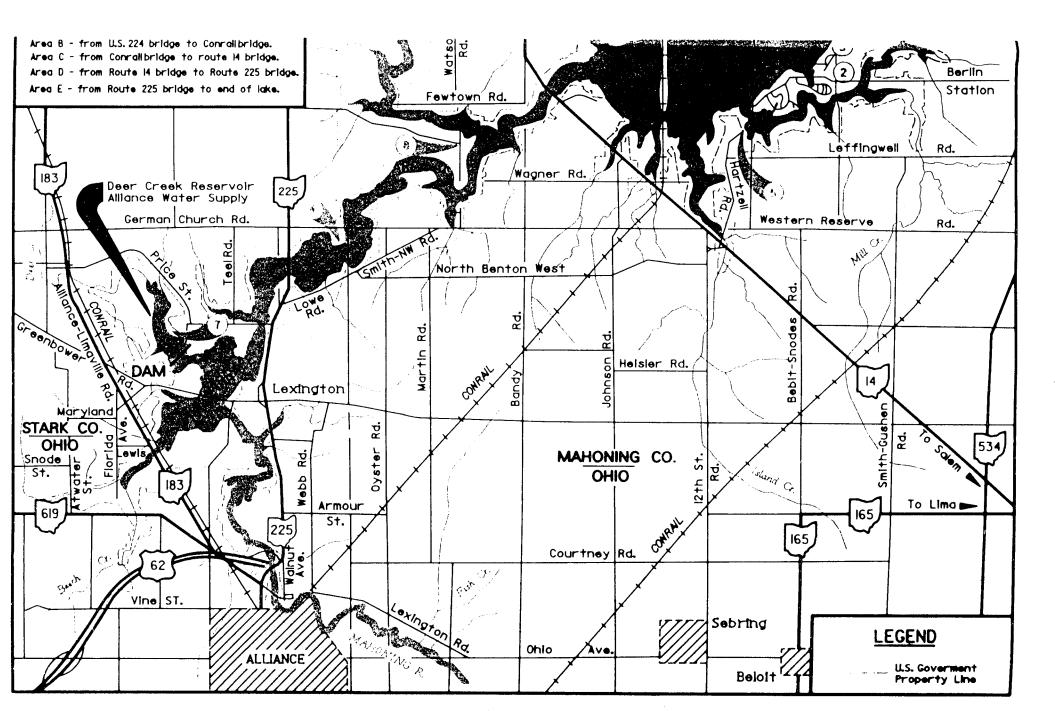
BLOOD COUNT WBC RBC HEMOGLOBIN HEMATOCRIT MCV MCH MCHC RDW WBC DIFF POLY % STAB % EOSINOPHIL LYMPHOCYTE MONOCYTES % RBC MORPH SEV*ANISO*SLT*HY	VALUE 3.7 3.41 11.0 32.0 94.0 32.3 34.4 25.0 75 13 2 3 7 2 3 7	ABN L L L H H H L	NORMAL RANGE (5.0-14.5) 5 (4.00-5.20) 4 (11.5-15.5) 3 (35.0-45.0) (27-95) (25-33) (31-37) (11.5-14.5) (50-70) (2-6) (0-4) (20-44) (2-9)	TH/CMM MILL/C G% CMU MCGM % % % % % %		
PLT COUNT	(211)				03/04/99	05:0
CHEM PROFILE CL	VALUE 104 23 3.8	ABN	NORMAL RANGE		DATE 03/04/99 03/04/99 03/04/99	05:0
9:25 03/04/99 FROM AX39842	WKH5,REPRTGF1					
RESULTS LIST IN'9 272 1920 151	00272192		TOD2 T	207B	HEM	
CHEM PROFILE CC NA ANION GAP BUN GLUCOSE,TM CREATININE	NT VALUE 139 16 10 96 0.3	ABN L	NORMAL RANGE (136-145) (10-20) (6-19) (70-110) (0.5-1.1)		DATE 03/04/99 03/04/99 03/04/99 03/04/99 03/04/99	05:0
	the second		REPORT		88 37 616 2690 C 3256	>
9:25 03/04/99 FROM AX39842	WKH5,REPRTGF1					
BLOOD COUNT WBC RBC HEMOGLOBIN HEMATOCRIT MCU MCH MCH RDW	VALUE 3-6 3-7 28:5 28:5 28:5 38:5 38:5 26:7		(5.0-14.5) (4.00-5.20) (11.5-15.5) (35.0-45.0) (77-95) (25-33) (31-37) (11.5-14.5)	THIO MILL GX 2 CMU MCGM 2 X X	йм 03/05/ /С 03/05/ 03/05/ 03/05/ 03/05/ 03/05/ 03/05/ 03/05/	99 05 99 05 99 05 99 05 99 05 99 05 99 05 99 05 99 05 99 05
CHEM PROFILE CL CO2 K ANTON GAF BUN GLUCOSE,TM CREATININE	VALUE 104 23 3.7 137 14 7 101 0.3	μ. ΑΒ	N NORMAL RANG (101-111) (23-29) (5.5-5.0) (136-145) (10-20) (6-19) (70-110)	MMOL.	T DATE /L 03/05// /L 03/05// /L 03/05// /L 03/05// L 03/05// L 03/05//	99 05 99 05 99 05 99 05 99 05 99 05

08:34 03/05/99 FROM WKJ3,REPRTGF1

		•				
ISULTS FOR:	14 M	$T \ge 1$	О К D E К жж			•
8781980819		,			THMONO	
SPECTAEN TYP		···· ···		37 <u>update</u> :	04715759 10:03	ŝ
CEST NAME	VALUE	ABN	COLLECTION 5		04/15/99 03:61	. i .
60	27. 82°				ST3	
- CRITICAL UAL BC	UE PHONED TOXIE 3.85	êί l	(3-0-14-5) 000 sy NMB	Сн.ИСМИ	<u>}</u>	
EMGGLOBIN ENATOCRIT	11.0 31.0		(4.00-5.20) (11.5-(3.5)	1910 - 200 1972 -		
CH CH CHC	8110 28.8	·	(5310-4510) (77-95) (65-83)	čiau		
ow Gw LT count	33.6 13.1		くぼ(…ほ2)	dCân X	2. 	
	27	i.	(11,3-14,3) (140-440)	X Thrond		٢
						Ć
						£
103 -04713799 166376	FROM , TH, ACEAR	前任人				
ULTS FOR:	in a 🖓 👔	· il T				÷
6761980819					CHIGNE	
EC MEN TYPE	, ORDERZGGCA:		0.0 s	de de le	94718799 19:03	
TEST NAME			COLLECT (NH DA	Trix ConEl 1		ι.
C CTFF	VALUE	et ivez	with constant of first off	1364 2000	3 7 J	
UTROPHIL X Utro ses	4 <i>色</i> 。() (),モ		Land Contraction of the second se			
· 御田村 - 業 「阿福山」 荷賀宮	76-6 0-1	4 1		THZCAM X		
NGNUCL [®] X Yoyucl Ass		: 		The All Aller M	47 67 9 ²	
5 X 3 2 8 2				CHEZH3	; •• • • •	
	(1.47) (),()		i i	5.5 Za		
57 % 50 A88	0.49 0.40 4.40 0.40	{ " I	s simming y			

3 04713799 PRGN (****,8888-988 8327


8061920238 MR# 	00878198	7HMDN	JC	(46)4	4
BLOOD COUNT MEC REC HENGGLOBIN HEMATOCRIT MCU MCH MCH	07/13/99 08:54 4.34 4.34 14:0 40:3 78:8 38:4 38:4 38:7	08/29/99 12:13 4.3* 4.43 14.6 41.5 93.0 33.0 35.2	06/15/99 08:25 3.4* 4.13 14.0 39.4 95.4 25.9 35.5		
ROW OIFFERENTIAL WBC OIFF NEUTROPHIL X NEUTRO ABS LYMPH X LYMPH ABS	〔七〕(3)æ (7)1…(3) (2)…(1) (2)1、(2) (2)1、(2) (2)(2) (2)(2) (2)(2) (2)(2) (2)(2)(2) (2)(2)(2)(2) (2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(01.9 55.6 2.4 18.6* 0.8*	(3.9 42.8 1.5 22.7 0.8*		
MUNONUCL X MONONUCL A&S EUS X EUS A&S &ASO X	10.7* 10.4* 0.4 (3.7* 0.6 0.0	U.64% U.44% O.55 U.4.3% O.6 O.U	12.9* 0.4 21.0* 0.7		
8ASO A8S	O , O		○ 」() ()」() - 午送売		
8ASO A8S POLY % 5 07/13/99 FROM	0.0 ()	(), (0.0 43%	nat (at one cat cat cat cat cat cat	11 (42) 101 (101 (101 (101 (101
8AS0 A85 POLY & 0 07/13/99 FROM 0872 SUL[S L[STING 8721920268	0.0 ()	(), (0.00 4.300 Noncence of a concentration of a concentration of a concentration of	■	at nat nat nat nat nat
8AS0 A85 POLY & 0 07/13/99 FROM 0872 SUL[S L[STING 8721920268	0.0 WAS1,REPRTOF1 00272172 07/13799,	0.1 ROUP CONTINUED=	0.00 4.300 Noncence of a concentration of a concentration of a concentration of		


APPENDIX 3

Environmental Data: Map of Berlin Lake, EPA documentation of spills into Berlin Lake Reservoir

76

MAP OF BERLIN LAKE

EPA DOCUMENTATION OF SPILLS INTO BERLIN LAKE RESERVOIR

ENTITY	COUNTY	TWP_CITY	WATERWAY	MATERIAL_1	AMOUNT_1	UNITS_1	RECOVER_1
A Y S MEDICAL EQUIPMENT I			STORM SEWER	RED DYE	0	UNK	0
A-1 AUTO BODY	PORTAGE	FREEDOM TWP	UNKNOWN CREEK	OIL	0	UNK	0
AEROLIKE EXTRUSION CO	MAHONING	BOARDMAN TWP	MAHONING RIVER	SODIUM HYDROXIDE SOLU	50	GAL	0
AEROLITE EXTRUSION CO	MAHONING	BOARDMAN	UNKNOWN	CAUSTIC SODA	0	UNK	0
ALL AMERICAN TRACK CO	MAHONING	BOARDMAN	MILL CREEK	SUBSTANCE 4170	400	GAL	0
ALL AMERICAN TRACK CO	MAHONING	BOARDMAN	SAWMILL RUN CREEK	LATEX PAINT	300	GAL	0
ALLIANCE BOARD OF ED.	STARK	ALLIANCE	MAHONING RIVER	STYRENE BUTADIENE POLY	5	GAL	0
ALLIANCE STP	STARK	ALLIANCE	MAHONING RIVER TRIB	Cil	20	GAL	0
ALLIANCE STP	STARK	ALLIANCE	BEECH CREEK TRIB	DIESEL FUEL	120	GAL	120
ALLIANCE TUBULAR	STARK	ALLIANCE	MAHONING RIVER	MILKY WHITE STUFF	0	UNK	0
ALLIANCE WATER DEPT	STARK	ALLIANCE	DEER CREEK	HYDRAULIC OIL	100	GAL	0
ALSID OIL & GAS CO	MAHONING	SMITH TWP	BELOIT DITCH	CRUDE OIL	2	GAL	0
ALUMINUM COLOR INDUSTRI	E MAHONING	LOWELLVILLE	MAHONING RIVER TRIB	WASTE ACID	0	UNK	0
AMERICAN PAPER PRODUCT	S MAHONING	YOUNGSTOWN	SEWER	COUSTIC SODA	0	UNK	0
AMERISOURCE	MAHONING	YOUNGSTOWN	UNKNOWN	TRANSFORMER OIL	0	UNK	0
AMOCO OIL CO	PORTAGE	GANETESVILLE	SILVER CREEK	MOTOR OIL		UNK	0
ANDEL RESIDENCE	PORTAGE	GARRETTSVILLE	MAHONING RIVER TRIB	SEPTIC TANK SOLIDS	0	UNK	0
ARCO PIPELINE	MAHONING	N.JACKSON	UNKNOWN	FUEL OIL #2	1252	GAL	0
ASHLAND BRANDED MARKE	TI STARK	ALLIANCE	STORM SEWER	KEROSINE	1	GAL	0
ASHLAND OIL CO.	TRUMBULL	WARREN	STORM SEWER	#2 FUEL OIL		GAL	0
AUTUMN IND	TRUMBULL	WARREN	SWAMP	HAZARDOUS WASTE RESID	0	UNK	0
AVILA CONTRACTING	TRUMBULL	LIBERTY TWP	UNKNOWN CREEK	POND SLUDGE	0	UNK	0
BFI	PORTAGE	ATWATER	BERLIN RESERVOIR	GARBAGE	0	UNK	0
BFI	PORTAGE	ATWATER	BERLIN RESERVOIR	GARBAGE		UNK	0
BFI	PORTAGE	ATWATER	BERLIN RESERVOIR	LEACHATE		UNK	0
BFI	PORTAGE	ATWATER	MILL CREEK	ODORS		UNK	0
BFI	PORTAGE	ATTWATER	WILLOW CREEK	ODOR		UNK	0
8 F I	STARK	LEXINGTON TWP	UNKNOWN	HYDRAULIC OIL		GAL	0
BFI	MAHONING	BERLIN CENTER	UNKNOWN	HYDRAULIC OIL		GAL	0
BFI	PORTAGE	ATWATER	BERLIN RESERVIOR	SULFUR DIOXIDE	-	UNK	0
B P OIL CO / PIPELINE DIV	TRUMBULL	LORDSTOWN TH	STORM SEWER	DIESEL FUEL		GAL	0
B-RIGHT TRUCKING CO	MAHONING	YOUNGSTOWN	STORM SEWER	DIESEL FUEL		GAL	50
BABCOCK LUMBER	TRUMBULL	HUBBARD	UNKNOWN	DIESEL FUEL		UNK	0
BABCOCKS & WILCOX / TUB	UL STARK	ALLIANCE	RYANS RUN	WASTE SULFURIC ACID		GAL	õ
BAGETTA TOWNSHIP GARA	GE TRUMBULL	CORTLAND	GROUNDWATER/MOSQUITO RE			UNK	0
BAZETTA TWP	TRUMBULL	BAZETTA TWP	POND	SEPTIC WASTE		UNK	0
BEAZER EAST INC	MAHONING	YOUNGSTOWN	CRAB CREEK	TOC 73.5		UNK	0
BEAZER EAST INC	MAHONING	YOUNGSTOWN	CRAB CREEK	WASTE WATER		UNK	0
BEAZER EAST INC	MAHONING	YOUNGSTOWN	CRAB CREEK	WASTE WATER		UNK	0
BEAZER EAST INC	MAHONING	YOUNGSTOWN	GLADE CREEK	WASTE WATER		UNK	0
BEAZER EAST INC	MAHONING	YOUNGSTOWN	CRAB CREEK	WASTE WATER		UNK	0
BELDON & BLAKE	MAHONING	SMITH TWP	UNKNOWN	CRUDE OIL) UNK	0
BELOIT STP	MAHONING	BELOIT	MAHONING RIVER	WASTE WATER		GAL	0
BELOT STP	MAHONING	BELOIT	BERLIN LAKE TRIB	WASTE WATER		D UNK	0
BELOIT STP	MAHONING	BELOT	MAHONING RIVER	WASTE WATER		O UNK	0
BELOT STP	MAHONING	BELOIT	MAHONING RIVER	WASTE WATER		O UNK	0
BELOIT STP	MAHONING	BELOIT	MAHONING RIVER	SEWAGE		O UNK	0
BELOIT STP	MAHONING	BELOIT	MAHONING RIVER	WASTE WATER		O UNK	0
BELOT STP	MAHONING	BELOIT	MAHONING RIVER	SEWAGE		O UNK	0
BELOT STP	MAHONING	BELOIT	MAHONING RIVER	WASTE WATER		O UNK	0
) BELOIT STP	MAHONING	BELOIT	MAHONING RIVER	SEWAGE		O UNK	0
3 BELOIT STP	MAHONING	BELOIT	MAHONING RIVER	WASTE WATER		O UNK	0
3 BELOIT STP	MAHONING	BELOT	MAHONING RIVER	WASTE WATER		O UNK	0
3 BELOIT STP	MAHONING	BELOT	MAHONING RIVER	WASTE WATER		O UNK	0
3 BELOIT STP	MAHONING	G BELOIT	MAHONING RIVER	WASTE WATER		O UNK	0

