AN IMPLEMENTATION OF AN ADAPTIVE STATE-VARIABLE
FEEDBACK MOTOR CONTROL SYSTEM

by

Mark Rogenski

Submitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science in Engineering
in the
Electrical Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

August, 2002

An Implementation of an Adaptive St:
Motor Control Syst

Mark Rogenski

I hereby release this thesis to the public. I understar
from the OhioLINK ETD Center and the Maag L
access. I also authorize the University or other indi
as needed for scholarly research.

vt

Mark/T. Rogenski, Stadent

Approvals:

Yodof I dh

Robert H. Foulkes, Jr., Thﬁ(is Advisor

RO CPtpr—

Philip C/Munro, Committee Member

JY)/L/)

Féramarz Mossayebl Committee Men

2,/

v

ACKNOWLEDGEMENTS

I express my sincerest appreciation to the following people who gave so generously of
their time and energy so that I could complete this paper: Mary Lou Rogenski, Jerome
Rudzik, Dr. Monica Becker, and Dr. Robert Gardner. I thank Dr. Philip C. Munro and
Dr. Faramarz Mossayebi for serving on the thesis committee with very short notice. I
especially thank my advisor, Dr. Robert H. Foulkes, Jr., for his extensive assistance in
this endeavor. Most of all, I thank my beautiful wife, Becky. Her sacrifices, support, and
patience have been beyond measure.

To my wife, Becky
and my children, Libby, Ellie, and Marik

vi

TABLE OF CONTENTS

PAGE

AB ST R A C T iii

ACKNOWLEDGEMEN T S iv

DE DI C AT ON v

TABLE OF CONTENT S i vi

LIST OF SYMBOL S i viii

LIST OF FIGURES X

LIST OF TABLES i Xiii
CHAPTER

L INTRODUCTION 1

L. MOTOR SY STEM 3

2.1 Motor System Components 3

2.2 Motor System Model 4

2.3 Motor System Discrete State-Variable Model . 8

2.4 Open-Loop Response 10

III. STATE-VARIABLE FEEDBACK CONTROLLERDESIGN . 12

3.1 Overview of Digital State-Variable Feedback Controllers._ . . 12

3.2 Including a State Etimator (Observer) 14

3.3 Adaptive Control 15

IV. CONTROL SYSTEM IMPLEMENTATION o 18

A BaarAWaTe 18

4.2 Software OVervieW. 18

4.2.1 NI-DAQ and Measurement & Automation Explorer (MAX)_ 18

4.2, 2 LabVIEW 60 19

423 MATLAB/SIMUlinK 19

4.3 Simulink Model 19

4.4 LabVIEW / MATLAB Implementation . . 23

4.5 Analog Test System 26

V. RESULTS 29

vii

5.2 Controlled GP-6 System 39

5.3 Controlled Motor System 51

VL. SUMMARY AND CONCLUSION e 61
APPENDIX: PROGRAM LISTINGS e 63
A.l Simulink Initialization m-file: rls2initm 63

A.2 Simulink S-Function (Modified Template Sections) 64

B.1 LabVIEW: MATLAB Initialization Script_________ . 67

B.2 LabVIEW: MATLAB Loop Script 68

REFERENCES 70

§>E o> W ?)2 N N

LIST OF SYMBOLS

system parameter: a;; element in discrete motor model A4 matrix
1A m

discrete motor model state matrix
estimated discrete motor model state matrix

system parameter: az; element in discrete motor model A4 matrix

K/t m

discrete motor model input vector
estimated discrete motor model input vector

system parameter estimate vector

nominal (or ’true’) system parameter vector
initial parameter estimate vector

A and B system parameter estimate vector
C, and C, system parameter estimate vector
final parameter estimate vector

discrete motor model output matrix
estimated motor model output matrix

system parameter

system parameter

discrete transfer function from U(z) to Yi(z)
discrete transfer function from U(z) to Y(z)
state-feedback gain vector

tachogenerator gain

proportionality constant

RLS algorithm weighting matrix

RLS algorithm forgetting factor

observer gain matrix

state command matrix

proportionality constant

viii

P RLS algorithm proportionality matrix
©(z) characteristic polynomial

r(k) discrete reference signal

y(k) RLS algorithm known function vector
T sample period

Tm motor time constant

u(k) discrete input signal

U(s) frequency domain input signal

Vet~ output potentiometer voltage

Viach tachogenerator voltage

X1 motor system state variable

X motor system state variable

x(k) motor system discrete state vector

X, observer state variable estimate
X, observer state variable estimate

y(k) motor system discrete output vector

y -y observer error signal input

Yi(s) frequency domain tachogenerator voltage
Y»(s) frequency domain potentiometer voltage
Y (z) discrete-time tachogenerator voltage
Y2(z) discrete-time potentiometer voltage

Z) desired closed-loop pole

7 desired closed-loop pole

LIST OF FIGURES

FIGURE

(b) y2/y) transfer function block diagram
2.4 Motor system open-loop response to a +1V square wave
2.5 Motor system open-loop response to a £ 0.1V square wave
3.1 Discrete closed loop system with state variable feedback
4.1 Simulink S-Function implementation of RLS algorithm
4.2 Simulink implementation of the full-order observer
4.3 Simulink state-variable feedback control implementation
4.4 LabVIEW VI block diagram
4.5 LabVIEW VI front panel
4.6 (a) Motor system s-domain block diagram

(b) Block diagram with values
4.7 GP-6 Analog Computer test circuit
4.8 GP-6 test system open-loop response to a 1V step input
5.1 Simulink closed-loop response to a SV square wave. Bo=pn
5.2 Simulink calculated system parameters. By=Pn
5.3 Simulink closed-loop states and observer states. Bo=pn.
5.4 Simulink input u(k) and tachogenerator output Vipch. Bo=PBn.
5.5 Simulink closed-loop response to a 5V square wave. By=1/2py
5.6 Simulink calculated system parameters. PBy=1/2pn
5.7 Simulink calculated system parameters (first ten samples). Bo=1/2px
5.8 Simulink closed-loop states and observer states. Bo=1/2fn
5.9 Simulink closed-loop and observer states (first 10 samples). Bo=1/2px
5.10 Simulink input u(k) and tachogenerator output Vich. Bo=1/2pn
5.11 Simulink closed-loop response to a 5V square wave. Bo=2pn

5.12 Simulink calculated system parameters. Bo=2Pn._ ...
5.13 Simulink closed-loop response to a SV square wave. By=4fn
5.14 Simulink calculated system parameters. Bo=4fn
5.15 Simulink closed-loop response to a 5V square wave. fo=-pn
5.16 Simulink calculated system parameters. Bo=-pn

5.17 GP-6 closed-loop response to a SV square wave. Bo=pn..
5.18 GP-6 calculated system parameters. fo=pn
5.19 GP-6 closed-loop output and estimated output. Bo=pn
5.20 GP-6 input u(k) and tachogenerator output Vecn. Bo=Pn..... ..
5.21 GP-6 system parameters after 10 minutes. Bo=pn
5.22 GP-6 closed-loop response to a 5V square wave. Bo=1/2fx
5.23 GP-6 calculated system parameters. Bo=1/2fn
5.24 GP-6 closed-loop response to a 5V square wave. Bo=2pn
5.25 GP-6 calculated system parameters. Bo=2Bn__. . oo
5.26 GP-6 closed-loop response to a 5V square wave. fy=4Bn
5.27 GP-6 calculated system parameters. Bo=4fn
5.28 GP-6 closed-loop response to a 5V square wave. By=-Bn
5.29 GP-6 calculated system parameters. fo=-fn
5.30 GP-6 closed-loop response: Pot 1 varied from 0.262 to 0.165
5.31 GP-6 calculated system parameters: Pot 1 varied from 0.262 to 0.165
5.32 GP-6 closed-loop response: Pot 2 varied from 0.400 to 0.263
5.33 GP-6 calculated system parameters: Pot 2 varied from 0.400 to 0.263
5.34 GP-6 closed-loop response: Pot 3 varied from 0.600 to 0.485

5.35 GP-6 calculated system parameters: Pot 3 varied from 0.600 to 0.485

5.36 Motor closed-loop response to a SV square wave. Bo=Pn
5.37 Motor calculated system parameters. By=Ppn
5.38 Motor closed-loop output and estimated output. By=Pn
5.39 Motor input u(k) and tachogenerator output Ven. Bo=Ppn
5.40 Motor calculated system parameters after 10 minutes. By=Ppn
5.41 Motor closed-loop response to a 5V square wave. Bo=1/2pn