YR	ENTITY .	COUNTY	THE COX					
92	DAYCO / DIETRICH IND	TRUMBULL	TWP_CITY WARREN	WATERWAY	MATERIAL_1	AMOUNT_1		RECOVER_1
90	DAYTON POWER & LIGHT	TRUMBULL	NILES	STORM SEWER	WASTE CHEMICALS		GAL	0
89	DEFT INC	STARK	ALLIANCE	WETLAND	CRUDE OIL		UNK	0
83	DENMAN TIRE & RUBBER	TRUMBULL	BRACEVILLE TW	UNKNOWN MAHONING RIVER	STAIN	0		0
89	DENMAN TIRE & RUBBER	TRUMBULL	LEVITSBURG		DIESEL FUEL		UNK	0
89			NORTHUMA		CARBON BLACK	-	UNK	0
91	DON FOSTER & SON CARPET	STARK			SEWAGE		UNK	0
93	DON FOSTOR & SON CARPET	STARK	ALLIANCE	STORM DRAIN	GREY GREENISH STUFF	0	UNK	0
92	DORFMAN PRODUCTION	MAHONING	ALLIANCE	UNKNOWN CREEK	CLEANING CHEMICALS		UNK	0
83	DOUG'S TRUCK & TRAILER		DAMASCUS	UNKNOWN	CRUDEOIL	4800	GAL	4000
91	DOWELL SCHLUMBERGER INC	MAHONING	YOUNGSTOWN	UNKNOWN CREEK	OIL	0	UNK	0
91	DUFF'S CARPET CLEANING	MAHONING	AUSTINTOWN	SEWER	ACIDS	0	UNK	0
91	EAGLE CHEVY OLDS		AUSTINTOWN	UNKNOWN	WASTE WATER	0	UNK	0
83	EARL COREY CO	TRUMBULL	HUBBARD	UNKNOWN	ANTIFREEZE	0	UNK	0
ົ້	EARL COREY CO	COLUMBIAN	COLUMBIANA	E BR MILL CREEK	OIL	50	GAL	40
89	EAST OHIO GAS	COLUMBIAN	COLUMBIANA	UNKNOWN CREEK	MOTOR OIL	0	UNK	0
90	EAST OHIO GAS	MAHONING	DEERFIELD	POND	CRUDE OIL	100	GAL	0
92		MAHONING		BERLIN RESERVOIR	#2 FUEL OIL	0	UNK	0
92 92	EAST OHIO GAS	MAHONING		MEANDER CK RESV.	NATURAL GAS CONDENSAT	1	GAL	0
	EAST OHIO GAS	MAHONING	YOUNGSTOWN	STORM SEWER	GASOLINE	4	GAL	0
92	EASTERN EVERFLO	MAHONING	ELLSWORTH TW	MEANDER CREEK	NATURAL GAS	0	UNK	0
91	EASTERN PETROLEUM	TRUMBULL	WEATHERSFIELD		CRUDE OIL	0	UNK	0
89 20	EASTERN PETROLEUM	MAHONING	TRUMBULL CO	UNKNOWN	UNK	0	UNK	0
90 04	EMRO MARKETING / GAS TOW		NORTHLIMA	UNKNOWN	DIESEL FUEL	25	GAL	0
91	EMRO MARKETING / SPEEDW		AUSTINTOWN	SULFUR RUN TRIB	DIESEL FUEL	0	UNK	0
91	EVERFLOW EASTERN	MAHONING	ALLIANCE	MAHONING RIVER TRIB	DIESEL FUEL	50	GAL	25
92	FAUL & SONS TOOL & DIE CO	TRUMBULL	NILES	UNKNOWN	WASTE OIL	0	UNK	0
92	FFE TRANSPORTATION SERVI			MAHONING RIVER	DIESEL FUEL	125	GAL	25
89	FISHBURN WELL SERVICE	MAHONING	MINERAL RIDGE	MEANDER CREEK	RUSTY RED MATERIAL	0	UNK	0
89	FITNESS CENTER	TRUMBULL	BAZETTA	STORM SEWER	SWIMMING POOL CHEMICA	0	UNK	0
91	FORMER OPEN PIT MINING/ NA	MAHONING	GOSHEN TWP	MEANDER CREEK TRIB	IRON OXIDE	0	UNK	0
91	FORT INDUSTRIES	MAHONING	YOUNGSTOWN	UNNAMED CREEK	ASBESTOS	0	UNK	0
84	FRANK MARTUCCIO ENTERPRI	MAHONING	MILTON TWP	LAKE MILTON	DIESEL FUEL	200	GAL	100
83	GASTOWN GAS STATION	MAHONING	NEW MIDDLETON	STORM SEWER	GASOLINE	0	UNK	0
90	GENERAL AGGREGATES	TRUMBULL	KINGSMAN	OLD ROCK QUARRY	UNK	0	UNK	0
90	GENERAL ELECTRIC	TRUMBULL	MILES	MOSQUITO CREEK	LUBRICATING OIL	6	GAL	0
92	GENERAL ELECTRIC	TRUMBULL	NILES	MOSQUITO CREEK	HYDRAULIC OIL	5	GAL	0
ខរ	GENERAL ELECTRIC	PORTAGE	RAVENNA	UNKNOWN CREEK	DIESEL FUEL	25	GAL	0
នវ	GENERAL ELECTRIC	TRUMBULL	NILES	MOSQUITO CREEK	WASTE WATER	0	UNK	0
93	GENERAL ELECTRIC	TRUMBULL	NILES	MOSQUITO CREEK	WASTE WATER	0	UNK	0
93	GENERAL ELECTRIC	TRUMBULL	NILES	MOSQUITO CREEK	WASTE WATER	0	UNK	0
93	GENERAL ELECTRIC	TRUMBULL	NILES	MOSQUITO CREEK	WASTE WATER	0	UNK	0
93	GENERAL ELECTRIC	TRUMBULL	NILES	MOSQUITO CREEK	WASTE WATER	0	UNK	0
94	GENERAL ELECTRIC	TRUMBULL	NILES	MOSQUITO CREEK	WASTE WATER		UNK	· 0
92	GENERAL ELECTRIC	TRUMBULL	MLES	MOSQUITO CREEK	WASTE WATER	0	UNK	0
23	GENERAL ELECTRIC	TRUMBULL	NILES	MOSQUITO CREEK	WASTE HYDRAULIC OIL	20		0
90	GENERAL MOTORS / LORDSTO	TRUMBULL	LORDSTOWN	MEANDER CR RESV.	DIESEL FUEL		UNK	0
90	GENERAL MOTORS / LORDSTO	TRUMBULL	LORDSTOWN	STORM SEWER	WATER BASED PAINT	1100		0
91	GENERAL MOTORS / LORDSTO	TRUMBULL	LORDSTOWN	MUD CREEK TRIB	ANTIFREEZE		UNK	0
91	GENERAL MOTORS / LORDSTO			STORM DRAIN	RINSEWATER	200		0
	GENERAL MOTORS / PACKAR			MAHONING RIVER	WASTE WATER		UNK	0
	GENERAL MOTORS / PACKAR			RED RUN CREEK	ANIMAL FAT & LUBRICATIN			0
	GIRARD STP			LITTLE SQUAW CREEK		15 (0
					SEWAGE	00		0
	00551449000			MAHONING RIVER STORM DRAIN	MOTOR OIL	00		0
					MOTOR OIL	0 0		0
-			U VE U MORANA	UNKNOWN CREEK	fuel oil	15 (JAL	0

						ILLTERIAL 1	AMOUNT_1	INITS_1	RECOVER_1
	YR	ENTITY	COUNTY	TWP_CITY	WATERWAY	MATERIAL_1 DIESEL FUEL	70 (_	0
	90	HARE EXPRESS/RUAN LEASIN	MAHONING	YOUNGSTOWN	STORM SEWER	VARIOUS MORGANIC	0 0	JNK	0
	90	HILL TOP LANDFILL	MAHONING		PALMYRA LAKE-MEANDE RES.	UNK WHITE STUFF	0	JNK	0
	90	HOWELL INDUSTRIES	TRUMBULL	MASURY	SHENANGO RIVER	TRANSFORMER OIL	0	UNK	0
	89	HUBBARD ELECTRIC DEPT	TRUMBULL	HUBBARD	UNKNWON CITY SEWER DRAINS	BLACK LIQUID	0	UNK	0
	90	INDUSTRIAL CLEANING SERVI		GERRALD	UNKNOWN CREEK	BRINE	0	UNK	0
	ល	J&M TRUCKING	PORTAGE	ATWATER TWP	MAHONING RIVER	UNK	0	UNK	0
	90	J J COAS TRUCKING	TRUMBULL	WARREN	SMALL CREEK	BRINE	0	UNK	0
	90	J L COATS DRILLING	MAHONING	AUSTONTOWN	MEANDER CREEK	WATER PICKUP	0	NOS	0
	89	J L COATS WELL SERVICE	MAHONING	ELLSWORTH TW DORSETT TWP	WETLAND	CRUDEOIL	84	GAL	84
	91	JAMES DRILLING CORP	ASHTABULA	GARRETTSVILLE		WASTE OIL	275	GAL	0
	90	JEFFERY F. BATES	PORTAGE	BROCKFIELD	SPRINGFED CREEK	CONSTRUCTION WASTE	0	UNK	0
	89	JOHN KETTLER	TRUMBULL	POLAND TWP	STORM DITCH	RED STUFF	0	UNK	0
	91	JOHN PITTMAN	MAHONING	BOARDMAN	UNKNOWN	ASBESTOS	0	UNK	0
	89	KAUFMAN DEPT STORE	MAHONING	GOSHEN TWP	MILL CREEK	DIESEL FUEL	50	GAL	0
	90	KUNTZMAN TRUCKING	MAHONING	CAMPBELL	MAHONING RIVER	HYDROCARBON	0	UNK	0
	90	L T V STEEL CAMPBELL	MAHONING	WARREN	MAHONING RIVER	WASTE WATER	3000	GAL	0
	89	LTV STEEL WARREN COKE	TRUMBULL TRUMBULL	WARREN	STORM SEWER	WASTE WATER	1500	GAL	100
	89	L T V STEEL WARREN COKE	TRUMBULL	WARREN	STORM SEWER	WASTE WATER	500	GAL	0
	89	L T V STEEL, WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER	0	UNK	0
	90	L T V STEEL WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER	2000	GAL	0
	90	L T V STEEL, WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER	ABSORBENT OIL		GAL	0
	90	L T V STEEL WARREN COKE L T V STEEL WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER	DIRECT COOLING WATER		GAL	0
,	90	LTV STEEL WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER		GAL	0
	90	LTV STEEL WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER TRIB	UNK HYDROCARBON	-	UNK	0
	90	LTV STEEL WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER	OIL		GAL	0 0
	91	LTV STEEL WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER	SULFURIC ACID		GAL	0
	91	LTV STEEL WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER	SULFURIC ACID	-	UNK	107000
	91 91	LTV STEEL, WARREN COKE	TRUMBULL	WARREN	MAHONING RIVER TRIB	ACID WASTEWATER	109000		0
	91	LTV STEEL WARREN COKE	TRUMBULL	WARREN	STORM SEWER	TAR		GAL	0
	91		TRUMBULL	WARREN	UNKNOWN	CRUDE COAL TAR	-	GAL	0
	92	A THE OTTO WARREN COKE		WARREN	MAHONING RIVER	WASTE WATER	_) GAL	0
	93			WARREN	MAHONING RIVER	WASTE WATER	2		0
	2			WARREN	MAHONING RIVER	WASTE OIL			0
	2			WARREN	MAHONING RIVER	CONTAMINATED WASTER		1 GAL	0
	2			WARREN	MAHONING RIVER	OIL		O UNK	0
	2			L WARREN	MAHONING RIVER	OIL		O UNKI	
	9	A THATTE WARDEN COM		L WARREN	UNKNOWN CREEK	WASTE WATER		O UNK	0
	8		PORTAGE	WINDOM	SILVER CREEK TRIB	CRUDE OIL		1 UNK	0
	9		COLUMBI	AN SEBRING	DEER RUN	PETROLIUM OIL		O GAL	0
	9		TRUMBUL	L CORTLAND	STORM SEWER	HYDRAULIC FLUID	-	o unk	0
	9	1 LOUISIANA PACIFIC CORP	MAHONIN	G BOARDMAN	MAHONING RIVER TRIB	HYDRAULIC OIL		O UNK	
	ç	2 LOWELVILLE ROD & GUN	MAHONIN	G LOWELVILLE	UNKNOWN CREEK	SOAPY STUFF	1;	O GAL	
	\$	O LYDEN OIL	MAHONIN	IG CAMPBELL	MAHONING RIVER	GASLOINE		O UNK	-
	6	2 LYNN STRANG / STRANG'S	JU ASHTABU	ILA DORSET	UNKNOWN CREEK	SLUDGE	29	40 GAL	0
		M & B OPERATING CO	PORTAGE			CRUDE OIL			-
		MAHONING CO SANI ENG L	EP MAHONIA			SEWAGE PAINT		O UNH	•
	1	MAHONING PAINT CORP	MAHONIN			SEWAGE		O UNF	
		9 MAHONING VALLEY SANIT.				FLUOROSILICIC ACID	15	00 GAL	. 0
		3 MAHONING VALLEY SANIT	ARY TRUMBU	LL NILES	MEANDER CREEK	TRASH		O UN	< 0
		89 MCGUIRES JUNKYARD	MAHONI		TW UNKNOWN	SEWAGE		O UNI	K 0
		92 MEANDER STP	TRUMBL		GE MEANDER CREEK	NATURAL GAS		O UN	к 0
		90 MID STATE OIL FIELD	PORTAG			FERTILIZER 28%		10 GA	L 0
		92 MILLER BROTHERS	ASHTAB		LEY UNKNOWN CREEK STORM SEWER	KEROSENE		O UN	K O
		94 MILLIKEN AUTOMOTIVE	TRUMBL	JLL WARREN	STURM SENER				

•

			*** TC 04/4 Y	MATERIAL_1	AMOUNT_1 UN	ITS_1 RE	COVER_1
NTITY			Alennai	UNKNOWN	0 UM	к	0
IOTHER NATURE			DEER CREEK	ALGAE	0 UF	vк	0
IOTHER NATURE			BEOCK CREEK Had	ALGAE	o u	vK	0
IOTHER NATURE	MAHONING		LAKE MILTON	ALGAE	0 NK	os	0
IOTHER NATURE	MAHONING	1001100110	PUBLIC POND	OIL	0 01	vĸ	0
AOTHER NATURE	PORTAGE	100101010	POND	NO SPILL	0 M	os	0
AOTHER NATURE	MAHONING		LAKE MILTON	DIESEL FUEL	115 G	AL	0
NOTOR FREIGHT I NC.	MAHONING		LAKE MILTON		5 G	AL	0
WR ART TILTON	TRUMBULL		UNKNOWN CREEK	FUEL OIL	0 U	NK	0
WR BARRY BAER	TRUMBULL	NEWTON FALLS	UNKNOWN	OIL	0 0		0
WR BENOWSKI	PORTAGE	HIRAM	EAGLE CREEK	MANURE	0 0		0
MR CHARLES SMITH	MAHONING	CRAIG BEACH	LAKE MILTON		275 G		100
MR DENZIL SNYDER	TRUMBULL	CORTLAND	MOSQUITO CREEK TRIB	FUEL OIL	0 6		0
MR HERMIT DEAN JR	PORTAGE	WINDOW TWP	UNKNOWN CREEK	UNK	50		0
MR JOHN GORAL	TRUMBULL	BRACEVILLE TW	MAHONING RIVER TRIB	PAINT	-	INK	0
MR JOHN PITTMAN	MAHONING	POLAND	STORM DITCH	RED STUFF	20 0		15
MR LAURA HUTCHINS	TRUMBULL	CHAMPION TWP	STORM SEWER-MAHONING RIV		20 0		0
MR LEO SORICE	MAHONING	BOARDHAN	MILL CREEK	DIESEL FUEL		JNK	0
MR LLOYD SHERIDAN	MAHONING	YOUNGSTOWN	UNKNOWN CREEK	CONCRETE		JNK	a
MR NOVAK	TRUMBULL	HARTFORD	WETLANDS	ASPHALT			0
MR PETERS	COLUMBIAN	KNOX TWP	UNKNOWN CREEK	BLACK OIL STUFF		UNK	0
MR RANDY SMILEY	MAHONING	ELLSWORTH	UNKNOWN	MOTOR OIL	70		0
MR RANKIN	PORTAGE	RAVENNA TWP	UNKNOWN CREEK	TRASH		UNK	0
MR RICHARD GRUND	PORTAGE	RAVENNA	HINKLEY CREEK	FUEL OIL	100		0
	MAHONING	YOUNGSTOWN	SEWER	WASTE OIL	-	UNK	0
MR ROBERT COOK	MAHONING	BERLIN TWP	MILL CREEK	FUEL OIL		UNK	
MR ROY CARSON	MAHONING	YOUNGSTOWN	STORM SEWER	OILY STUFF		GAL	0
MR SAM RAFIDE	PORTAGE	NELSON	MAHONING RIVER TRIB	DRUMS	0	UNK	0
MR VANDERHOVER	STARK	LEXINGTON	DEER CREEK	DIESEL FUEL	5	GAL	3
MR VINCE HAROLD	PORTAGE	WINDOW	S F CREEK	WASTEWATER	0	UNK	0
MR ZALID		LEXINGTON TWI	D UNKNOWN	FUEL OIL	144	GAL	0
MR. WILBER HOPTON	STARK	NELSON TWP	UNKNOWN CREEK	GARBAGE	0	UNK	o
MS IRENE WORK	PORTAGE		STORM SEWER	UNKNOWN	0	UNK	0
MULTICLEAR SERVICE	MAHONING		STORM SEWER	DIESEL FUEL	100	GAL	0
MUNSON TRANSPORTATION			MAHONING RIVER	BLUE GREEN STUFF	o	UNK	0
MURPHY TRUCKING CO	COLUMBIA			CRUDE OIL	30	GAL	0
NOBLE OIL	PORTAGE	EDINBURG TWP	UNKNOWN	DIESEL FUEL	100	GAL	0
NORTH AMERICAN VAN LINE		PALMIRE TWP	UNKNOWN	DIESEL FUEL	1200	GAL	1200
NORTH CANTON TRANSFER	MAHONING			WASTE WATER	93000	GAL	0
NORTH STAR STEEL	MAHONIN			OIL & GREASE	0	GAL	0
NORTH STAR STEEL	MAHONIN			WASTE WATER	139000	GAL	0
NORTH STAR STEEL	MAHONIN			OIL & GREASE	a	UNK	0
NORTH STAR STEEL	MAHONIN			WASTE WATER	164000	GAL	0
NORTH STAR STEEL	MAHONIN			WASTE WATER	c	UNK	0
NORTH STAR STEEL	MAHONIN			WASTE WATER	c	UNK	0
NORTH STAR STEEL	MAHONIN			MOILGREASE	300	GAL	0
NORTH STAR STEEL	MAHONIN			T.S.S. WASTE WATER	18600	GAL	0
NORTH STAR STEEL	MAHONIN	G YOUNGSTOWN		HYDROCARBON		O UNK	0
NORTH STAR STEEL	MAHONIN	ig youngstown				0 GAL	0
NORTH STAR STEEL	MAHONIN	ig youngstown		WASTEWATER		O UNK	0
NORTH STAR STEEL	MAHONIN	IG YOUNGSTOWN		OIL AND GREASE		O UNK	0
NORTH STAR STEEL	MAHONIN	IG YOUNGSTOWN		OIL AND GREASE		0 GAL	0
NORTH STAR STEEL	MAHONI	G YOUNGSTOW		WASTE WATER		A KGS	0
1 NORTH STAR STEEL	MAHONII	VG YOUNGSTOW	N MAHONING RIVER	OIL	-	O UNK	0
1 NORTH STAR STEEL	MAHONI	VG YOUNGSTOW	N MAHONING RIVER	OIL		II KGS	0
1 NORTH STAR STEEL	MAHONI		N MAHONING RIVER	OIL			0
1 NORTH STAR STEEL	MAHONI		N MAHONING RIVER	OIL		18 KGM	-
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							

	YR	ENTITY	COUNTY	TWP_CITY	WATERWAY	MATERIAL_1	AMOUNT_1	UNITS_1	RECOVER_1
	89	NOVAK AIRCRAFT MAINTENAN	PORTAGE	RAVENNA	UNKNWON	OIL	J	GAL	0
	89	O & P FUEL OIL CO	ASHTABULA	RICHMAN	UNKNOWN	FUEL OIL	275	GAL	50
	89	0007	MAHONING	CANFIELD	STORM SEWER	DIESEL FUEL	1600	GAL	0
	90	0007	TRUMBULL	CORTLAND	STORM SEWER	DIESEL FUEL	0	UNK	0
	93	0007	MAHONING	CANFIELD	MEANDER CREEK	ASPHALT EMULSION	500	GAL	0
	93	0007	TRUMBULL	HUBBARD	UNKNOWN CREEK	WASTE OIL	0	UNK	0
	92	OHIO DEPT NATURAL RESOUR	PORTAGE	DEERFIELD	BERLIN RESERVIOR	FUEL OIL	350	GAL	0
	89	OHIO EDISON	TRUMBULL	WEATHERSFIELD	MAHONING RIVER	SOOT	0	UNK	0
	90	OHIO EDISON	TRUMBULL	NILES	MAHONING RIVER	WASTE HYDROCHLORIC AC	150	GAL	0
	91		TRUMBULL	NILES	MAHONING RIVER	ASH	540	CFT	0
	93		TRUMBULL	NILES	MAHONING RIVER	WASTE WATER	0	UNK	0
	93			NILES	MAHONING RIVER	WASTE WATER	0	UNK	0
	83	OHIO EDISON	TRUMBULL	NILES	MAHONING RIVER	WASTE WATER	0	UNK	0
	ົມ	OHIO EDISON	TRUMBULL	NILES	MAHONING RIVER	WASTEWATER	0	UNK	0
			TRUMBULL	NILES	MAHONING RIVER	WASTEWATER		UNK	0
	93 67	OHIO EDISON			MAHONING RIVER	WASTEWATER		UNK	0
	83	OHIO EDISON	TRUMBULL	NILES				GAL	0
	91	OHIO EDISON	TRUMBULL	NILES		ACID		GAL	0
	89	OHIO EDISON ELECTRIC CO	TRUMBULL	WARREN	MAHONING RIVER	GASOLINE			0
	92	OHIO SCRAP & IRON	TRUMBULL	WARREN	MAHONING RIVER	HYDRAULIC OIL		UNK	
	91	OHIO WATER SERVICE	TRUMBULL	GIRARD	SQUAW CREEK TRIB	ODOR OF SULFUR		UNK	
	90	OLD SHEET & TUB MILL	MAHONING	STRUTHERS	MAHONING RIVER	OIL		UNK	
	91	ORCHARD ESTATES TRAILER	PORTAGE	RAVENNA	PUBLIC WATER SUPPLY	RUSTY ORANGE WATER		UNK	0
	89	ORION ENERGY	PORTAGE	ATWATER TWP	WATER SUPPLY	CRUDE OIL	3300		3200
	92	ORION PETROLEUM CORP	PORTAGE	ATWATER TWP	DEER CREEK	CRUDE OIL	3570		2600
	93	PNL HEAT TREATMENT	MAHONING	YOUNGSTOWN	STORM SEWER	OIL	0	UNK	C
	93	PACKARD ELECTRIC CO	TRUMBULL	VIENNA TWP	SPRING RUN	GREEN STUFF	0	UNK	(
	90	PALUMBO CLEANERS	MAHONING	CANFIELD	STORM SEWER	SUDS	0	UNK	(
	91	PANDA TRUCKING CO	TRUMBULL	WARREN	UNKNOWN CREEK	WATER PICKUP	0	NOS	(
	89	PAUL BIGELOW & SONS	MAHONING	MILTON TWP	UNKNWON	SEWAGE	0	UNK	(
	93	PENTECH ENTERPRISES	TRUMBULL	FOWLER TWP	UNKNOWN CREEK	DIESEL FUEL	150	GAL	C
	92	PLY-TRIM CORP	MAHONING	AUSTINTOWN	MAHONING RIVER TRIB	WATER BASED LATEX PRIM	1 50	GAL	(
	93	PORTAGE COUNTY ENGINEER	PORTAGE	RAVENNA	SILVER CREEK	HYDRAULIC OIL	10	GAL	(
	90	PORTS PETROLEUM	MAHONING	AUSTINTOWN	UNKNOWN	DIESEL FUEL	0	UNK	C
	89	PRODEX INC	PORTAGE	RAVENNA	HINKLEY CREEK	WASTE WATER	o	UNK	c
	90	PSK STEEL	TRUMBULL	HUBBARD	STORM SEWER	CUTTING OIL	0	UNK	(
	92	PUTNAM TRANSFER	PORTAGE	RAVENNA	STORM SEWER	GASOLINE	. 5	GAL	(
	92	QUAKER STATE OIL / CRUDE O		ATWATER TWP	UNKNOWN	OIL	714	GAL	67:
	-			WAYNE TWP	UNKNOWN	CRUDE OIL		GAL	(
	89	QUAKER STATE OIL CO		WEATHERSFIELD		CRUDE OIL		GAL	
	91	QUAKER STATE OIL CO	TRUMBULL		STORM SEWER	DIESEL		GAL	
	92	R KUNZMAN INC	STARK	ALLIANCE	MAHONING RIVER TRIB	PCB CONTAMINATED WAS		UNK	
	90	R M I TITANIUM	TRUMBULL	NILES		WASTE WATER		UNK	
	92	R M I TITANIUM	TRUMBULL	NILES	MAHONING RIVER			UNK	
	93	R M I TITANIUM	TRUMBULL	NILES	MAHONING RIVER			GAL	
	91	RMI TITANIUM	TRUMBULL	NILES	HOLDING POND	HYDROFLOURIC ACID			
	83	RMI TITANIUM	TRUMBULL	NILES	MAHONING RIVER	OIL		GAL	
	94	R M I TITANIUM	TRUMBULL	NILES	MAHONING RIVER	WASTE WATER		UNK	
	89	RAVENNA ARMY AMMUNITION	PORTAGE	WINDHAM	UNKNOWN	TNT WASTE WATER		GAL	
	92	RAVENNA ARMY AMMUNITION	PORTAGE	RAVENNA	SAND CREEK TRIB	WASTE WATER	180000		
	92	RAVENNA CITY GARAGE	PORTAGE	RAVENNA	SEWER	GASOLINE		GAL	2
	89	RAY PANDER TRUCKING	MAHONING	CANFIELD	SMALL CREEK	BRINE		UNK	
	93	RAYMOND ANDERSON FARM	MAHONING	CANFIELD	INDIAN RUN	PESTICIDES	0	UNK	
	91	REGAL TRANSPORTATION	TRUMBULL	NILES	UNKNOWN	DIESEL FUEL	. 6	UNK	
	89	REMMANT ROOM	TRUMBULL	BROOKFIELD TW	UNKNOWN	CHEMICALS	C	UNK	
	91	RIVER BEND TRANSPORTIOTR		AUSTIN	UNKNOWN	DIESEL FUEL	300	GAL	
		RIVERSIDE AUTO CENTER	MAHONING	ALLIANCE	MAHONING RIVER	JUNK	c	UNK	

- · :