5.42 Motor calculated system parameters. Bo=1/2pn

xi

xii

5.43 Motor closed-loop response to a 5V square wave. Bo=2Pn___ 56
5.44 Motor calculated system parameters. Bo=2Bn 56
5.45 Motor closed-loop response to a SV square wave. Bo=4Bn . 57
5.46 Motor calculated system parameters. Bo=4PBn.___ 57
5.47 Motor closed-loop response (last 600 samples of 6000). Bo=4Bn__._ . 58
5.48 Motor calculated system parameters after 10 minutes. $o=4pn___ 58
5.49 Motor closed-loop response to a SV square wave. Bo=-Pn._____ 59

5.50 Motor calculated system parameters. Bo=-pn 59

Xiii

LIST OF TABLES
TABLE PAGE
4.1 MAX Channel Configuration 19
4.2 Simulink model pole locations 22
5.1 Parameter Estimate Data 60

CHAPTER 1

INTRODUCTION

Adaptive control has emerged as a fundamental way of controlling complicated modern
systems. This type of control system modifies itself to fit the requirements of the plant it
is controlling or the environment in which the plant is operating. The adaptive control
system continuously senses the system’s behavior and adjusts itself to maintain the
system performance at an optimal level. Adaptive systems have been developed for
many complicated control applications. Some of these include aircraft flight control,
adaptive ship steering, raw material processing control, and robot locomotion control [1].

There are two major techniques for implementing adaptive control [1]:

i) signal synthesis adaptation

ii) parameter adaptation
The signal synthesis approach involves generating an adaptive feedback signal that
modifies the plant input control signal. This input signal is tailored such that the plant
outputs are forced to optimize system performance. The second method uses
mathematical algorithms to calculate system parameters while the system is running.
These parameters are then dynamically incorporated into the control calculations to
optimize the control structure. This second approach of parameter adaptation is
employed in this investigation.

As adaptive control theories have progressed, sophisticated software programs
have also evolved to model, test, and implement advanced control systems. The question
we investigate here is, are these software packages capable of implementing complicated
control algorithms like adaptive control and how effective is the implementation?

Modern software packages have emerged that simplify control system
development. Dragging and dropping system blocks on a workspace have essentially
replaced countless lines of C code and weeks of development time. Using graphical
programming or simple batch type files, programs like MATLAB and Simulink allow
engineers to quickly model, test, and optimize many complicated control systems. By
fabricating I/O interface hardware, an engineer can use the graphical program to
implement a complete control system.

Today, manufacturers have simplified even this last step by creating
multifunction interface hardware that can be used in conjunction with graphical software
to realize a complete system [7]. An example of such a package is from National
Instruments. This includes LabVIEW software and an E-series data acquisition card. A
control system can be completely “wired” in LabVIEW using only the mouse and typing
in a few parameters [8]. The data acquisition card is then plugged into the PC and
interfaced to a breadboard. Plant inputs and outputs only need to be hardwired to the
breadboard and the system is operational.

An additional benefit to the software packages is the ability to plot acquired data.
MATLAB and Simulink have extensive customizable plotting capabilities and LabVIEW
has built-in real-time waveform charting functions [9][8].

As we consider the advancements in control methods, software, and hardware, it
is natural to integrate the components into a modern adaptive control implementation. It
is worth noting here that adaptive control methods are generally applied to systems that
are not suited to either deterministic (well-defined plant parameters) or stochastic
(partially known plant parameters) control methods. However, for comparative purposes,
here the adaptive system is applied first to a deterministic analog test system and then to a
more stochastic motor system. In this way, the adaptive parameter estimates can be
compared to known (or generally known) parameters to determine the system’s
effectiveness in adapting to the plant [1].

This thesis investigates the ability of pre-packaged control hardware and software
to implement an adaptive state-feedback control system and attempts to determine the
effectiveness of such an implementation. The investigation begins with the plant, a
laboratory servomotor system. Chapter II describes the motor and develops the necessary
system equations that describe it in continuous and discrete time. Next the controller
design is explained in Chapter IIl. State-variable feedback is introduced, an observer is
defined, and the Recursive Least Squares algorithm for adaptive control is presented. In
Chapter IV the implementation of the control system is described. The hardware, pre-
packaged software, and custom written scripts are integrated into an operational control
system. The results of the implementation are given and interpreted in Chapter V; and
final conclusions are reached in Chapter V1.

CHAPTER I

MOTOR SYSTEM

The plant utilized for the adaptive control system is a Feedback Type MS 150 Modular
Servo System [2]. This laboratory motor system consists of modules that can be added as
required for a specific type of operation. In this chapter the motor system components
are described and the necessary system equations are developed. Also the motor’s open-
loop response to a step input is plotted and explained.

2.1 Motor System Components
In this investigation the following modules are used [2].

Motor Unit 150F: Integral servomotor/tachogenerator with a 30:1 reduction
gearbox.

Power Supply 150F: Input 120V at 60Hz, output £15VDC 50mA.

Pre-amp Unit 150C: Two input channels and a push-pull output to directly drive
the servo amplifier.

Servo Amplifier 150D: Operates the motor via an 8-way connection socket. Can
be wired so the motor performance characteristics
demonstrate field or armature control.

Output Potentiometer 150K: Servo-type potentiometer with a calibrated position
dial. Carries a rear extension shaft that couples
directly with the motor unit.

Figure 2.1 shows the connectivity of the motor system as tested. In this system, the
tachogenerator provides a voltage signal proportional to the shaft velocity. The output
potentiometer produces a voltage proportional to its angular position.

The amplifier circuit is field connected for these tests. This means the armature
of the motor is connected to the collector end of the power transistor amplification
circuit. This arrangement is advantageous because it provides the motor a high gain. A
small increase in input signal will cause a significant increase in motor speed. One
disadvantage of this configuration is that it makes the motor more difficult to control than
an armature connected circuit. Although not a factor in these tests, another disadvantage
is that shaft torque drops quickly when a load is applied to the motor.

The pre-amplifier module is switched to defined r, which introduces a
compensating circuit into the pre-amplifier. This circuit in conjunction with
tachogenerator feedback provides a motor characteristic that approximates a linear

a1 SERVOAMPLIRER SA1500 POWER SUPPLY PS150E
bR w24y)
Ty e ON. - POWER
inpute =ro, L L on
< e mdortid mator current
H o .
s > ! detned 1 oy i
A T nema 8 mator !
) PO SUSENNRT R NN i
sgnal - { ; L !
| accompensaton i Am dc
2 ’ 4 i amanre peres
1 b i
PRE AMPLIFIEA UNIT PA150C Ly
nout] .
2 gt PSR .
| S s . +8Y CrT RrvS
: 1. act l ac2 ..
I B v | v
i , : ,
T / 15V
A oav sy o
[to matar
DCMOTOR TACHO UNIT MT150F
Viach T
> D e | emeee—
[2 2

3ol
Vpot ______r w

QUTPUT FOT UNET OP150K

Figure 2.1 Connectivity of the motor system.

system with a single time constant between the pre-amplifier input and the motor speed
or tachogenerator voltage. The motor is a Type 1 system and thus will track a constant
reference without error if used in a unity-feedback control loop [3}].

2.2 Motor System Model
The general transfer function between the input voltage U(s) and the tachogenerator
voltage Viaen(s) is given by

I/tach (S) = Km (2_1)
U(s) 1+7,s

» Yi(s)
U(s) Viach K Voot
yl Kn | Tuh [P | T > ¥i(s)
l+7,s s
(@
> Yl(Z)
U(z) B Viach o C,z+C, Vot > ¥i(2)
z—A z—1
(b)

Figure 2.2 (a) Motor system s-domain block diagram. (b) Zero-order-hold equivalent.

where 1 1, is the motor time constant and K, is the tachogenerator gain. Nominal values
of motor parameters are initially used in calculations for the control system. These values
are 7 ~=0.25 and K=6.5 [2].

Recall that Ve is proportional to the speed of the motor and the pot voltage, Vo,
is proportional to angular shaft position. Using the relationship that angular position is
the integral of the speed, it follows that

Ve 9) _ K,)
Vi () s 2)

where K, is a constant whose value is approximately 6.

Equations (2-1) and (2-2) can be combined into one system transfer function, but
it works to our advantage to keep them separate in the model. Using the block diagram in
Figure 2.2(a), we see that two outputs can be defined, ¥1=Vuch and Yo=Vpq.

The zero-order hold equivalent to the system in Figure 2.2(a) is shown in Figure
2.2(b). From the block diagram in 2.2(a) the transfer functions in 2.2(b) are obtained as
follows. In equation (2-1) let a=14 , and b=Kiy/t mand substitute Yi(s) for Viue(s) to yield

KG) _ b

U(s) s+a 2-3)

Taking the step-response of equation (2-3) gives

s\s+a s s+a
Converting (2-4) to the time-domain finds

b b _u
yl(t)=_"_e .
a a

Sampling equation (2-5) with a sample period T gives
b b _,
y,(kT)=—— =",
a a

Now take the z-transform of (2-6) to get

b{ =z b z
mz)-;(;:)‘;(z_e-ﬂ)

Hi==)

vbi(l —e‘”T)

B (zil—le —e"“T)

Finally from (2-7) we can find the discrete transfer function

o L6

(2-4)

2-5)

(2-6)

2-7)

(2-8)

Letting K,=K, the same process can be followed to find G»(z). Starting with the

step-response

1 Kb
1(9) 22(_‘—3(”(,)]

Qe

= + +
s? s s+a

Convert (2-9) to the time-domain:

()= (ﬁ)t - Lﬁ) + (Lf)e - (2-10)

a a a

Sample equation (2-10) at period T:

y,(kT) = (-K—bz)k - —I%b- + [Efi)e‘“” . (2-11)

a a a

Take the z-transform of (2-11):

Yz(z)-_-ﬂ[—z zj"K_?(L)*'K_f(Z-rj- (2-12)
a \(z-1) a*\z-1) a*\z-e™

Finally, find the discrete transfer function:

Y _ —_—
-3 (1) 2 8

U(z) z-1) a a‘\z—-e
_ K_b—aT(z——e"'T)—- (z—le—e‘“T)+ (z-1)
Ca] (z—le—e"’T)
_ﬁ—z(aT—1+e‘“T)+ (—aTe‘”T ~e™ +1)
T at| (z-1fz—-e™) (2-13)
b o\ | K aT+e™ -1 K 1-e —ale™
_;(1 ¢ T).[a 1-e™ } +[a 1-e™
Coz-e z-1
B Cz+C,

Summarizing, from (2-8) and (2-13) the discrete transfer functions are

Gl (Z) = % = BA
(@ =z (2-14)
G,(z)= Y,(z) CBz+C,B
? U(z) (z-A)z-1)
where the system parameters 4, B, C;, and C, are
A = e—aT
B= -’1(1—e“”)
a
K (aT+e™ ™ -1) (2-15)
Gz
a l1-e
—-aT -aT
¢, - K 4=e —are™)
a l1-e

Replacing a, b, and K in (2-15) leads to system parameters in terms of motor parameters:

A=e '
L
B=Km{1—e ’"J
_r
K,(T-7,+71,e ™) (2-16)
C = -

l—e_

2.3 Motor System Discrete State-Variable Model

The state variables for the motor system are determined using the transfer functions in
equation (2-14). By considering each equation in the block-diagram form shown in
Figures 2.3(a) and (b), we establish the state variables, x; and x;.

From these diagrams we can write the system equations

x,(k+1) = Ax, (k) + u(k)
x,(k+1D) =x,(k)+ y,(k)

2-17)
(k) = Bx, (k)
(k) = (C, +C,))x, (k) + Cyy, (k)
In matrix form the system becomes:
x(k+1) = A x(k)+ B u(k) 2-18)
y(k) =C,;x(k)
where
A4 0 1 B 0
A, = B, = C, = . (2-19)
B 0 0 C,B C,+C,

Equation (2-18) is the discrete state-variable model of the motor system.

A consequence of this selection of system states is the inaccessibility of the states
x; and x,. In order to feed these states back to the input, a construct called an observer is
needed. The observer is discussed in Chapter II1.

u(k) 1 x1(k) yik)
—> » B I—0
z—A
(a)
yi(k)) 1 xz(k)\ oG, | y2(k)
z-1
», Cl
)]

Figure 2.3 (a) y\/u transfer function block diagram. (b) y»/y; transfer function block
diagram.

10

2.4 Open-Loop Response

The open-loop response of the motor to a +£1V square wave is shown in Figure 2.4. As
the plot shows, the potentiometer voltage (Vo) is a sawtooth function between +15V and
~15V. When the potentiometer dial spins counter-clockwise (as in the O to 3s time range
in Figure 2.4), its output voltage drops linearly from +15V to —15V. Spinning clockwise,
the output voltage rises linearly between +15V and —15V. Once per revolution, the
potentiometer contacts pass over a discontinuous transition region between +15V and
—15V. During this same time, the tachogenerator voltage Vi is a continuous signal
switching as the motor shaft moves in opposite directions.

When a small square wave is applied to the motor input, a drift effect of friction is
seen in the V) signal. Instead of making complete revolutions, the potentiometer dial
rotates back and forth. The V. signal oscillates between a minimum and maximum
voltage. Due to dissimilar friction effects as the motor turns in opposite directions, the
values of the minimum and maximum voltage change by some drift factor. This is
illustrated in the response to a 0.1V square wave shown in Figure 2.5. Since the motor
essentially spins more easily in one direction than the other, the median value of Vi
drifts in the direction of less friction.

15 T T
= u(k)
—— Vtach
Vpot
101 -
2 , | / / |
3 \ }
5L |
10+ i
15 1 | 1
0 25 5 75 10

Time (s)

Figure 2.4 Motor system open-loop response to a +1V square wave.

— Vtach

uk)

Vpot |

5 O s WO o WY e W s W o O

Volts

AN s AN (s A s AN AN (s AN B NI

10 i
0 50 100 150 200 250 300
Time (.1s)

350

Figure 2.5 Motor system open-loop response to a + 0.1V square wave.

11

12

CHAPTER III

STATE-VARIABLE FEEDBACK CONTROLLER DESIGN

Now that the motor system model is developed, the controller can be designed to obtain
the desired system behavior. The control objective is position control with zero steady-
state error and good transient performance. The closed-loop Ve signal must track a
constant reference input with a fast rise time and minimal overshoot. A constraint on the
reference input is that it must not force the potentiometer voltage beyond the
discontinuous region at 15V since the motor system model does not account for this
region.

The fundamental control method chosen for the servomotor system is based on
state-variable feedback. A state estimator, or observer, is included in the controller to
provide access to the system states. Finally, using an adaptive algorithm to estimate
values of system parameters completes the controller structure.

This chapter provides an overview of state-variable feedback control for discrete
systems. The observer is then introduced, and the adaptive control algorithm is
discussed.

3.1 Overview of Digital State-Variable Feedback Controllers

For simplicity, the dynamic equations of physical systems are often written as state
equations. State equations reduce n™-order differential equations into a set of » first-
order equations. The variables used to write these equations are the state variables.

In state-variable feedback, the system state variables are fed back through a gain
K to the input. By correctly defining K, the system’s A4 matrix is modified in such a
way as to improve output performance. A discrete state-feedback system is illustrated
with an example [4]:

Consider the discrete state-space system:

x(k +1) = A x(k) + B u(k)

(3-D)
y(k) = Cx(k)
This system can be controlled by output feedback, i.e. connecting the output y(k) back to
input u(k). However, assuming there is access to the state variable vector x(k), the system
can also be controlled by feeding x(k) back to u(k) through a gain vector K. Figure 3.1
shows the block diagram of this closed-loop system.

Using u(k)= Kx(k), the state equations can be written as

13

u(k) B, @_ x(k+1) A x(k) SC, y(k)

K4

Figure 3.1 Discrete closed loop system with state variable feedback.

x(k+1) = A, x(k)+B,Kx(k) =(A, + B,K)x(k) (3-2)
y(k) = C,x(k)

We need to force the system to respond in the desired manner by moving the
closed-loop system poles with the feedback gain matrix K. For a second-order system
we need to find K=[ky k] to specify the terms in the desired characteristic polynomial

o(2) =2° +(a, —k)z+(a, - k,). (3-3)

This process is illustrated in the following second-order case using a general A4 matrix
and our specific B4 matrix (for simplification of notation). The system is defined as

n 9y

a, 9y 1
x(k+1) = []x(k) + [O]u(k) . (3-9
Substituting K into (3-2),

I 1
A,+B,K= %n “‘2}+[0}[k0 k]

a, dapn

_ -an ap 4 k, k (3-5)
a, a, 0 0
B [a,, +k, a, +k1:|

ay a

Now computing the closed-loop poles of (3-5),

14

zZI-(A, +B K) =
l (A, ‘)I —ay Z—day (3-6)

=2° +2(=ky —a), — ay) +(apk, —ayk, + a0y, —a,,ay)
If the desired poles are at z; and z, then the desired characteristic polynomial is

0*(2)=(z+z)z+2z,) 3-7)
=z +(z,+2,)2 + 2,2,

The final solution for K is obtained by setting (3-6) equal to (3-7) and matching

coefficients. In MATLAB, the function place can solve for K.