-

			TWP_CITY	WATERWAY	MATERIAL_1	AMOUNT_1		1 RECOVER_1
)2	ROBERTSON HEATING & SUPP		ALLIANCE		DIESEL FUEL	105		90
19	ROLAND BROTHERS WAREHO			FOUR MILE RUN	SMOKE		UNK	0
			NEW MIDDLETON		DIESEL FUEL		GAL	0
21			HUBBARD	STORM SEWER	MINERAL SPIRITS		GAL	o
39			RAVENNA	UNKNOWN	DIESEL FUEL		UNK	0
ю			RAVENNA	UNKNWON	O/L		UNK	0
22			NUMA	UNKNOWN CREEK	OIL .		UNK	0
72			NORTH LIMA	UNKNOWN	NO SPILL		UNK UNK	0 0
39		TRUMBULL	WARREN	RED RUN CREEK	WASTE WATER		UNK	0
39			WARREN	RED RUN CREEK	SUSPENDED SOLIDS		UNK	0
21			WARREN	RED RUN CREEK	OIL (13 MGA.)		UNK	0
91 91			WARREN	RED RUN CREEK RED RUN CREEK			PPM	0
91	SCHAEFER EQUIPMENT INC		WARREN		OIL OIL		UNK	0
21	SCHAEFER EQUIPMENT INC	TRUMBULL TRUMBULL	WARREN	RED RUN CREEK RED RUN CREEK	WASTE WATER		UNK	0
72	SCHAEFER EQUIPMENT INC	TRUMBULL	WARREN	RED RUN CREEK	WASTE WATER		UNK	0
72 72	SCHAEFER EQUIPMENT INC		WARREN	RED RUN CREEK	OIL	_	UNK	0
92 92	SCHAEFER EQUIPMENT INC	TRUMBULL TRUMBULL	WARREN	RED RUN CREEK	WASTE WATER		UNK	0
83	SCHAEFER EQUIPMENT INC		WARREN	RED RUN CREEK	WASTE WATER		UNK	0
P1	SCHAEFFER METAL PRODUCT		RAVENNA	STORM SEWER	WASTE CHEMICALS		UNK	0
 5 9	SEBRING CHURCH OF CHRIST		SEBRING	PRIVATE POND	FISHKILL		пм	0
80	SERVO CLEAN	MAHONING	YOUNGSTOWN	STORM SEWER	UNK BLACK LIQUID & SLUD		UNK	0
80	SHADYBROOK MOBIL HOME P		BOARDMAN	STORM SEWER-MILL CREEK	FUEL OIL		GAL	0
91	SHAHEEN PLUMBING & HEATI		ALLIANCE	STORM SEWER	WASTE OIL	40	GAL	40
91	SODA CONSTRUCTION	STARK	LEXINGTON TWP	BERLIN RESERVOIR	UNKNOWN	110	GAL	0
90	SOUTHERN RADIATOR	MAHONING	YOUNGSTOWN	SEWER	ANTIFREEZE	0	UNK	0
91	SOUTHWEST MOTOR FREIGHT		AUSTINTOWN	MAHONING RIVER TRIB	DIESEL FUEL	150	GAL	0
93	SPARKS TUNE UP	TRUMBULL	WARREN	STORM SEWER	OIL	0	UNK	0
92	STANDARD LAFARGE	MAHONING	YOUNGSTOWN	UNKNOWN	GREASE	0	UNK	0
89	STAR ROOFING/COVELLI PRO	TRUMBULL	NILES	MOSQUITO CREEK TRIB	TAR	0	UNK	0
91	STELL CITY	MAHONING	AUSTINTOWN TW	STORM SEWER	OIL	0	UNK	0
89	STRUTHERS AUTO SERVICE	MAHONING	STRUTHERS	MAHONING RIVER TRIB	GASOLINE	15	GAL	0
90	STRUTHERS CSO	MAHONING	STRUTHERS	YELLOW CREEK	SEWAGE	0	UNK	0
92	STRUTHERS STREET DEPT	MAHONING	STRUTHERS	MAHONING RIVER	METAL SHAVINGS	0	UNK	0
89	SUMMIT NATIONAL	PORTAGE	DEERFIELD	BERLIN RESERVOIR	WASTE WATER	0	UNK	0
90	T & W FORGE INC.	STARK	ALLIANCE	UNKNOWN	FUEL OIL	300	GAL	0
ន	THERM-O-LINK	PORTAGE	GARRETTSVILLE	SILVER CREEK	YELLOW MATERIAL	0	UNK	о
90	THERMAL TECH INC.	TRUMBULL		MAHONING RIVER	ORANGE STUFF	0	UNK	0
90	THERMATEX	MAHONING	NEWTON FALLS	MAHONING RIVER	SOLUBLE OIL	0	UNK	0
89	TIM WEAVER	MAHONING	POLAND	EVANS LAKE	TAR OIL	0	UNK	0
90	TOM'S SEWER & DRAINS	TRUMBULL	GERRAD	MAHONING RIVER	SEWAGE	0	UNK	0
90	TOP LINE	TRUMBULL	LORDSTOWN	UNKNOWN	DIESEL FUEL	100	GAL	0
93	TRI STATE MOTOR TRANSIT C	PORTAGE	CHARLESTON TW	W BRANCH RESERVOIR	DIESEL FUEL	50	GAL	40
89	TRUCK STOPS OF AMERICA	MAHONING	LIMA	UNKNOWN .	DIESEL FUEL	0	UNK	0
89	TRUCK STOPS OF AMERICA	MAHONING	NORTHLIMA	UNKNOWN	DIESEL FUEL	0	UNK	o
90	TRUCK STOPS OF AMERICA	MAHONING	N. LIMA	MILL CREEK	GASOLINE	0	UNK	0
89	TRUCK WASH	MAHONING	LIMA	UNKNOWN CREEK	SOAP & DIRT	0	UNK	0
93	TRUE GREEN CHEMICALS	MAHONING	N JACKSON TWP	PRIVATE POND	FERTILIZER	94	GAL	0
93	TRUMBULL MEMORIAL HOSPIT	TRUMBULL	WARREN	MAHONING RIVER	DIESEL FUEL	640	GAL	0
89	TURKEY FARM	PORTAGE	NELSON TWP	COMP CREEK	FISHKILL	200	πм	0
91	UNITED EXCAVATING AVE	MAHONING	YOUNGSTOWN	STORM SEWER-MAHONING RIV	OIL	0	UNK	0
90	UNIVERSAL TRUCK PLAZAMA	MAHONING	YOUNGSTOWN	UNNAMED CREEK	DIESEL FUEL	200	GAL	0
89	UNK	MAHONING	BOARDMAN	MILL CREEK	ILLEGAL DUMPING	0	UNK	0
89	UNK	MAHONING	SMITH TWP	UNKNOWN	JUNK TRASH	0	UNK	0
89	UNK	MAHONING	GIRARD	UNKNOWN	GREEN MATERIAL	0	UNK	0

i.

÷

					MATERIAL_1	AMOUNT_1	UNIT	S_1 RECOVER_1	
YR	ENTITY	•		WATERWAY MEANDER CK RESV.	UNK	- 0	UNK	-	
90	UNK				UNK	10	DRM	a a	,
90	UNK		YOUNGSTOWN	STORM SEWER STORM SEWER	UNK	0	UNK	c	,
90	UNK	MAHONING	YOUNGSTOWN	STORM SEWER	CUTTING OIL	0	UNK	c	,
90	UNK		BOARDMAN	UNNAMED CREEK	UNK	1	DRM	ı (,
90	UNK		N. LIMA GARRETTSVILLE	SILVER CREEK	DIESEL FUEL	300	GAL	c	0
90	UNK	PORTAGE		STORM SEWER	OILY SUBSTANCE	0	UNK		0
90	UNK	PORTAGE	ATWATER	UNKNOWN	DIESEL FUEL	300	GAL	(0
90	UNK	PORTAGE	PALMIRA TWP	UNKNOWN	UNK	110	GAL		0
90	UNK	PORTAGE	GARRETSVILLE	UNKNOWN CREEK	OIL	0	UNK	: (0
90	UNK	PORTAGE	PALMYRA TWP	LITTLE SQUAW CREEK	BLACK WATER-DRIVEWAY	0	UNK	r (0
90	UNK	TRUMBULL	UBERTY TWP	MAHONING RIVER TRIB	OIL	0	UNK	(0
90	UNK	TRUMBULL	NEWTON FALLS		UNK	0	UNK	(0
90	UNK	TRUMBULL	CHAMPION	STORM SEWER	CUTTING OIL	o	UNH	¢ .	0
89	UNKNOWN	MAHONING	YOUNGSTOWN	BEAR CREEK	MILKY WHITE STUFF	o	UNF	<	0
89	UNKNOWN	MAHONING	AUSTINTOWN TW		ORANGE STUFF	a	UN	<	0
89	UNKNOWN	MAHONING		HUNTERS CREEK	SEWAGE	a		<	0
89	UNKNOWN	MAHONING	YOUNGSTOWN		UNKNOWN	c	UN	<	0
89	UNKNOWN	MAHONING		MEANDER CK RESV.	CRUDE OIL	c	UNI	ĸ	0
89	UNKNOWN	MAHONING	ELLSWORTH	MEANDER CREEK	WHITE STUFF	c	UNI	ĸ	0
89	UNKNOWN	MAHONING	AUTINTOWN	UNKNOWN	BLACK STUFF	(אט מ	ĸ	0
89	UNKNOWN	MAHONING	GASHEN	UNKNOWN	OIL	(UNI	ĸ	0
89	UNKNOWN	MAHONING	BEAVER TWP	UNKNOWN	BRINE	(UN	ĸ	0
89	UNKNOWN	MAHONING	BOARDMAN	UNKNOWN CREEK	HYDROCARBON		א ט	ĸ	0
89	UNKNOWN	MAHONING	NORTH LIMA	YELLOW CREEK	TRASH		ט מ	ĸ	0
89	UNKNOWN	MAHONING	POLAND	YELLOW CREEK			O UN		0
89	UNKNOWN	PORTAGE	PALMYRA TWP	POLE CREEK	FISHKILL		o mu		0
89	UNKNOWN	PORTAGE	RAVENNA	POND	FISHKILL		0 UN		0
89	UNKNOWN	PORTAGE	GARRETSVILLE	SILVER CREEK	DIESEL FUEL		0 GA		0
89	UNKNOWN	PORTAGE	ATWATER TWP	UNKNOWN	FUEL OIL		0 UN		0
89	UNKNOWN	PORTAGE	ATWATER TWP	UNKNOWN	OIL		O UN		0
89	UNKNOWN	TRUMBULL	WARREN	MAHONING RIVER	FOAM BRIGHT BLUE SUBSTANC		OUN		0
89	UNKNOWN	TRUMBULL	WARREN	MOSQUITO CREEK		-	0 UN		0
89	UNKNOWN	TRUMBULL	BROOKFIELD TV		CHEMICAL		0 UA		0
89	UNKNOWN	TRUMBULL	HUBBARD TWP	UNKNOWN	ASBESTOS	10	о с. хо с.		0
90	UNKNOWN	COLUMBIAN	I BELOIT	WESTVILLE LAKE RESERVIOR			0 UI		0
90	UNKNOWN	MAHONING	YOUNGSTOWN	BEAR CREEK	UNK WHITE STUFF		o u		0
90	UNKNOWN	MAHONING	POLEN	BURGESS LAKE	RAW SEWAGE		50 G/		0
90	UNKNOWN	MAHONING	AUSTINTOWN	HOLDING POND	DIESEL FUEL		0 01		0
90	UNKNOWN	MAHONING	STROTHERS	MAHONING RIVER	OILY SUBSTANCE		0 01		o
90	UNKNOWN	MAHONING	CANFIELD	MILL CREEK TRIB	GREEN STUFF		0 0		0
90	UNKNOWN	MAHONING	NEWTON FALLS	s POND	OIL SHEEN				0
90	UNKNOWN	MAHONING	YOUNGSTOWN	UNKNOWN .	BRINE		0 0		0
ø	UNKNOWN	PORTAGE	DERRFIELD	UNNAMED CREEK	RED WATER		0 0		0
ø	UNKNOWN	PORTAGE		UNNAMED CREEK	BRINE	,	00		0
ø	UNKNOWN .	STARK	ALLIANCE	UNKNOWN	BRINE		0 0		0
9		STARK	ALLIANCE	UNKNOWN	CRUDE OIL		0 0		0
90	UNKNOWN	STARK	ALLIANCE	UNKNOWN	DIESEL FUEL		00		0
9		TRUMBULI	. NILES	MAHONING RIVER	BROUN STUFF		0 0		
9		TRUMBULI	NEWTON FALL	S MAHONING RIVER	FISH KILL		0 0		0
9		TRUMBULI	CHAMPION TW	P MAHONING RIVER TRIB	OIL		0 0		0
9		TRUMBUL	BAZETTA	MOSQUITO CREEK	DIESEL FUEL		οι		0
9		TRUMBUL		UNKNOWN	ABANDONED DRUMS		2 r		2
۔ و		TRUMBUL		S W B MAHONING RIVER	WHITE FOAM		0 0	JNK	0
2			LC UBERTY TWP	LIBERTY GERARD LAKE	FOAM		οι	JNK	0
			LA WAYNE TWP	POND	UNIDENTIFIED OIL		1 (SAL	1
	1 UNKNOWN								