In order to drive the output to a desired level, we must introduce a constant
reference input, r(k), into the control law [3]:

u(k) =Kx(k)-N,r)+N,r. (3-8)

In this structure, Ny is a state command matrix whose value forces a system output to a
desired reference level. N, is a proportionality vector. Using this method, the steady-
state DC gain of the closed-loop system is forced to unity. Ny and N, are found by the

relationship [3]
MRl
= . (3-9)
N, C, 0 I

Since the motor system is Type 1, the proportionality constant N,=0.

This discussion of state-variable feedback assumes the accessibility of the state
variable vector x(k). The state variables defined in the discrete motor system model are
not physically measurable. Fortunately a construct exists that will provide estimates of
the state variable vector. The next section addresses this system.

3.2 Including a State Estimator (Observer)

A state estimator, or observer, is a linear system whose inputs are the plant’s inputs and
outputs and whose output is an estimate of the plant’s state vector. This estimated vector
is fed back into the plant in place of the true state vector. An observer also has noise
reducing properties that minimize input and system noise effects on the output response.
The observer designed here is a full-order observer. This means that the observer
estimates all system states.

15

A closed-loop observer has the same basic structure as the plant, but with an
additional input, the error signal y —y . The error signal is used to force the output of the
observer to converge with the true plant states. In equation form the observer is [4]

X(k +1) = A x(k) + B u(k) + L(y(k) - y(k))

)] (3-10)
y(k) = C,x(k)
The matrix L is a gain matrix. Substituting for y(k) gives
x(k +1) = A jx(k) + B, u(k) + L[y(k) - C ;x(k)] G-11)

=(A, -LC,)x(k) + B u(k)+Ly(k)

The observer is made stable by properly placing the eigenvalues of the matrix
(A, -LC,). The MATLAB function place can be used to find the gain L.

Although not noted above, the preceding observer and controller design is
performed with the understanding that the separation principle holds. This principle
allows that the observer and controller can be designed independently. One important
design consideration that must be kept in mind is that pole placement needs to be done
considering the observer and controller together. For proper state estimate convergence,
the observer poles need to be faster than the closed-loop plant poles. Therefore, the
discrete observer poles should be closer to the origin on the complex plane than the
closed-loop poles [4].

3.3 Adaptive Control

State-variable feedback provides a method to place closed-loop poles in a desired
location; and the observer provides estimates of the true system states to feed back into
the plant. Now to finish the control design we need a technique to estimate plant
parameters. The parameters are necessary to tune the observer and controller for
performance at an optimal level. In order to ensure stable system performance under
varying conditions an adaptive control scheme is implemented. Adaptive control utilizes
sampled system data to estimate system parameters. The estimated parameters are then
used in the controller and observer equations. In this way, the control scheme can detect
the system it is controlling and adapt to any changes that may occur in that system.

The adaptive control scheme chosen for this experiment is the Recursive Least
Squares algorithm or RLS. Using RLS, the parameters of the discrete system model (4,
B, C;, () are directly estimated. First, the transfer functions for the outputs Y;(z) and
Y»(z) are found. Recall from equation (2-14) that

Iz __B

TRl (3-12)

16

Using the result of equation (2-13) with equation (3-12), the transfer function from Y(z)
to Y,(2) is determined to be

Y,(z) Ciz+C,

3-13
Nz z-1 19
Re-written in terms of z”, these become
-1
h) _ Bz (3-14)
U(z) 1-4z
-1
Y2(z) = C'1 +C2_IZ . (3_15)
Y, (2) 1-z
These equations correspond to the following difference equations.
¥, (k)= Ay,(k—1)+ Bu(k-1) (3-16)
Y, (k) =y, (k=) =C\y, (k) +C,y,. (3-17)

Equations (3-16) and (3-17) are used in the RLS algorithm to solve for 4, B, C;, and C..

As the name implies, the RLS algorithm is based on the Gaussian principle of
least squares. This principle dictates constraints under which the unknown parameters of
a model should be chosen [5]. The least-squares method can be used to find system
parameters in the following way. Consider the equation (3-16). Assume a sequence of p
inputs has been applied and a corresponding sequence of p outputs has been observed.
Define the unknown parameter vector, p={4, B]'. The least-squares estimate can be
found from the representation

y(k-1) y(k-2) u(k-2)
k-2 k-3 k-3 A
yk=2) | k=3 uk-3) [} (3-18)
: : : B
yk-p)| (yk-p-1) ulk-p-D
If we denote the left-hand vector 8 and the right-hand matrix ¥ such that (3-18) is
written

0="p, (3-19)

then the least squares solution to this system is

17

p=(¥"¥) v0. (3-20)

New sequential data can be incorporated in (3-20) recursively [5]. See [5] for a
discussion of Recursive Least-Squares estimation (RLS).

To illustrate the RLS adaptive algorithm, consider equation (3-16). Again, let
B4, B]" and define

w(k) =Ly, (k- D,uk-D]". (3-21)
The algorithm can then estimate the parameter vector B by the following equations [6].

K., (k) = P(k - Dy (O + y(&) Pk~ Dy(H)]" (3-22)
P(k)=%[I—Kw(k)w(k)T]P(k—1) (3-23)

(k) =Bk -1+ K, (O)y(k)-w(k) Bk -D]. (3-24)

Here, K,, is a weighting matrix and P is a proportionality matrix [5]. Also, 0<i<l is a
forgetting factor. New data are given full weight, but data that are m units old are
weighted down by A™ [6].

Once a solution for P is found, the estimated values of 4 and B (and C; and ()
are used in controller calculations. In the observer equation (3-11), the parameter
estimates are used in the system matrices 44, By, and Cy as defined in equation (2-19).

These estimated system matrices, denoted A d ,B 4»-and C 4> are then used to calculate the

observer gain matrix L and the state-variable feedback gain vector K. For this
implementation two B’s are defined:

A C,
B, =[BJ B, = [C] (3-25)

This allows for two simultaneous RLS implementations with more compact matrix
dimensions than if only one B is defined.

18

CHAPTER IV

CONTROL SYSTEM IMPLEMENTATION

The individual parts of the adaptive state-feedback control system are unified in the
computer control system. The control system consists of four elements. These include
the servomotor system, a Pentium 4 PC, a data acquisition card, and the software to drive
the actual control. The motor system is described in Chapter II. The other parts of the
control system are detailed here.

4.1 Hardware
The PC used in this experiment is a Dell 1.8GHz Pentium 4 with 512MB RAM. The
operating system is Windows 98 Second Edition.

The data acquisition (DAQ) card used is a National Instruments 6024E
multifunction I/O board for a PCI bus computer [7]. The 6024E uses built-in A-to-D and
D-to-A converters and on-board timers and counters for data acquisition. The card has
16 channels of analog input, two channels of analog output, and eight lines of digital I/O.
The card plugs into a spare PCI slot in the Dell PC and is automatically detected as a
plug-and-play device by Windows.

For this thesis, only three channels of analog input and both channels of analog
output are used. The input channels are configured for differential inputs. Each input
channel’s bipolar input range is set to £10V. This sets a corresponding gain that makes
the 12-bit analog-to-digital resolution precise to within 4.88mV. The output channels’
ranges are fixed at £10V.

In addition to the 6024E, a SCB-68 68-Pin shielded connector block is used to
connect the motor system and instrumentation to the DAQ card. The SCB-68 connects to
the 6024E with a SH6868 shielded 68-pin cable.

4.2 Software Overview

The software employed to implement the adaptive control scheme consists of three main
bundles. First the NI-DAQ and Measurement & Automation Explorer programs are used
to configure the 6024E card. Next LabVIEW is used to program the data acquisition
interface. Finally MATLAB and Simulink are used to model the system and implement the
RLS algorithm.

4.2.1 NI-DAQ and Measurement & Automation Explorer (MAX)

Just prior to installing the 6024E DAQ card in the PC, the NI-DAQ configuration
software is installed. NI-DAQ is a utility that ships with the 6024E card that allows for
easy configuration through a standard Windows GUI. Some of the functions that NI-
DAQ can perform include buffered data acquisition, waveform generation, and
counter/timer operations [7].