YR	ENTITY	COUNTY	TWP_CITY	WATERWAY	MATERIAL_1	AMOUNT_1	UNITS 1	RECOVER_1
91	UNKNOWN	MAHONING	YOUNGSTOWN	BEAR CREEK	OIL .	-	UNK	0
91	UNKNOWN	MAHONING	YOUNGSTOWN	MILL CREEK TRIB	ANTI FREEZE	0	UNK	o
91	UNKNOWN	MAHONING	AUSTINTOWN TW	STORM SEWER-MILL CREEK TR	WHITE SOLUBLE OIL	50	GAL	0
91	UNKNOWN	MAHONING	BEAVER TWP	TURKEY CREEK TRIB	BLUE DYE	0	UNK	0
91	UNKNOWN	MAHONING	POLAND	UNKNOWN	DYE	0	UNK	0
91	UNKNOWN	TRUMBULL	NEWTON FALLS	MAHONING RIVER	CONCRETE	0	UNK	0
91	UNKNOWN	TRUMBULL	WARREN	MAHONING RIVER TRIB	OIL	0	UNK	0
91	UNKNOWN	TRUMBULL	ALLEN	MOSQUITO CREEK TRIB	SEWAGE	0	UNK	0
91	UNKNOWN	TRUMBULL	HOLLAND TWP	MOSQUITO CREEK TRIB	GREEN STUFF	0	UNK	0
91	UNKNOWN	TRUMBULL	WARREN	PARK POND	VOLVOX AQUATIC LIFE	0	UNK	0
91	UNKNOWN	TRUMBULL	HOWLAND TWP	POND	ABANDONED DRUM	0	UNK	0
Q1	UNKNOWN	TRUMBULL	BROOKFIELD	STORM DITCH	OIL	0	UNK	0
92	UNKNOWN	ASHTABULA	WILLIAMSFIELD	UNKNOWN CREEK	DIESEL FUEL	0	UNK	0
92	UNKNOWN	MAHONING	YOUNGSTOWN	BEAR CREEK	WHITE STUFF	0	UNK	0
92	UNKNOWN	MAHONING	BERLIN CENTER	BERLIN RESERVOIR	ALGAE	0	UNK	0
\$ 2	UNKNOWN	MAHONING	YOUNGSTOWN	LAKE NEWPORT	MILKY STUFF	0	UNK	0
92	UNKNOWN	MAHONING	YOUNGSTOWN	LAKE NEWPORT	OTL	0	UNK	0
92	UNKNOWN	MAHONING	YOUNGSTOWN	MAHONING RIVER	GREEN STUFF	0	UNK	0
92	UNKNOWN	MAHONING	AUSTINTOWN	MEANDER CREEK	DIESEL FUEL	0	UNK	0
92	UNKNOWN	MAHONING	BOARDMEN	MILL CREEK	COLOR	0	UNK	0
92	UNKNOWN	MAHONING	BOARDMAN	MILL CREEK	UNKNOWN	0	UNK	0
92	UNKNOWN	MAHONING	BOARDMAN	MILL CREEK	IRON	0	UNK	0
92	UNKNOWN	MAHONING	CANFIELD	MILL CREEK	HEATING OIL	. 0	UNK	0
92	UNKNOWN	MAHONING	CANFIELD	MILL CREEK	OIL	0	UNK	0
92	UNKNOWN	MAHONING	CANFIELD	SAWMILL RUN CREEK TRIB	UNKNOWN STUFF	0	UNK	0
92	UNKNOWN	MAHONING	BOARDMAN TWP	STORM SEWER	GASOLINE	20	GAL	0
92	UNKNOWN	MAHONING	BEAVER TWP	STRIP MINE LAKE OUTLET	UNKNOWN STUFF	0	UNK	0
92	UNKNOWN	MAHONING	COTTSVILLE TWP	UNKNOWN	CRUSTY SHEEN	0	UNK	0
92	UNKNOWN	MAHONING	YOUNGSTOWN	UNKNOWN	DEAD FISH	100	пы	0
92	UNKNOWN	PORTAGE	DEERFIELD TWP	BERLIN RESERVOIR	DRUM	1	тм	0
92	UNKNOWN	PORTAGE	EDINBURGH TWP	UNKNOWN CREEK	BRINE	0	UNK	0
92	UNKNOWN	STARK	LEXINGTON	BERLIN RESERVOIR	BLACK FOAMY STUFF	0	UNK	0
92	UNKNOWN	TRUMBULL	NEWTON FALLS	E B MAHONING RIVER	IRON	0	UNK	0
92	UNKNOWN	TRUMBULL	NEWTON FALLS	MAHONING RIVER	SEWAGE	0	UNK	0
92	UNKNOWN	TRUMBULL	WARREN	MAHONING RIVER	OIL	0	UNK	0
92	UNKNOWN	TRUMBULL	WARREN	REDLAKE	BLUE STUFF	0	UNK	0
92	UNKNOWN	TRUMBULL	GIRARD	UNKNOWN	KEROSENE	0	UNK	0
92	UNKNOWN	TRUMBULL	BRACEVILLE	UNKNOWN	OIL	25	GAL	0
92	UNKNOWN .	TRUMBULL	NEWTON FALLS	W B MAHONING RIVER TRIB	IRON	0	UNK	0
93	UNKNOWN	COLUMBIAN	BUTLER TWP	STORM SEWER-PRIVATE POND	FISH KILL	24	тм	0
83	UNKNOWN	MAHONING	YOUNGSTOWN	CASCADE RAVINE	SOAP	0	UNK	0
93	UNKNOWN	MAHONING	STRUTHERS	MAHONING RIVER	OL	0	UNK	0
93	UNKNOWN	MAHONING	GOSHEN	UNKNOWN .	DIESEL FUEL	0	UNK	· 0
93	UNKNOWN	MAHONING	SMITH TWP	UNKNOWN CREEK	OIL	0	UNK	0
83	UNKNOWN	MAHONING	AUSTINTOWN	UNKNOWN CREEK	OIL	4	GAL	0
23	UNKNOWN	MAHONING	POLAND	YELLOW CREEK	OIL	0	UNK	o
93	UNKNOWN	STARK	ALLIANCE	UNKNOWN CREEK	OIL	0	UNK	0
93	UNKNOWN	TRUMBULL	CHAMPION	MAHONING RIVER	FLUORESCEIN DYE	0	UNK	0
93	UNKNOWN	TRUMBULL	WEATHERSFIELD	MAHONING RIVER TRIB	FOAM	0	UNK	0
93	UNKNOWN	TRUMBULL		UNKNOWN	PLASTIC	0	UNK	0
90	UNKNOWN STP	PORTAGE	LAKE MILTON	LAKE MILTON	RAW SLUDGE	0	UNK	0
92	UNKNOWN'SUSPECTED'NEW	MAHONING	AUSTINTOWN	UNKNOWN CREEK	OIL	30	GAL	0
91	UNOCAL REFINING & MARKETI	MAHONING	AUSTINTOWN TW	SULFUR RUN TRIB	DIESEL FUEL	0	UNK	0
90	UNOCAL/YOUNGSTOWN 78	MAHONING	YOUNGSTOWN	UNKNOWN	DIESEL FUEL	150	GAL	0
92	VALVOLINE INSTANT OIL CHAN	MAHONING	AUSTINTOWN	UNKNOWN CREEK	ANTI-FREEZE	0	UNK	0

**

					MATERIAL 1	AMOUNT_1	UNITS_1	RECOVER_1
YR	ENTITY	COUNTY		WATERWAY	MATERIAL_1	-	GAL	0
		MAHONING		STORM SEWER	TRASH & JUNK	0	UNK	0
90	VARIOUS JUNKYARDS	STARK	ALLIANCE	MAHONING RIVER	OIL	0	UNK	0
90	VERNAL PAVING	MAHONING	N.LIMA	UNKNOWN	UNCENERATED ASH	0	UNK	0
90	VERNON SAND & GRAVEL	TRUMBULL	VERNON	ENTIRE WATERTABLE	DIESEL FUEL	200	GAL	200
92	VERNON TWP TRUSTEES	TRUMBULL	VERNON TWP	PYMATUNING CREEK	CRUDE OIL	0	UNK	0
90	VIKING RESOURCES	PORTAGE	ATWATER TWP	UNNAMED CREEK	CRUDE OIL	2160	GAL	0
93	VIKING RESOURCES CORP	PORTAGE	PALMYRA TWP	KALE CREEK	WASREWATER	13000	GAL	0
89	WCISTEEL	TRUMBULL	WARREN	MAHONING RIV ER	COOLING WATER	0	UNK	0
89	W C I STEEL	TRUMBULL	WARREN	MAHONING RIVER	WASTEWATER	0	UNK	0
89	W C I STEEL	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER	2000	GAL	0
89	WCISTEEL	TRUMBULL	WARREN	MAHONING RIVER	OIL	0	UNK	0
90	W C I STEEL	TRUMBULL	WARREN	MAHONING RIVER	LUBE OL	x	GAL	0
9 1	W C I STEEL	TRUMBULL	WARREN	MAHONING RIVER	HYDROCHLORIC ACID	1600	GAL	0
92	WCISTEEL	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER	(UNK	0
92	WCISTEEL	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER	12000	GAL	0
92	W C I STEEL	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER	(UNK	0
92	W C I STEEL	TRUMBULL	WARREN	MAHONING RIVER		1	O UNK	0
92	WCISTEEL	TRUMBULL	WARREN	MAHONING RIVER	OIL		O UNK	0
92	WCISTEEL	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER		O UNK	0
93	W C I STEEL	TRUMBULL	WARREN	MAHONING RIVER	OIL		O UNK	0
92	WCISTEEL	TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER		O UNK	0
92	WCISTEEL	TRUMBULL	WARREN	MAHONING RIVER	STORM WATER		O UNK	0
92		TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER	10	O GAL	0
92		TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER	200	0 GAL	11000
92		TRUMBULL	WARREN	MAHONING RIVER	WASTE WATER		O UNK	0
92		TRUMBULL	WARREN	MAHONING RIVER	HYDRAULIC OIL UNTREATED RECYCLED V	N	O UNK	0
92		TRUMBULL	WARREN	MAHONING RIVER		•	о имк	0
9		MAHONING	5 BOYD	MAHONING RIVER	SUSPENDED SOLIDS		O UNK	0
81		TRUMBUL	L WARREN	MAHONING RIVER	SEWAGE	1500	00 GAL	0
9		TRUMBUL	L BAZETTA TWP	MOSQUITO CREEK	ALUM SLUDGE POTASSIUM PERMANGAI	A	O UNK	0
	ANT OF ANT	TRUMBUL	L WARREN	MOSQUITO CREEK TRIB			O UNK	0
5		MAHONIN			OL		18 GAL	0
	WEIMER ENTERPRISES	MAHONIN	G BERLINE CENT	ER UNKNOWN	GASOLINE	11	000 GAL	0
	WESTERN RESERVE FARM	CO PORTAGE	RAVANNA	UNKNOWN	28% LIQUID NITROGEN		O UNK	0
		PORTAGE		BERLIN RESERVOIR	LEACHATE		100 GAL	0
	WINDHAM MOBIL	PORTAGE	E WINDHAM	UNKNOWN CREEK	KEROSENE		O UNK	0
	WINDHAM MOBIL SERVICE	PORTAGE	E WINDHAM	EAGLE CREEK	GASOLINE	30	000 GAL	0
		PORTAG	E WINDHAM	SF EAGLE CREEK	SEWAGE		O UNK	0
		PORTAG	E WINDHAM	SF EAGLE CREEK	SEWAGE		O UNK	•
		PORTAG	E RAVENNA	STORM SEWER	GASOLINE		40 GAL	
		TRUMBL	ILL LIBERTY	UNKNOWN	DIESEL FUEL		50 GAL	
	STEL AND COCIOUT SYSTEM	is mahoni	NG CANFIELD TH	P UNKNOWN	DIESEL FUEL		0 UNK	•
		MAHONI	NG YOUNGSTON	IN MAHONING RIVER .	SEWAGE		0 UNH	
	CTREET OF		ING YOUNGSTOM		PAINT		200 GAL	
	IN THE REPORT OF THE PARTY OF THE		ING AUSTINTOW	Y TW FOUR MILE RUN	NITRIC ACID		50 GAL	~
	CONTRACTOR OF CONTRACTOR	E EN MAHON	ING AUSTINTOW	N TW STORM SEWER-BEARS DE	EN RU HYDRAULIC OIL		106 LBS	0
					HYDROFLURIC ACID		O UN	•
	UNC ONG			WN FOUR MILE RUN	OIL			
	92 YOUNGSTOWN WELDING							

APPENDIX 4

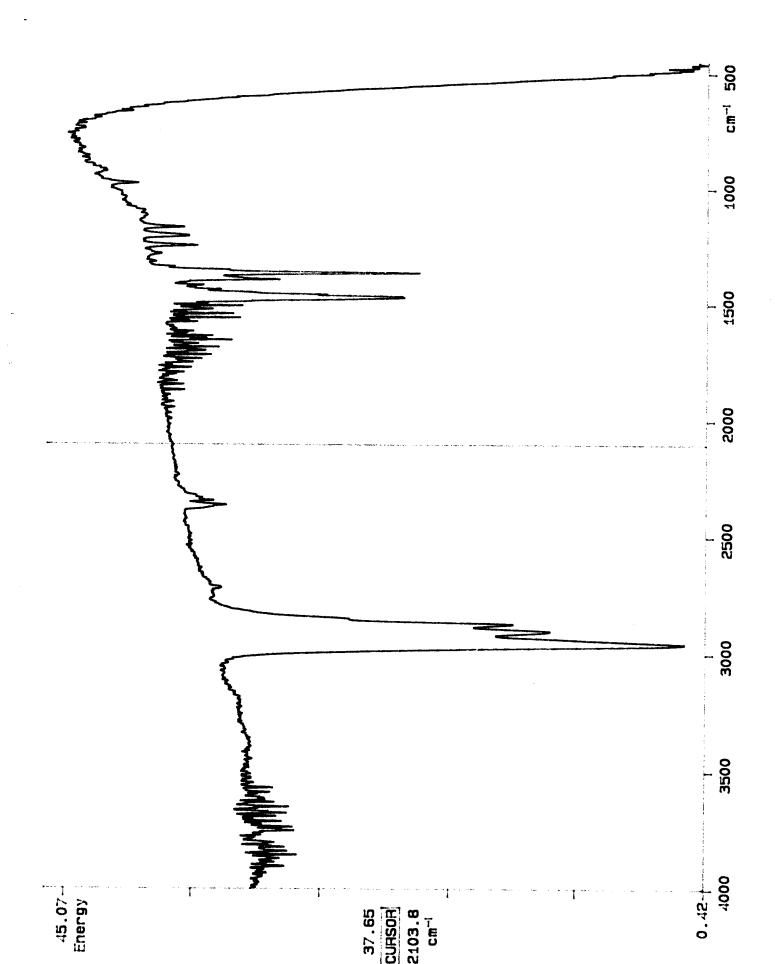
•

IR SPECTRA

. . .

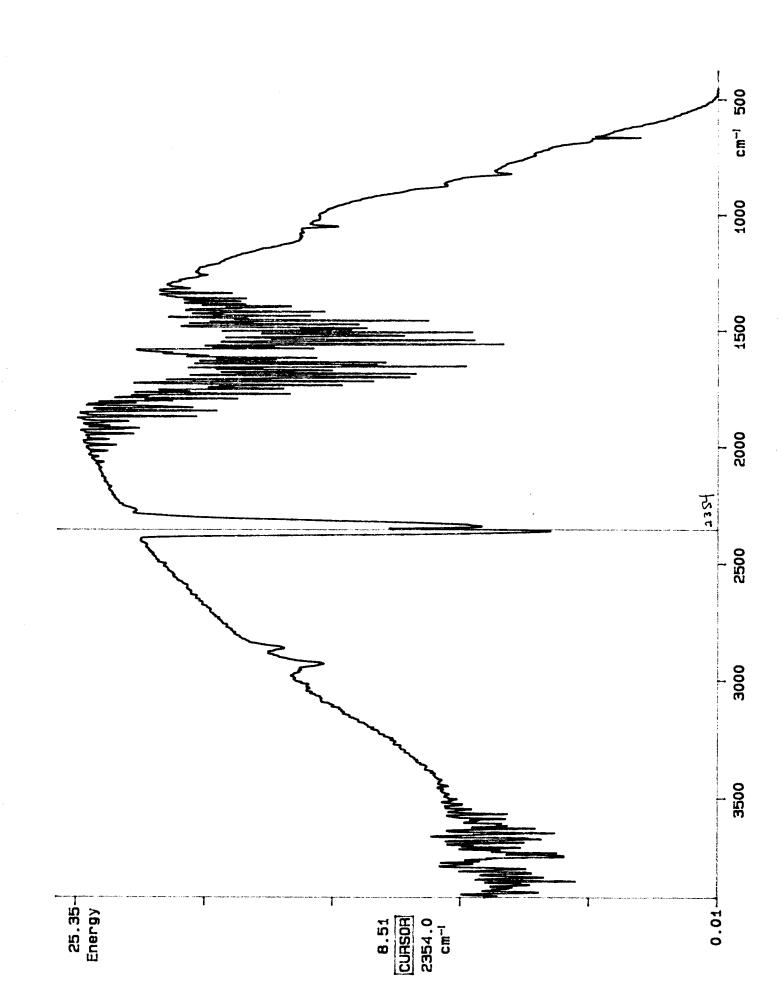

First Soil Sample-taken from the patient's yard Collected 10.22.98 Sample run 4.29.99

This sample was stored, after collection, in cleaned aluminum foil within a labeled plastic bag at 4°C until further work-up was possible.

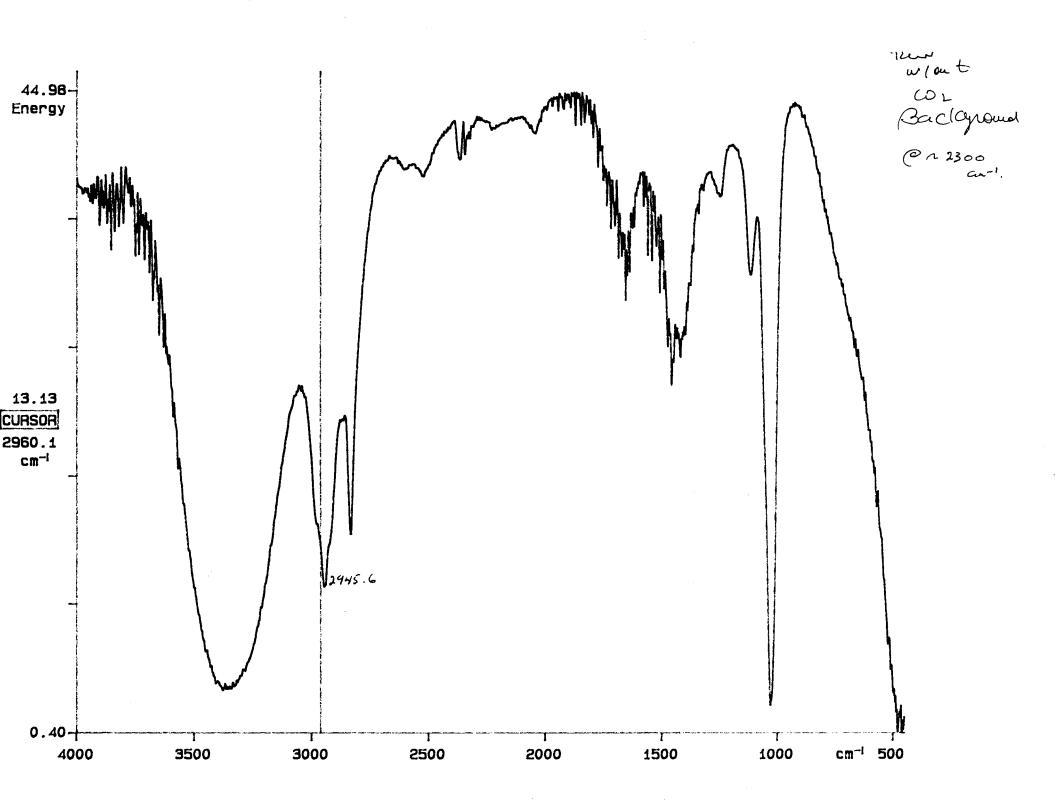

The soil was later thawed and manually mixed to promote homogeneity. Approximately 15.271g of soil was mixed with sodium sulfate to remove any water. Th dried soil was spiked with 452ng PCB-103, transferred to a clean cellulose thimble and extracted via soxhlet with dichloromethane, 24h. The extract was then reduced via rotary evaporation, transferred into hexanes and concentrated under nitrogen, to 2ml.

The extract was then cleaned via an alumina column composed of a glass wool plug, on top of which was $2g Al_2O_3$ and $1cm Na_2SO_4$. The alumina column was pre-prepared with 5ml of 5% dichloromethane in petroleum ether. Th resulting eluent was then concentrated and solvent exchanged into iso-octane under nitrogen.

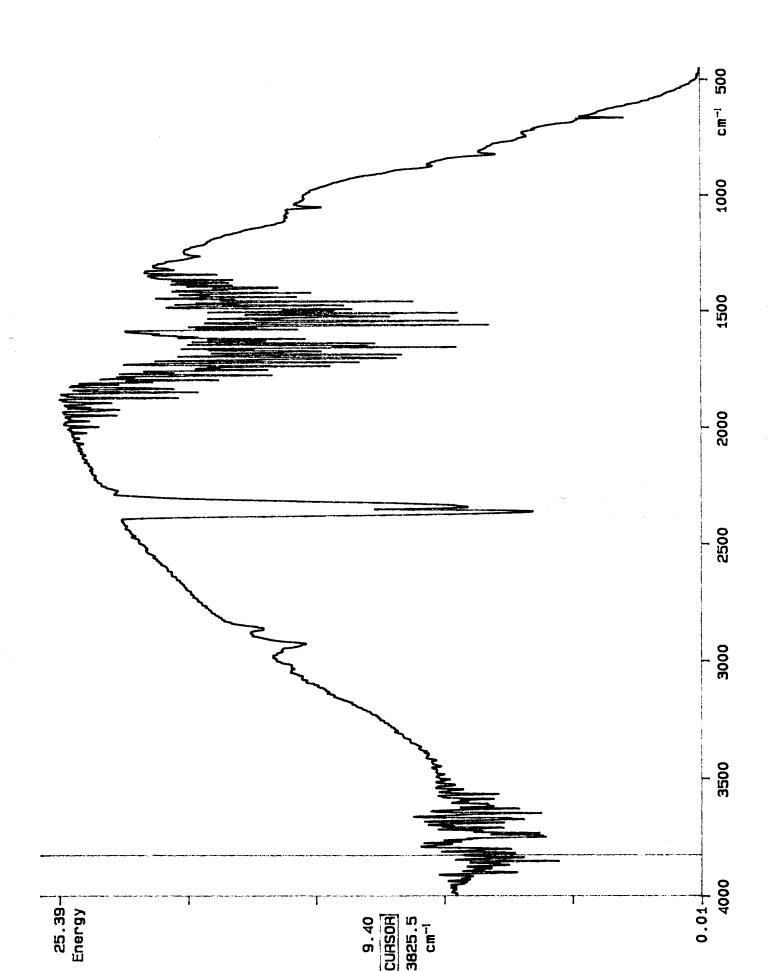
Second Soil Sample-taken from patient's yard Collected 10.22.98 Sample run 4.30.99

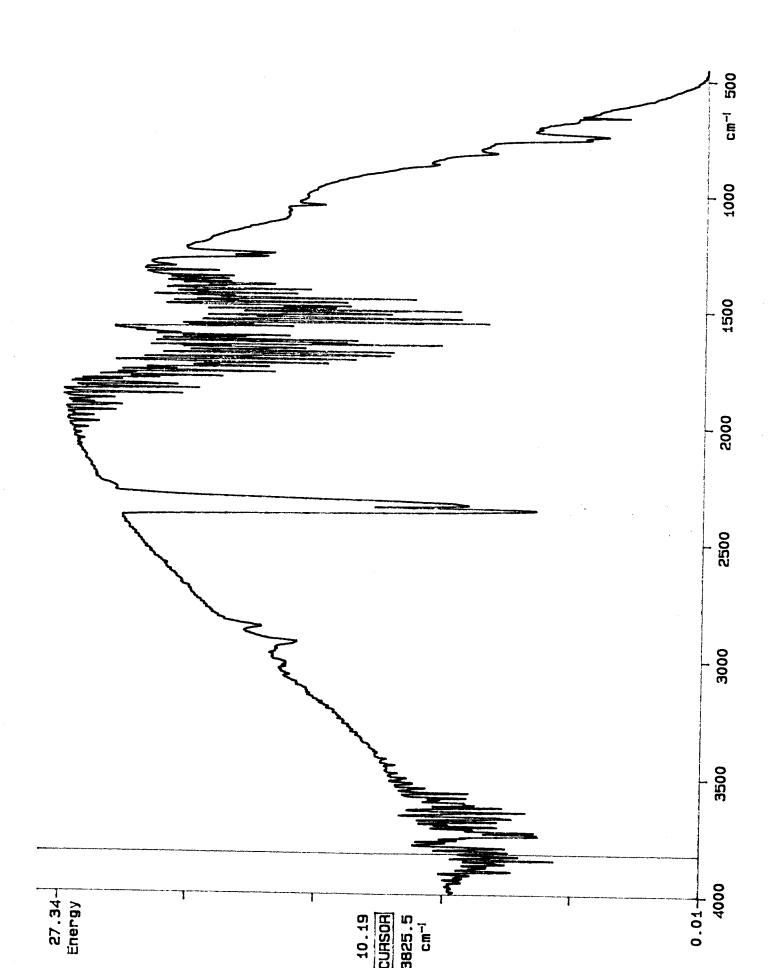

Water sample-(filter) 3B Feed 3B Feed-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.22.98 Sample run 5.3.99

The water samples were collected in cleaned 4L solvent jugs, from locations in and around Berlin Lake. The samples were stored at 4°C until extraction was possible.

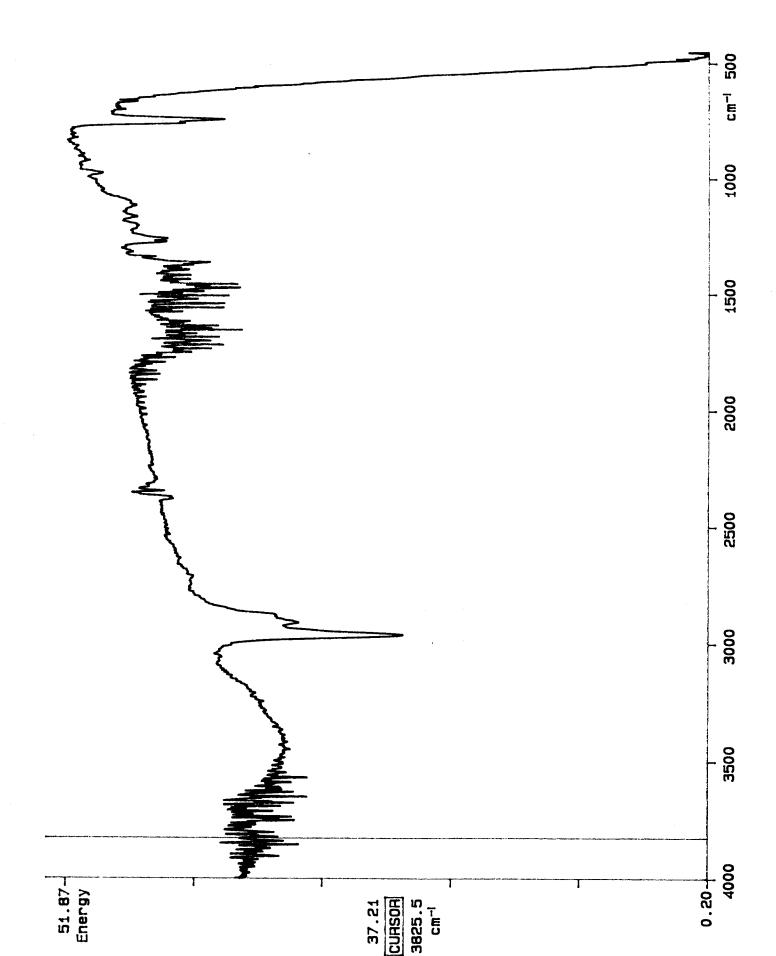

The polyurethane foam plugs were extracted via soxhlet, in petroleum ether, for 24h. The filters, prior to use, were refluxed in dichloromethane for 18h.

The water samples were transferred into individual stainless steel canisters. The water samples were pushed, via nitrogen pressure, through a 47mm GMF water filter, in attempt to remove any particulate matter; each sample required several filters, due to high levels of particulate matter. The water filters were then wrapped individually in cleaned aluminum foil and stored in plastic bags at -10°C.

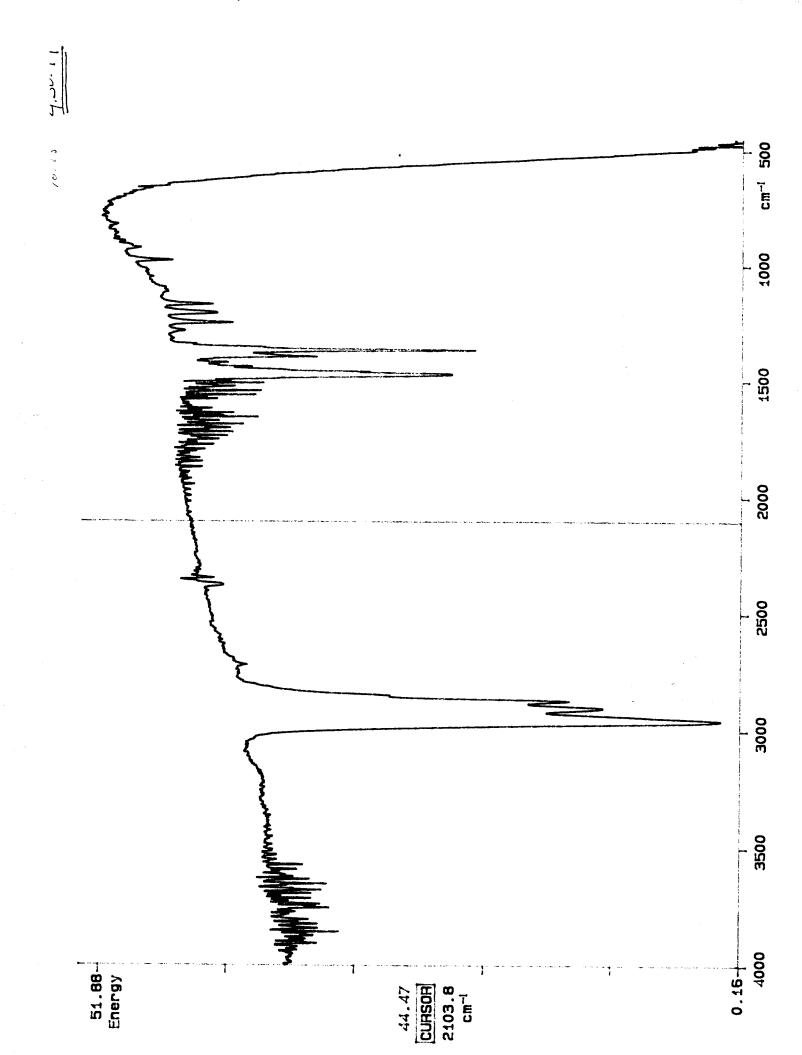

The filters were soxhlet extracted with dichloromethane 24h. The extracts were then reduced to 5-10ml and solvent exchanged into iso-octane via rotary evaporation. The entire sample inventory was reduced individually to 1ml under nitrogen. The samples were cleaned using a silicic acid/alumina column; a glass column was dry-packed with a first layer of 3g silicic acid)1.7% water added), followed by a second layer of 2g adsorption alumina (6% water added), and a third layer of 2cm anhydrous sodium sulfate.