19

Also included with the NI-DAQ software is the Measurement & Automation
Explorer (MAX) software. MAX enables quick setup of data acquisition devices and
channels. The 6024E is the only device configured for this investigation. Table 4.1 lists
the channels that are configured.

Table 4.1 MAX Channel Configuration

Name | Channel | I/O Connector Pins Connected Signal
Analoglnl Input 0 |ACHO-ACHS Vo from output potentionieter
Analogln2 Input1 |ACHI1-ACH9 Viaety from motor tachogenerator
AnalogIn3 Input2 |ACH2-ACHI0 u(k) from AnalogOutl for charting

AnalogOutl | Output 0 DACOOUT-AOGND {u(k) to pre-amplifier input and AnalogIn3

AnalogOut2 | Output 1 |DACIOUT-AOGND |GP-6 OP to toggle OP/IC mode

4.2.2 LabVIEW 6i

The NI-DAQ and MAX software integrates seamlessly with National Instruments
graphical automation program LabVIEW [8]. LabVIEW version 6i is used for this
experiment. LabVIEW allows a user to design and test a control program by wiring
graphic icons together on a workspace. The LabVIEW interface is separated into two
main regions. The user interface region is called the front panel. The front panel
displays any necessary controls (i.e. switches, dials, pushbuttons) and indicators (like
graphs, LEDs, textboxes) that would be manipulated by the end user to interface with the
external system. The second region is the block diagram. This area contains the code to
drive the front panel devices. The code is ‘written’ graphically using icons connected in
a flowchart format.

A LabVIEW program is called a virtual instrument or V1. This name stems from
the resemblance of the front panel to actual laboratory instruments like multimeters or
oscilloscopes. A VI can contain other VIs that are called subVlIs.

4.2.3 MATLAB/Simulink

MATLAB [9] is a powerful matrix-oriented programming and data visualization software
package. It offers a wide array of problem-solving functions and tools for solving
engineering and mathematical problems. Simulink [10] is an extension of MATLAB that
is used to model dynamic systems. Simulink is programmed by creating block diagrams
in the Simulink workspace. Once the model is simulated, MATLAB functions can easily
be used to manipulate or plot the resulting data.

4.3 Simulink Model

Using MATLAB and Simulink, the complete adaptive motor-control system is simulated
and the results plotted to establish an expectation of real-world system performance.

20

The model begins as a Simulink block diagram. The motor system (plant) is
programmed as a discrete state-space block. The nominal values of motor parameters
@ »=0.25, Kx=6.5, and K,;=6) are used to calculate the state-space system matrices using
equations (2-16) and (2-19).

The vector output of the plant block is fed into the RLS algorithm block. The
RLS equations of (3-22) to (3-24) are programmed in a customizable Simulink block
called an S-Function. An S-Function block allows you to program custom functions
using either C-language code or MATLAB code. In this simulation, MATLAB code is
employed.

The basic program structure in MATLAB is the m-file. Similar to a DOS batch
file, an m-file consists of MATLAB functions that are executed in sequence when the m-
file name is called. An S-Function block allows you to incorporate the m-file code into a
standard S-Function program template. When the S-Function block is called, the
program executes and the resulting data can be output and used elsewhere in the
simulation. The sections of the S-Function template modified for this model are listed in
Appendix Section A.2. Figure 4.1 shows the graphical input and output vectors of the S-
Function block.

The outputs of the S-Function define the controller for the simulation. First, the
full-order observer equations of (3-11) are drawn out using Simulink math function
blocks. (Figure 4.2 shows the observer structure.) Then the parameters calculated by the
S-Function code are input into the observer blocks to find the state estimates, ¥, and %,.

These parameters include the observer A3-L.Cq4 matrix and the gain matrix L. In Figures
4.1 and 4.2, the Amn values are the elements of the A4-L.Cq4 calculation. Similarly, the
Lmn values are the elements of the L matrix. The observer state estimates, denoted x1hat
and x2hat in Figure 4.2, are fed back to the plant input through the state-feedback control
structure.

Al

A2

v

AZ2

_ bl
WnECxn)e Du(n)
s+ 1EAdnBu(n)
Discrete Piant State-Space

1

z L1
Unit Delay

1

RLS2caleobs2

\
z

o2

S-Fundtion

it Delayt
Unit Delasy ¥200 w22
K11
1
z K21
Unit Del.
2 M1t
a1

Figure 4.1 Simulink S-Function implementation of RLS algorithm.

21

Al >——p
xlhat 3
At1=x1hat

X

Al2 o
x2hat > .
A125Chat

X

x1hatt 1) 1 x1hat
» - >

u(k) »

z
Unit Delay3

AR
L11 e

|+++;J

L

y2 r——P
L12 y———p

U

y2rL12

A12 e
xlhat y———fp!
A1Z%1hat

x

A22 P
xZhat >———»]
A22%2hat

X

whather?) | 1 | s@hat

z
Unit Delayd

+ + + +

PN
121 >———P»f

Y2 ——pf
122 e

Figure 4.2 Simulink implementation of the full-order observer.

The state-variable feedback control detail is presented in Figure 4.3. Like the
observer, the equations are drawn out using mathematical function blocks. The gain
vector K and the reference input parameter vector Ny are calculated in the RLS S-
Function program. The reference input signal is a 5V 0.1Hz square wave generated by
the Signal Generator block. This reference signal is discretized by the Zero Order Hold
block with a sample rate of T=0.1s.

Before the model is simulated, an initialization routine is necessary to set up
global variables and initial values for the RLS S-Function. Global variables can be
passed between the MATLAB workspace and the S-Function workspace. These variables
include parameter vectors P; and P, from equation (3-25) and two proportionality
matrices P; and P, from (3-23). Other global variables are created for data plotting
purposes. The initialization routine sets initial ‘guesses’ of the p and P parameters. The
closed-loop and observer poles are set and initial values are calculated for the closed-loop
gain K and observer gain L. The initialization routine is an m-file and is listed in
Appendix Section A.1.

22

L]
0000 YnECx(ny+Duln)
B
oo [— _l_LI_ b G s+ DEAqnBu(n) >
Signal Zew-Order Gain Discrete Plant State-Space
Generator Hold
»-
x —
L ro— >
Nx1 1%k B o
Kp1(Nxt 1 hex1 hat)
X
l-: 3 >

Nx2 1%tk

Kp2(Nx2 17 hexZh at)

ot N xthal Kpt >zhat Kp2

From RLS S-Fundlion Blodk

Figure 4.3 Simulink state-variable feedback control implementation.

After the initialization file is run, the Simulink model can be executed. Initially,
the Simulink model is tested using the exact values of the system parameters found via
(2-16). These values are A=0.67, B=-2.14, C;=0.32, and C,=0.28. Initializing the model
with these values means that no adaptation need occur. In this way, the effects of closed-
loop and observer pole selection are more readily apparent. Several simulations are run

to find poles that produce good transient performance. The final pole locations are listed
in table 4.2.

With the Simulink model complete, the next step in this investigation is to test the
controller design in a real-world system. This is accomplished by integrating LabVIEW
and MATLAB with the data acquisition hardware into one complete adaptive control
system.

Table 4.2 Simulink model pole locations.
Discrete | Analog Equivalent

Closed-Loop Poles 0'667+0'067_j '4+_j
‘ 0.667-0.067j ~4-j

Observer Poles 0.407 9
L 0.368 -10

23

4.4 LabVIEW / MATLAB Implementation

The software program that is actually used to control the external system is written in
LabVIEW using embedded MATLAB scripts. This main VI is based on an example VI
included with the LabVIEW software. This example is “Analog 1/0O Control Loop
(Hardware-Timed)” [11]. The example VI is modified from a simple hardware-timed
analog 1/0O loop into the desired adaptive motor control program.

The complete adaptive control VI block diagram is shown in Figure 4.4. (The
two MATLAB script boxes do not show the complete script files. These are listed in
Appendix Sections B.1 and B.2.) The blocks along the left side of the diagram are for
initialization. The AI Config subVI configures a set of channels for analog input.
Controls on the front panel (shown in Figure 4.5) set the device number and specific
channels for this block. For this setup, the device is ‘1’ and the input channels are
‘Analoginl’, ‘AnalogIn2’, and ‘AnalogIn3’. Also in this application the buffer size is set
to zero for an unbuffered acquisition. Thereby no data will be stored. The LabVIEW
program must read each scan before it is overwritten by the next scan, or an error will
result.