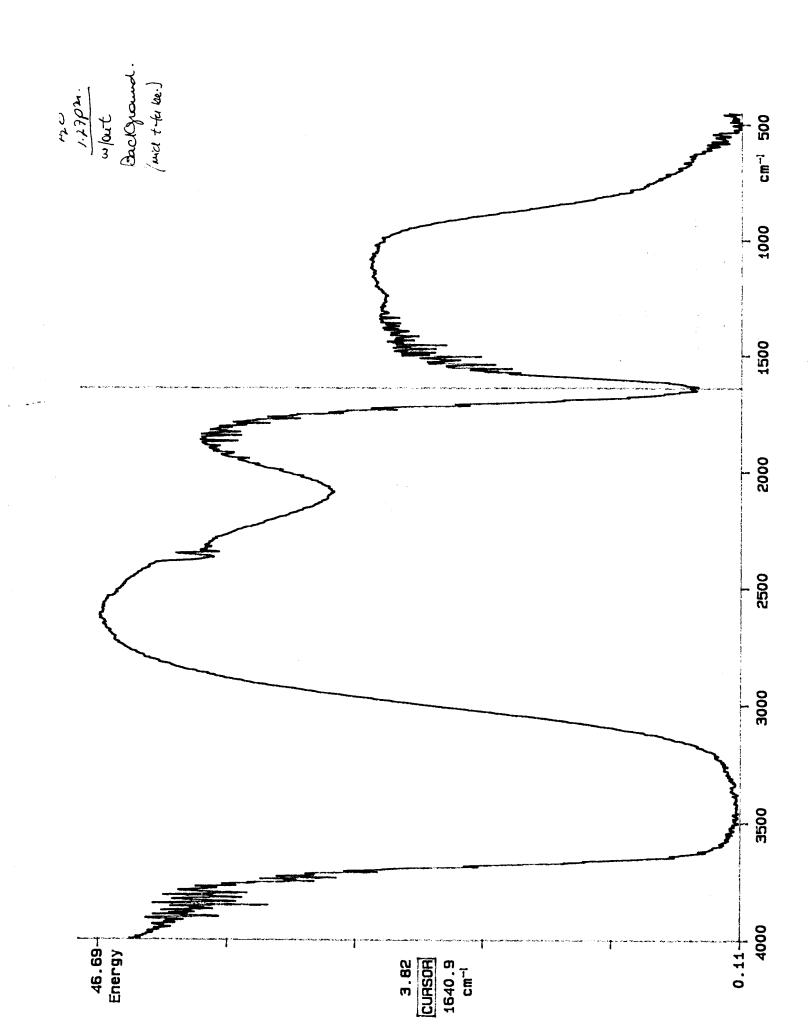

Water sample-(syringe) B Feed B Feed-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.22.98 Sample run 5.3.99

Water sample-(filter) 4B Feed 4B Feed-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.22.98 Sample run 5.2.99

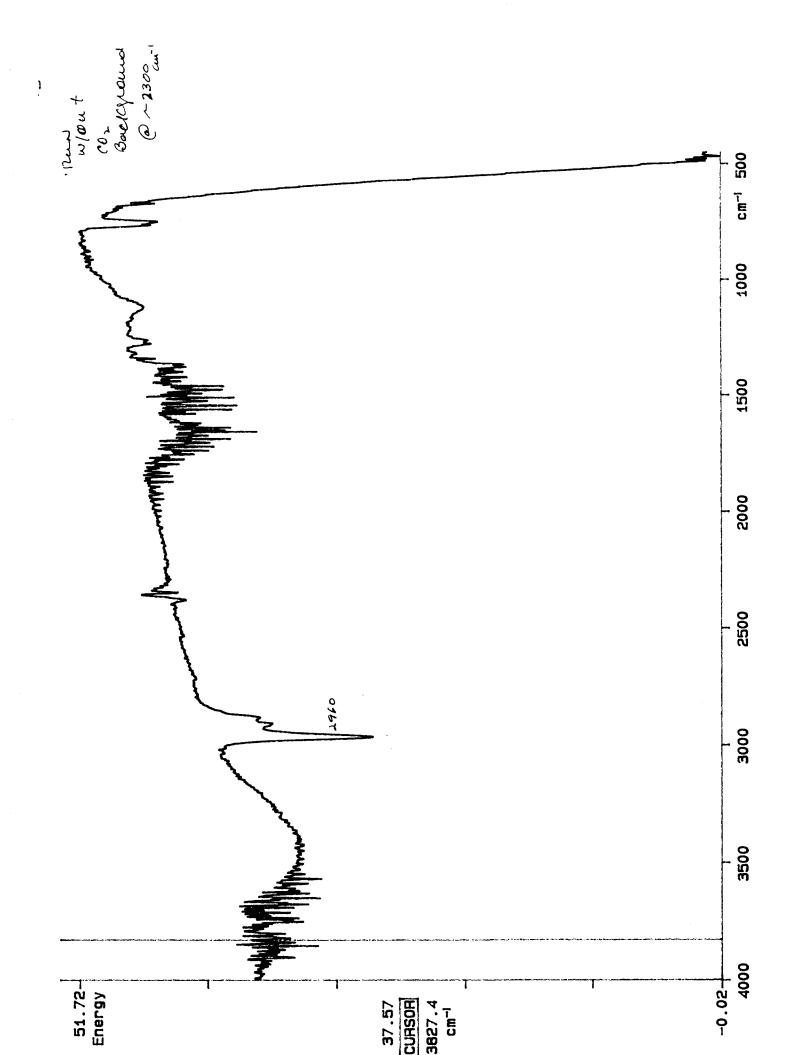


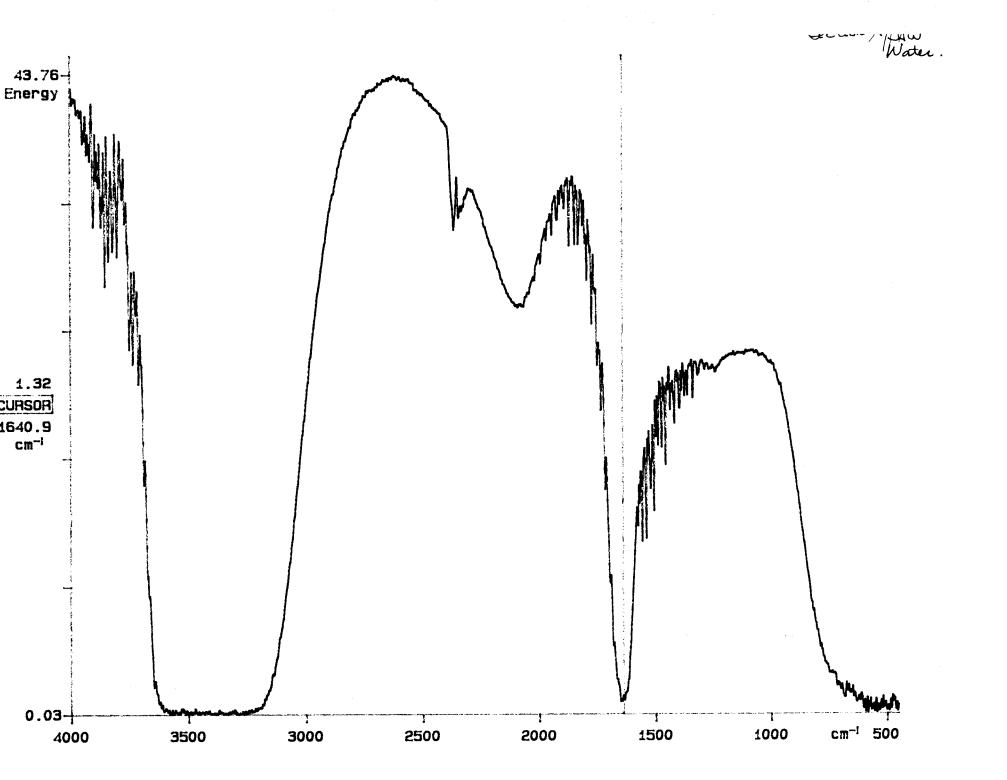
Water sample-(filter) 2B Feed 2B Feed-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.22.98 Sample run 5.3.99

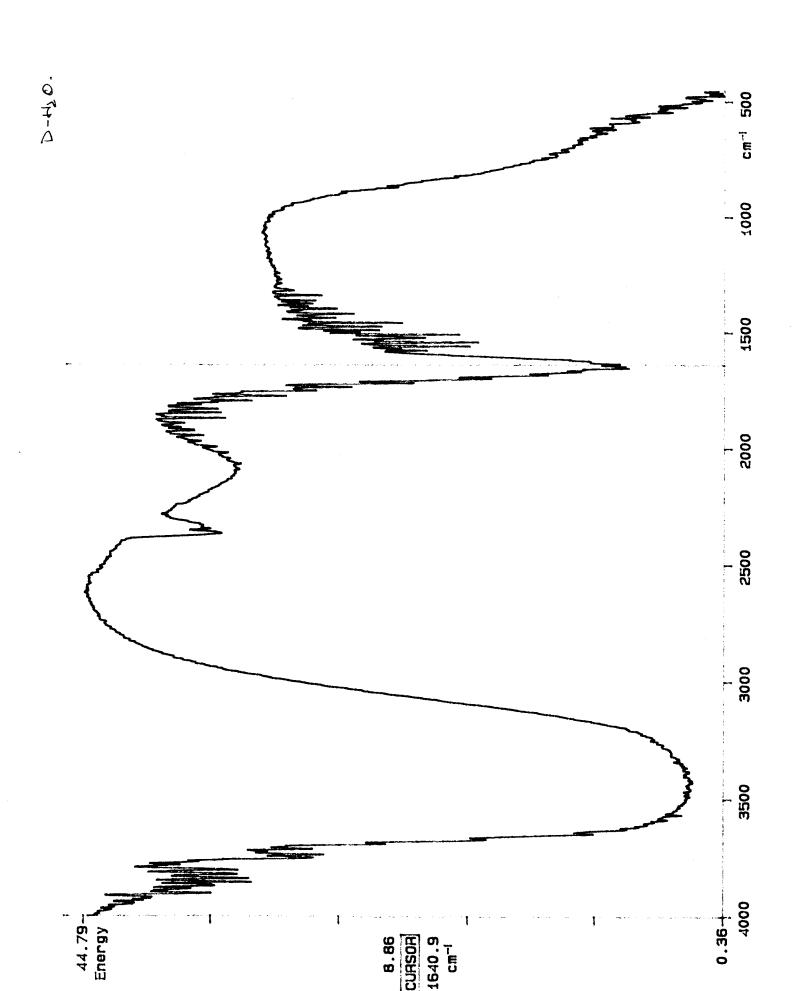

Water sample-(filter) 1B Feed 1B Feed-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.22.98 Sample run 5.2.99

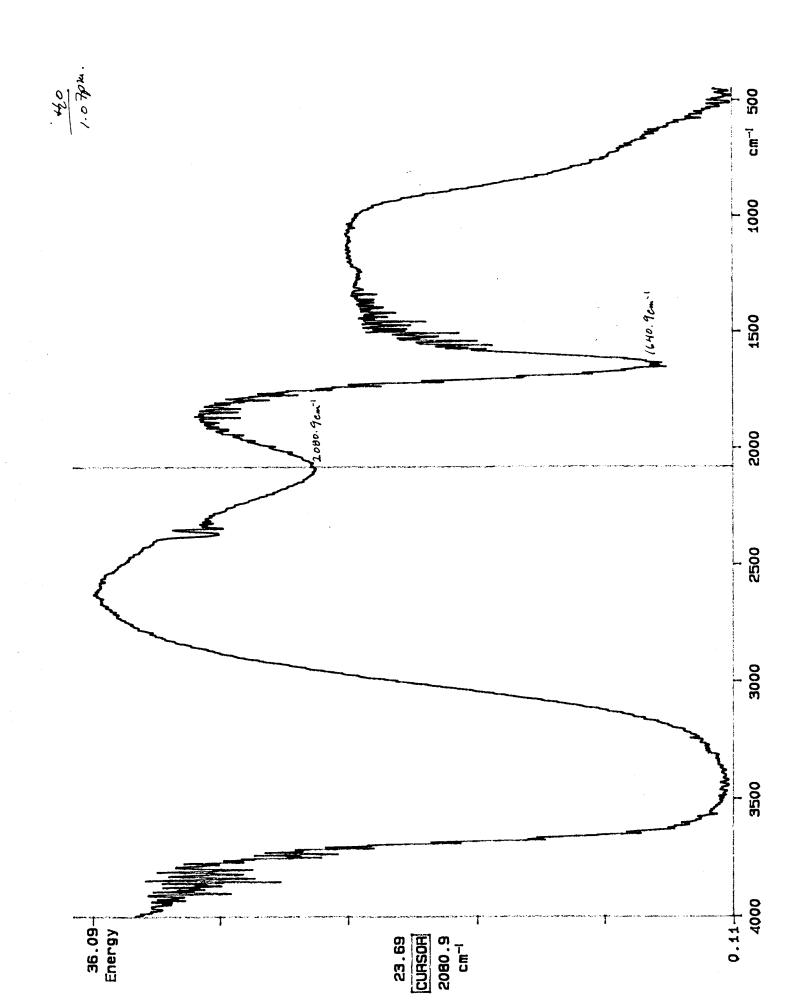


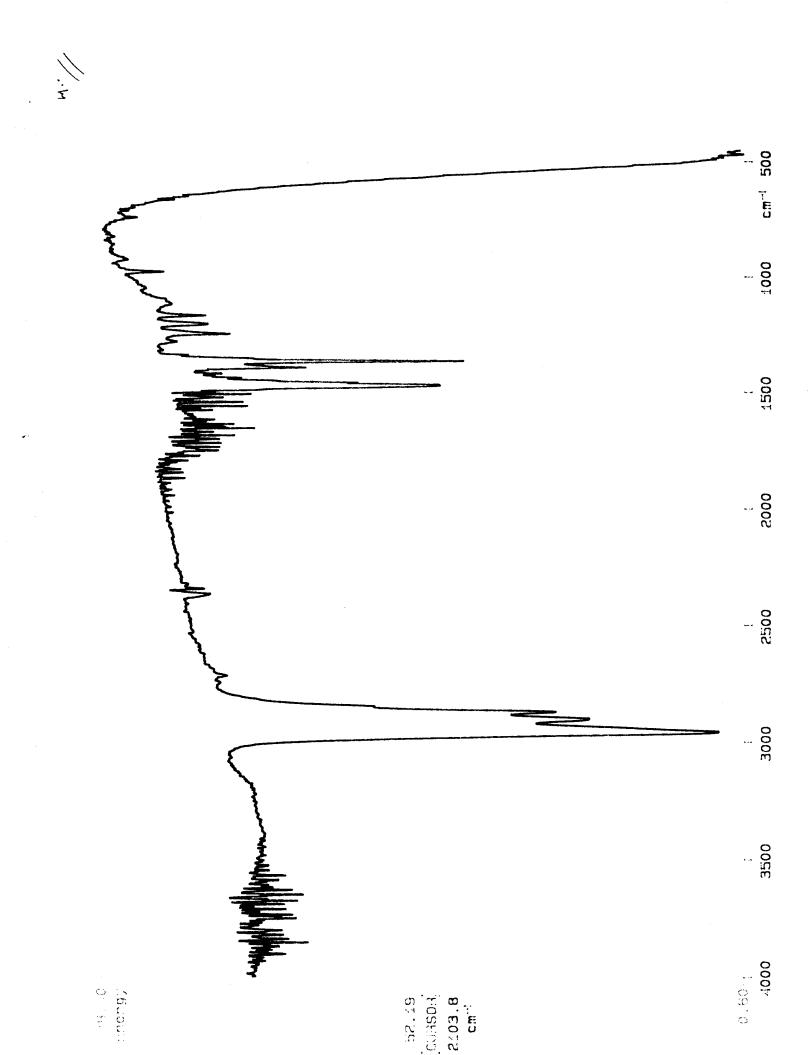
)

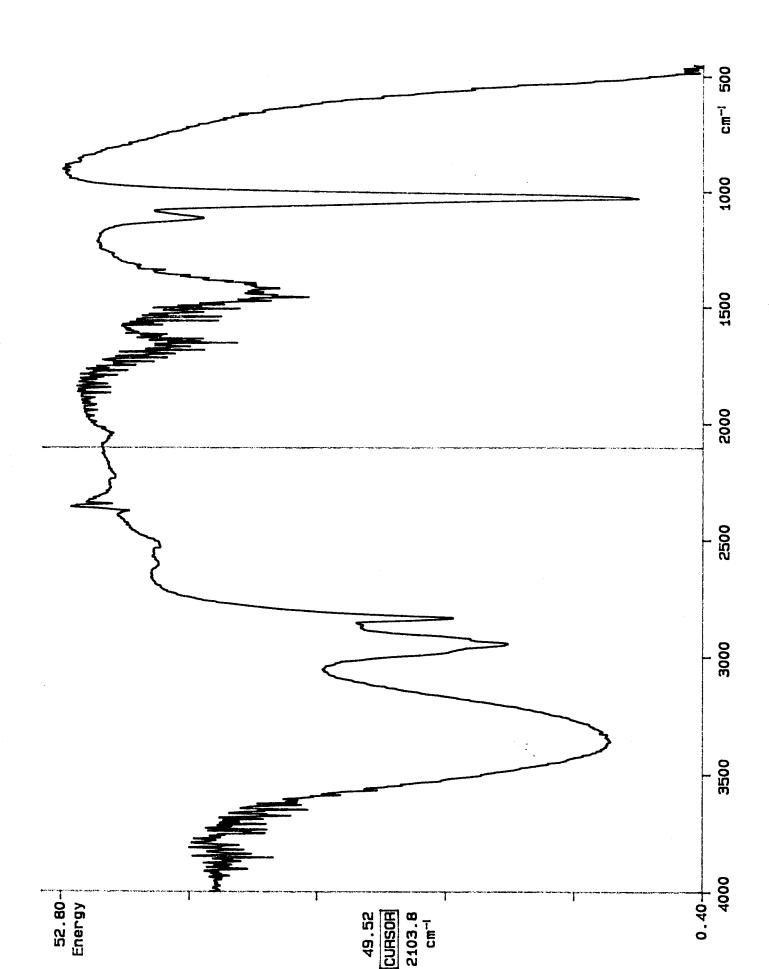

Water sample-(filter) C Feed C Feed-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.25.98 Sample run 4.30.99


Water sample-(filter) 1B Feed 1B Feed-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.25.98 Sample run 5.4.99


Water sample-(filter) 2B Feed 2B Feed-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.25.98 Sample run 5.3.99


Water sample-(filter) Section A/Dam Water Section A/Dam Water-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.25.98 Sample run 5.18.99


Water sample-(filter) Dam Water Dam Water-area corresponds to the map of Berlin Lake, located in Appendix 3 Collected 10.25.98 Sample run 5.18.99


Water sample-(filter) Beyond Dam Beyond Dam-area corresponds to the map of Berlin Lake, located In Appendix 3 Collected 10.25.98 Sample run 5.4.99

Water sample-(filter) C Feed C Feed-area corresponds to the map of Berlin Lake, located In Appendix 3 Collected 10.25.98 Sample run 4.29.99

Water sample-(syringe) C Feed C Feed-area corresponds to the map of Berlin Lake, located In Appendix 3 Collected 10.25.98 Sample run 5.3.99

APPENDIX 5 HUMAN SUBJECTS PROTOCOL REVIEW FORM

Youngstown State University / One University Plaza / Youngstown, Ohio 44555-0001

May 31, 2000

Dr. Peter J. Kasvinsky Dean School of Graduate Studies Youngstown State University CAMPUS

Dear Dean Kasvinsky:

This is to report on the results of the administrative review of human subjects activity related to the thesis proposal of Ms. Meredith Tuttle, M.S. candidate in Chemistry, entitled "The Convergence of Environmental Influences as Potential Precipitating Factors of AML-M2," which was prepared under the advisement of Dr. Daryl Mincey, Chairman, Department of Chemistry.

Although the research was not federally-funded, and consequently not materially subject to federal regulations, as you directed, a rigorous review of the human subjects-related aspects of Ms. Tuttle's thesis research was nonetheless conducted using expedited protocol procedures consistent with U.S. Department of Health & Human Services, National Institutes of Health, Office of Extramural Research, Office for Protection from Research Risks guidelines. The reviewers consisted of: YSU Human Subjects Research Committee (HSRC) Program Chairperson, JoLynn Carney, Ph.D., Anita Hakstedde, M.D., who served as expert biomedical reviewer, and Eric C. Lewandowski, Certified Research Administrator, in his capacity as HSRC Administrative Co-chair.

Each of the reviewers was provided a copy of the full committee human subjects protocol form, prepared by Ms. Tuttle, as well as access to the full thesis under consideration. As is customary in expedited protocol reviews, this review was conducted via correspondence.

Based on the review, the consensus findings were, and are, that: (1) the nature of the study, being essentially a review of medical records, allowed no subject harm, and reflects activity that normally qualifies for exemption from full committee review under DHHS Category 4 exemption; (2) the study utilized data that was voluntarily provided to the investigator by persons authorized to release it; (3) the investigator, acting in a good faith manner, provided background information to the purveyors of the subject data sufficient for them to form an adequate judgment with respect to the elements of informed consent, and to allow its release without coercion; (4) the investigator properly utilized the data collected for the purpose of her thesis development and exercised mature academic consideration and discretion in its use.

um, the reviewers commend the intuitively sensitive approach to human subject data ection and use employed by Ms. Tuttle in conducting her study. At the same time, reviewers earnestly hope that thesis committee members, in future, will appreciate weight of their responsibility to correctly inform candidates of proper IRB practice, will adhere to the institutionally-defined IRB process.

sectfully submitted,

Lynn Carney (CC)

ynn Carney, Ph.D. gram Chairperson

Euro Annial.

Eric C. Lewandowski, CRA Administrative Co-chair

/ECL

Dr. Darryl Mincey Ms. Meredith Tuttle

	ects Secretary)			To be completed by Human Subjects Secretary)
	YOUNGST Human Su			
cipal Investigat	or* Daryl Mincey,	Ph.D.	C	Chemistry-Chair 742-3663
student investigators, dvisor's name first)	Typed Name & Title			Department Name & Telephone #
Investigator*		le,Mast		didate Chemistry 783-3224
	Typed Name & Title		D	Department Name & Telephone #
Investigator*	Typed Name & Title		_	Department Name & Telephone #
se Note: Do not list co	••	ms here unles		approved joint appointment(s) at YSU
				upproved joint appointment(e) at 100
e of Study The	e Convergence of 1	Inviron	mental	Influences as
-				
Pot	ential Precipitat	ting Fa	ctors o	f AML-M2
	·····			
	. T	_		
xternal Funding se check appropriate b		k ⊥ NO	U YES	
se check appropriate b		NO	YES	
se check appropriate b	ox) ne of Funding Agency/P	NO rogram	YES	nticipated Funding Date
se check appropriate b es, Type in Nan livity Start Date Collaborating I	ox) ne of Funding Agency/F End Date nstitutions Involved?	NO Program _	YES A	nticipated Funding Date
se check appropriate b es, Type in Nan tivity Start Date	ox) ne of Funding Agency/F End Date nstitutions Involved?	NO Togram _	YES A	nticipated Funding Date
se check appropriate b es, Type in Nam tivity Start Date Collaborating I se check appropriate b	ox) ne of Funding Agency/P End Date nstitutions Involved? ox) Following	NO rogram _	YES A	
se check appropriate b es, Type in Nam tivity Start Date Collaborating I se check appropriate b	ox) ne of Funding Agency/P End Date nstitutions Involved?	NO rogram _	YES A	nticipated Funding Date
se check appropriate b es, Type in Nan livity Start Date Collaborating I	ox) ne of Funding Agency/P End Date nstitutions Involved? ox) Following	NO Trogram _	YES A	
se check appropriate b es, Type in Nam tivity Start Date Collaborating I se check appropriate b	ox) ne of Funding Agency/F End Date nstitutions Involved? ox) Following Institution Name	NO Trogram _	YES A	Name & Title of Chief Collaborator
se check appropriate b Tes, Type in Nam tivity Start Date Collaborating I se check appropriate b Tes, Type in the 3 his Study Subjec	ox) ne of Funding Agency/F End Date nstitutions Involved? ox) Following Institution Name	NO Togram _ P NO	YES	Name & Title of Chief Collaborator
se check appropriate b (es, Type in Nam tivity Start Date Collaborating Is se check appropriate b (es, Type in the) his Study Subjec itutional Human	ox) ne of Funding Agency/F End Date Institutions Involved? ox) Following Institution Name t to Other a Subjects Review?	NO Program	YESAYES	Name & Title of Chief Collaborator
se check appropriate b Tes, Type in Nam tivity Start Date Collaborating I se check appropriate b Tes, Type in the 3 his Study Subjec	ox) ne of Funding Agency/F End Date Institutions Involved? ox) Following Institution Name t to Other a Subjects Review?	NO Program	YESAYES	Name & Title of Chief Collaborator
es, Type in Nam ivity Start Date Collaborating I se check appropriate b es, Type in the is Study Subjec itutional Human es, Type in the I	ox) ne of Funding Agency/F End Date Institutions Involved? ox) Following Institution Name t to Other a Subjects Review? Following	NO Trogram _ NO NO NO NO	YESAYES	Name & Title of Chief Collaborator Name & Title of Chief Collaborator

.

INSTRUCTIONS TO INVESTIGATORS

purpose of an institutional human subjects review is to foster academic inquiry through the study of an processes and behavior, while protecting subject rights and interests. The following questions are nded to promote both of these ends. Please answer each question below accurately, completely and anguage comprehensible to an informed layperson. Attach additional pages as necessary. Requests for her information or clarification of issues or questions related to human subjects research or this protocol be directed to the current co-chairs of the YSU Human Subjects Committee via the Office of Grants and nsored Programs (Telephone 742-2377). Please type all responses on this form and any attachments.

Briefly describe the nature of the activity you are proposing to conduct involving human subjects. Please try to limit your response to the space provided, and be sure to address the following: (A) the purpose of the research and the hypotheses to be tested; (B) short references to the pertinent scientific literature; (C) an overview of the research design, method and mode of analysis; (D) an appraisal of the anticipated value of the research to the investigator(s), the human subjects, YSU, the scientific community, and society-at-large; (E) the specific site(s) of the research; and (F) investigator access to them.

- . The purpose of this research is to explore the potential environmental factors contributing to acute myelogenous leukemia-M2; working upon the hypothesis that a convergence of environmental influences may influence the development of this leukemia.
- medical texts; scientific journals; medical journals; pharmaceutical manufacturer product inserts; extant medical records
- collection of soil and water samples with lab work-up and analysis; literature search with extant medical record corroboration
- to further elucidate the potential environmental influences on acute myelogenous leukemia
- . YSU labs

'. graduate student at YSU

Please describe the target population in specific terms. Be sure to provide detail about numbers of subjects, age, gender, physical condition or any other information that establishes the parameters of the population of your study.

```
iv 10 year old cousin diagnosed with acute myelogenous leukemia-M2
        (male)
```

Briefly describe each of the different conditions or manipulations to be conducted in the study.

```
leview of cousin's extant medical records
```

Briefly describe the nature of the measures or observations that will be taken in the study.

```
view of cousin's extant medical records
```

If any questionnaires, tests, or other instruments are to be used, please provide a brief description and either a copy or an indication of when a copy will be submitted to the Committee for review.

N/A

Will the subjects encounter the possibility of psychological, social, physical or legal risk, that is, the probability of harm or injury occurring as a result of participation in this research study?

Will the study involve any stress, that is, any physical, chemical or emotional factors that may cause bodily or mental tension and may be a factor in causing disease? Yes No If so, please describe.

Will there be any probing for information that an individual might consider to be personal or sensitive? Yes I No If so, please describe. Will subjects be presented with materials that they might regard to be offensive, threatening, or degrading? I Yes XI No If so, please describe.

Approximately how much time will be required of each subject?

No time commitment

How will subjects for this study be solicited or contacted?

My help was solicited by my family

What steps will be taken to insure that subjects' participation is voluntary? What inducements will be offered to subjects for their participation? What is the source of those inducements?

Please refer to #12

It is important that subjects be informed regarding the general nature of the proposed human subject activity, especially including a description of anything they may consider unpleasant or risky. Please provide a statement regarding the nature of the information which will be stated orally or otherwise made available to potential subjects prior to their volunteering.

N/A