The next subVI is the Al Start VI. This block starts the analog data acquisition.
The number of scans to acquire is set to zero for continuous acquisition and the scan rate
is set to 10 scans/sec to get the sample period, T=0.1s. The AI Start VI starts the scan
clock on the 6024E card and data is acquired into the on-board FIFO stack at the set scan
rate.

Other initialization functions that are performed include clearing the waveform
chart at the start of each run. This is accomplished using the History block at the top of
the diagram. Overwriting the chart’s data history array with zeros clears the waveform
chart. The AO One Pt block executes the AO Update Channel subVI. This subVI sends
the specified value (here —5V) to the channel indicated. This value is sent to a GP-6
analog computer’s SW input to switch the GP-6 into OP mode when the VI is run. This
ensures that the analog test system (described in Section 4.5) is synchronized with the
data acquisition.

The last part of the initialization segment of the VI is the MATLAB script node in
the bottom-left corner of Figure 4.4. It is one of two MATLAB scripts in the VI. These
MATLAB scripts are essentially m-files that execute when LabVIEW processes the
MATLAB script node block. The MATLAB script nodes invoke the MATLAB script server
to execute the code. LabVIEW uses ActiveX to implement MATLAB script nodes so they
are only available on Windows platforms. This particular script, like the Simulink
initialization m-file, defines variables and sets up initial values that are necessary for the
second MATLAB script in the main section of the VI.

This main section is the while loop. The while loop is the large, central grey box
in the VI. This loop is programmed to cycle until the number of requested samples have
been taken, or the stop button is pressed. The Al S-Scan block reads the sampled data
from the FIFO on the 6024E card. In the first loop iteration, the newest (most recent)

[This clsars the wavetorm chart for sach run.|

ransposed waveform chart
[]

pHistory

nop too siow

o]

favaform chart
D) e — |
BfL3
: Pull out y1 end y2 velues)
inuous
L"‘_|h!—s| isition
| -t O
(Ceul} el
Input channels (0) START sten
1/0 f conFto} o o
ho butter 4
7 [eread newest deta ~|B]

Samples par sacond

(0oL}

% simuletion parameters

Yhsamp=length(time);

% Adaptive motor control - intializetion

=0.1; Tp=5; Tinl=8*Tp; time=0:T: Ttn!,

afamn=s rat=ratametakndsind 2*niToMimay

{This redurns the GP-6 to SW mode|

EAISE

[Sample Pariod

% Adaptive motor contral - Loop Script
%

% caiculete control output

%
% save data for plotting
lI=ii+1:

Figure 4.4 LabVIEW VI block diagram.

us=Kp1%Nx1*refindx)-x1hat) +Kp2*(Nx2*ref(indx)-x2het);

¥C

25

Toued oy [A MAIAGET §'# 24n31]

26

scan is read from the FIFO. In subsequent loop iterations Al S-Scan is called to read the
oldest scan from the FIFO. Each scan is plotted on the waveform chart as it is read. Ifa
scan is missed because the acquisition does not keep up, an error message is displayed.
In the event of an error, the acquisition will continue, however, some data will have been
lost.

During each cycle of the while loop, the MATLAB script in the loop is executed once. On
the first scan, initialization data from the first MATLAB script is used to calculate the
control signal ». This script also uses the scanned data to calculate the system, observer,
and state-feedback parameters that will be used in the next iteration to calculate the new u
value. The u value is output to the motor system by the AO One Pt block. Also included
in this script are storage arrays to hold data for plotting in MATLAB after the test run is
complete.

When the requested number of scans have been acquired and processed, the while
loop terminates and one final step occurs. The AO One Pt. block outside the loop sends a
+5V signal to the GP-6 system to put it back into IC mode. After this, the program stops
and the results can be plotted in MATLAB.

The LabVIEW program was first tried on an analog test system.

4.5 Analog Test System

A test system was built on a Comdyna GP-6 analog computer to simulate the motor
system and to test the LabVIEW control program. This also allowed the motor system
results to be compared to a known quantity since the plant on the analog computer was
exactly defined.

The motor transfer functions of equations (2-1) and (2-2) were set up in the block
diagram of Figure 4.6(a). Using nominal motor parameters: Kn=6.5,7 x=0.25, K;=6, the
new block diagram of Figure 4.6(b) can be defined. This yields the continuous time
system

U(s) K, Vacn(s) | K, Vpor(s)
_) Ny,]
1+7,s s
(@
Us) 26 xX®) 6 ¥(s)
> > — —>
s+4 s

(b

Figure 4.6 (a) Motor system s-domain block diagram. (b) Block diagram with values.

27

.26

—
-

+y

R RO

Figure 4.7 GP-6 Analog Computer test circuit.

x(t) = —4x(t) + 26u(t)

4-1
y(t) = 6x(f) @D

This system was then implemented on the GP-6 in the circuit of Figure 4.7.

The GP-6 system was initially excited open loop for comparison to the open-loop
motor response. The GP-6 open-loop response to a 1V square wave is shown in Figure
4.8. Comparison with the motor response in Figure 2.4 verifies that the analog test
system responds similarly to the actual system with two major exceptions. First, the GP-
6 isa £10V system. Therefore the Vo signal saturates at 10V instead of reaching 15V
as the motor system does. The second major difference in the system responses is the
lack of the sawtooth pattern in the ¥ signal. The system equations do not model the
discontinuity of the output potentiometer. To ensure accurate results, a restraint is placed
on the closed-loop tests that the V. signal cannot exceed £7V. This will prevent
saturation in the GP-6 system and avoid the unmodeled, discontinuous region.

Once the GP-6 system was tested, the final step in this investigation was to wire
the actual motor system to the LabVIEW control program. Initial tests on both the GP-6
and motor systems show that the closed-loop and observer poles chosen for the Simulink
model provide good results. Therefore the poles of Table 4.1 apply also to the GP-6 and
motor tests. All of the results of the Simulink, GP-6, and servomotor simulations are
presented in Chapter V.

(k)
— Vtach
10
Vpat
5t
2 1
g |
_5 L
10|
1 i ! !
0 100 150 200 250
Time (1s)

Figure 4.8 GP-6 test system open-loop response to a 1V step input.

28

29

CHAPTERV

RESULTS

The results of applying a 5V 0.1Hz square wave reference signal to each of the systems
are presented in this chapter. Each system was tested under similar sets of initial
estimates of the system parameters, A, B, C;, and C,. For compactness of notation,
define the term Pn=[A B C; C,]" where A, B, C), and C, are the nominal (or ’true’)
parameter values for each system. Also let By represent the initial parameter values set at
the start of each trial. Generally two to four plots are given for each trial of a system.
The plots fall into four categories:

a) potentiometer output ¥ and the reference input signal r(k)

b) parameter estimates calculated by the RLS algorithm

¢) true system states and observer state estimates

d) control input u(k) and tachogenerator output Viych.
Where beneficial, time-expanded or time-compressed plots are presented for clarity. The
Simulink model results are given first.

5.1 Simulink Model

For the first simulation, the Simulink model was initialized with By= gn=[0.67 —2.14 0.32
0.28]". The Simulink system was simulated for 600 sample periods (60 seconds). The
resulting signals are plotted in Figures 5.1 to 5.4. Inspection of Figure 5.1, the
reference/output plot, shows a reasonable rise time and no overshoot in the output signal.
Figure 5.2 shows the parameter estimates as they remain constant at their true values.
Figure 5.3 compares the true system states to the observer states. The observer states
track with zero error. Finally, in Figure 5.4, the input signal and tachometer voltage are
plotted. The control signal is very reasonable staying within +1.2V,

For the next simulation, the parameter values were initialized at one-half their
nominal values i.e. B=1/2(Pn). The resulting signals are plotted in Figures 5.5 to 5.10.
Inspection of Figure 5.5 shows initial overshoot in the response to the rising edge of the
first reference pulse. The subsequent pulses, both positive and negative show no
overshoot. This initial overshoot can be explained with the next plot in Figure 5.6.
Figure 5.6 shows the parameter estimates. During the initial samples (expanded in Figure
5.7) the parameter estimates deviate from the actual values. During this transient period,
the control system is not tuned to the plant and therefore some initial under-control is
apparent. Figure 5.8 compares the true system states to the observer states. Figure 5.9
shows only the first ten samples of the system states. The initial transient region is seen
in this plot, but after approximately eight samples the observer states track with zero
error. Finally, in Figure 5.10, the input signal and tachometer voltage are plotted.

Vpot

L | — rk)

Volts
o

i

0 10 20

30
Time (s)

Figure 5.1 Simulink closed-loop response to a 5V square wave. Bo=pn.

05

0.5

Value

-

Figure 5.2 Simulink calculated system parameters. Bo=fx.

Time (0.1s)

30

15

,f\ — x1
1 \ ‘ i ‘ \ —— xthat H
05 l\ \‘ & \ i \
§ oF: \K \ \ [k / \\ K
-0.5/ ’/ ,/ 4 f /
- | ;} ’ !j f ----------------------- .
15 i i i i i
0 100 200 300 400 500 600
Time .1s
10/ ‘ . : ,/ [) e
AT T R S A A O Ay =
] | | 1 j
s L]
g op] } N
| . .
° \ IR S
T U A U A T R U R
% 100 200] 3(2)(())1) 400 500 600

Figure 5.3 Simulink closed-loop states and observer states. Bo=Pn.

— u(k)
- Vtach

Voits

=)
T
T
T
e
T
T

0 10 20 30 40 50
Time (0.1s)

Figure 5.4 Simulink input #(k) and tachogenerator output V. Bo=Pn.

31

Vpot
— k)

Volts

2

Figure 5.5 Simulink closed-loop response to a 5V square wave. Bo=1/2pn.

05

0.5

Value

1.5

25

30
Time (s)

||
8950)

300
Time (0.1s)

Figure 5.6 Simulink calculated system parameters. Bo=1/2pn.

32

33

g OGO
05 SO SN IO S S S
0
B S Sl S —y
k- B
(J — C1
>
3 — C2
-1.5
2
25 i | \
0 1 2 3 4 5 6 7 8 9 10

Time (0.1s)

Figure 5.7 Simulink calculated system parameters (first ten samples). Bo=1/2fn.

2
%1
; A A A }“\ }[\ —— xthat ||
/S R O
2 / / [[
S, / | | |
2 E
3o 100 200 3c|)o 200 500 600
Time .1s
15
— x2
10 L —— x2hat
0 A T A T s O
IR N T e
R
R -
[R U R U T U U
% 100 200 300 400 560 600
Time (0.1s)

Figure 5.8 Simulink closed-loop states and observer states. Bo=1/2pn.

34

05 T T

B s .
0 Rl
05
£ 4
= \
15 ; .
N / ;
2N, | e
; i 5 i i s i -— xthat
25 i i i i i i i i I
0 1 2 3 4 5 6 7 8 9 10
Time (0.1s)
15 ! ! ! !
T T
T \\\\.
10 BE
$ /
5
e
,/ — X2
yd —— x2hat
0 4 ;
0 1 2 3 4 5 6 7 8 9 10
Time (0.1s)

Figure 5.9 Simulink closed-loop states and observer states (first 10 samples). Bo=1/2pn.

— u(k)
-——— Vtach

Vos
==
\r/‘
—
—
—
—

Time (0.1s)

Figure 5.10 Simulink input u#(k) and tachogenerator output Vi,cn. Bo=1/2n.

35

Additional simulations were run with other initial parameter values. Figures 5.11
and 5.12 show the output and parameters respectively for initial values set at Bo=2Pn. In
these plots, the initial overshoot is smaller than when By=1/2fn. However, the initial rise
time increases as compared to Figure 5.5. Figures 5.13 and 5.14 show the results for
Bo=4Bn. As Figure 5.13 shows, there is no initial overshoot, but the rise time is
significantly longer than any of the previous simulations. Some initial instability seems
to be the cause of the slow response to the first pulse.

One more simulation is presented with interesting results. Figures 5.15 and 5.16
show the response when Bo=-pn. Although the parameter estimates quickly converge to
the nominal values, a large spike appears in the output response to the first input pulse.

In all the Simulink trials, the system parameter estimates always converged to the
exact values set in the model plant.

Vpot
— k)

Volts
j=)

Time (s)

0 10 20 30 40 50

Figure 5.11 Simulink closed-loop response to a 5V square wave. Bo=2Bx.

2
1
/
0 ..
T Dt SN NORAU S RNUNUN NSNS SOOI
k]
©
>
2
3
4 b — A
; B
N Y
Cl—
5 i
0 100 200 300 400 500

Time (0.1s)

Figure 5.12 Simulink calculated system parameters. Bo=2fn.

36

6 T
Vpot
| 1K)
4 -
2
2
S Op
>
oy) Ty B s AUTEISTTREERS SECRPRERITES: SECTSCRPRERS SCRTTRITRtY
_4
_6 1 1
0 10 20 30 40 50 60

Time (s)

Figure 5.13 Simulink closed-loop response to a 5V square wave. Bo=4Pn.

5
A
B
— C1
— C2
0
3
(]
>
5
10 i i i i
0 100 200 300 400 500 600

Time (0.1s)

Figure 5.14 Simulink calculated system parameters. Bo=4pn.

1600

Vpot
— (k)

1400

1200

1000

Volts

Time (s)

Figure 5.15 Simulink closed-loop response to a 5V square wave. Bo=-Pn.

25

1.5

05

Vaiue

0.5

4

25 ; ; | ; | |
0 100 200 300 400 500 600

Time (0.1s)

Figure 5.16 Simulink calculated system parameters. Bo=-pn.

39

5.2 Controlled GP-6 System

When the GP-6 system was wired to the LabVIEW control system, the resulting system
response varied somewhat from the Simulink expected data. The initial trial with Bo=Pn
responded close to the expected results. The plots in figures 5.17 through 5.20 show the
closed-loop signals for the first GP-6 simulation. Inspection of Figure 5.17 shows a well-
controlled output with no overshoot. Figure 5.18 presents the parameter estimates as they
converge to the nominal values. It is noteworthy that the GP-6 system parameters
converge to different values than the Simulink model. In Figure 5.18, these values are
A=0.77, B=-1.61, C;=0.27, and C,=0.33. For the rest of the GP-6 trials pn=[0.77 —1.61
0.27 0.331".

In the Simulink model, all the signals are calculated mathematically; therefore we
have access to all the signals in the system. In the GP-6 tests, the true system states
cannot be measured directly. For this reason another method of verifying the state
estimates is used. This involves comparing the measured system outputs, y(k) and y»(k),
with estimates of these same outputs. The output estimates, p, (k) and y,(k), are

calculated using the RLS C matrix and the estimated state vector X in the following
relationship:

§(k) = Cx(k) (5-1)

Figure 5.19 compares the measured system outputs to calculated outputs and Figure 5.20
shows the control signal and the V1. output.

4} [\ /"/ // / [
| / / | /! 1/ /
0 1 T O
L R
IR E (|
u !
IEAERERRREEN
| | |
4 \‘\ \\ \‘\\]“\J \\\ ‘\E
\ \ \ \ \,\

Time (.1s)

Figure 5.17 GP-6 closed-loop response to a 5V square wave. fo=PBn.

15
1
05}
,H
O..
— A
— B
§ e c1
— 2
300 OGO A S PO
A5 et : : - R
24 ‘
~2'50L 100 200 300 450 560 600
Time (.1s)
Figure 5.18 GP-6 calculated system parameters. Bo=Pn.
4 T T T T T
; : H P y1
; —— y1hat
: | .
(o
e !
4 i
0 100 200 300 400 500 600
Time {1s)
i \ B / X [\ =
\ / — yohat
i | \ f ! | l‘
% o ! { } | ! i j %]
> i \ I
} ‘\ | 5 I |
| | - j \ |
s) v N N J
0 100 200 300 400 500 600
Time (.1s)

Figure 5.19 GP-6 closed-loop output and estimated output. Bo=Pn.

40

3
ﬁ — uft)
—— Vtach

ey
P e

PN S—————

Volts

PRI T T T
—
B e s

o 100 200 300 400 500 600
Time (.1s)

Figure 5.20 GP-6 input u(k) and tachogenerator output Viach. Bo=Pn.

15 , } :

05

Value

.1'5M

25 i i |
0 1000 2000 3000 4000 5000 6000

Time (.1s)

Figure 5.21 GP-6 system parameters after 10 minutes. fo=Px.

42

As an additional experiment, the GP-6 system was allowed to cycle for 6000
samples, or 10 minutes. The plot in Figure 5.21 shows that almost no parameter variation
is seen after 1000 samples. This confirms that the RLS algorithm has locked on to the
true parameter values.

For the next simulation, the parameter values were set to Po=1/2(Bn). The
resulting data are plotted in Figures 5.22 and 5.23. Inspection of Figure 5.22 shows a
large initial overshoot in the response. The subsequent pulses, both positive and negative
show no overshoot. Figure 5.23 shows the parameter estimates as they converge. This
plot seems to indicate that the parameters may have not completely reached steady-state
even after 600 samples. This is much slower convergence than is seen in the Simulink
results.

As before, additional simulations were run with other initial parameter values.
Figures 5.24 and 5.25 show the output and parameters respectively for initial values set at
Bo=2PBn. In these plots, unlike with Simulink, there is no initial overshoot. However, the
parameter estimates seem to converge relatively quickly (<150 samples). Figures 5.26
and 5.27 show the results for By=4Pn. As Figure 5.26 shows, the same initial instability
that was seen in the Simulink model is present, albeit much more pronounced than in
Figure 5.13. Figures 5.28 and 5.29 show the response when Bo=-pn. While there is a
spike in the initial response, it does not approach the aberration seen in the Simulink plot
of Figure 5.15.

Figure 5.22 GP-6 closed-loop response to a 5V square wave. fo=1/2fx.

15 !
1
05
H
!
0 — A
k] — B
K c1
05 ——]
A
1
A1.5H
S A
0 100 200 300 400
Time (.1s)

Figure 5.23 GP-6 calculated system parameters. Bo=1/2px.

10

Volts

600

T et
f (. ﬁ /
Aninininin
SRR RARER S
AEEENEEEEN
\L’\\\!} [
I | } |
‘1\11‘1\1\[\,}\\/‘:
\,\l\\ \\[kk \ \\
' { \ N -
0 1ll)0 200 T|rn;i()?1s)400 500 6(30

43

6_ ,,,,,,,,,,,,,,,,,,,,,,
414 f/ S / /
{ T ! / / ’
2l f | i } 't | ’\
| NN
| I A
2 \ [| .
5 of ‘ ! l‘ ! 1 f ; ,
s i | | l\]
l | | ‘ { 1‘
BN T S T
. | Lo
| (I . | | \
\ ‘ \ \ |
41 i} \ \ \. \ i
4
[£ 6 L I
60 100 2(IJO 300 400 500
Time (.1s)
Figure 5.24 GP-6 closed-loop response to a 5V square wave. Bo=2pn.
T | —
L =
c1
1h- — 2 |
0 g O -
0 O SO R]
>
S —
2L J
—
3 (Z
4 i P e @ %
Time (.1s)

Figure 5.25 GP-6 calculated system parameters. Bo=2fn.

44

ab- /’ 7 /l ,,,,,,,,,,,,,,, ’ i/ L. ﬁ
/ i
// / / l I, fl /
1 .
o ol ‘ } |
g op \X !/ \ l[L 3 . . é‘got
S o] |
| L .
4 ‘\\ \\ \\ \ ,,,,,,,,,,,,,,,,, \\ \ :
\; \ \ \ \ \
%o “i)o 260 300 400 500 6(i)0

Time (.1s)

Figure 5.26 GP-6 closed-loop response to a 5V square wave. Bo=4fx.

6
— A
— B
C1
4% c2
o
0 ______________________
)
=2
=
2
|
|
|
. 0 U OO SRSV
£
5 ; ;
0 100 200 300 400 500 600

Time (.1s)

Figure 5.27 GP-6 calculated system parameters. Bo=4pn.

45

Volts

200

Time (.1s)

600

Figure 5.28 GP-6 closed-loop response to a 5V square wave. fo=-pn.

Value

Figure 5.29 GP-6 calculated system parameters. Bo=-pn.

P S—

0.5

a5

100

Time (.1s)

46

47

An extra experiment was performed on the GP-6 that could not easily be
performed on the other two systems. One minute into a two-minute run, one of the GP-6
potentiometers (shown in the circuit of Figure 4.7) was turned 360°. This change in pot
setting is equivalent to changing the motor parameters 7, Km, and K. The effects are
seen in the plots of Figures 5.30 through 5.35. In Figures 5.30 and 5.31 pot 1’s value
was changed from 0.262 to 0.165. Figures 5.32 and 5.33 correspond to changing pot 2’s
value from 0.400 to 0.263. Finally, changing pot 3 from 0.600 to 0.485 is shown in the
response of Figures 5.34 and 5.35.

In each case, a slight change can be seen between the ¥ signal before and after
the pot adjustment. This change seems to be an increase in rise time. The parameter
estimates also changed when the pot was turned. In all three cases the parameter values
started to converge to new values after the one-minute point on the plots.

ARRTRD AR
ANERAREN IR
IARanARRRRRAE N
| [N ; J
INRREN i 1 ‘
IR IR IR R ARl
&. L
NRENRNRARNRINE IRy
0 260 400 -r,m:u()_15) B(JJO 10i00 15‘00

Figure 5.30 GP-6 closed-loop response: Pot 1 varied from 0.262 to 0.165.

15
— A
— B
c1
1 LJK__A 77777 ==
0.5}
.
0 -
o
=
©
>
0.5
e 0 QU
4/_)‘_‘,_#4‘—“’"’—'—
ABfof e :
e N S G __4_1
2 i i i i
0 200 400 600 800 1000 1200

Time (.1s)

Figure 5.31 GP-6 calculated system parameters: Pot 1 varied from 0.262 to 0.165.

48

. T
T LA
TTET T e
1NN |
bt P
| | % -,
| |
%0
4\“&” DL
R T R - 7
ApURRRARIRARgARARaRE
-SOL 200 400 600 860 1000 I
Time (.1s)

Figure 5.32 GP-6 closed-loop response: Pot 2 varied from 0.400 to 0.263.

1.5 T T T
11
05 B S . SO P S
e — A
3 — B
. &
0 SN
Al
1.5k
| S N N S N
2 1 i i x
0 200 400 600 800 1000
Time (.1s)

Figure 5.33 GP-6 calculated system parameters: Pot 2 varied from 0.400 to 0.263.

1200

49

="
A ! | 1} S hH
M ‘U i
i T ! ! Bl i 1T
(R RIE IR RURI R R RIS

Time (.1s)

Figure 5.34 GP-6 closed-loop response: Pot 3 varied from 0.600 to 0.485.

15 T -T—
i — A
; — B
; C1
1 ---------------- — 2 1
N N
0.5
N
) O S SO OO SR OUOP OO SO OOt SO N
3
o
>
0.5}
T SO SO AU UV SO UO
. (S—— [- J O S USRS]
o e
2 i i i i i
0 200 400 600 800 1000 1200
Time (1s)

Figure 5.35 GP-6 calculated system parameters: Pot 3 varied from 0.600 to 0.485.

50

51

5.3 Controlled Motor System

After the GP-6 simulations, the motor system was wired to the LabVIEW control
program. Initially several trial runs were performed to find a nominal set of system
parameters. The average parameter values found were Bx=[0.76 —1.6 0.36 0.3]". Figures
5.36 through 5.39 show the results for Bo=pn. As Figure 5.36 shows, the output is similar
to the GP-6 response in Figure 5.17. The actual V. signal was somewhat more irregular
than seen on the GP-6. This was likely due to unmodeled conditions such as inertia,
motor brush friction, bearing wear, or torque on the connecting shaft between the motor
and potentiometer. Noise in the Vpy and Vicn signals was another probable cause of
signal jitter. There was also approximately 0.2V of steady-state error in response to the
+5V step voltage.

The parameters found in Figure 5.37 converged to slightly different values than
those found in the GP-6. The nominal system parameters used in the GP-6 equations
likely caused this discrepancy. The actual motor’s parameters would vary from these
assumed values. Like with the GP-6, the observer states were tested by plotting the true
system outputs with the estimated system outputs. Figure 5.38 plots these signals. The
input # and ¥, signals are plotted in Figure 5.39. Both of these figures closely match
the results of the GP-6. Again as an additional test, the motor system was allowed to
cycle for 6000 samples. The plot in Figure 5.40 shows that some minor parameter
variation is seen throughout the run time. This demonstrates that the RLS algorithm has
some difficulty exactly locking on to true parameter values, or more likely, the true
parameters change slightly while the motor runs.

HHAHE
| | | | |
Ll E
2 f ! 1 / T i

I A (N (A
|
> ! ! | :) 1
| | .
A | o]
EREREREREE
A \ | | |
N \ A ‘_ \
o o 0 e - i J

Time (.1s)

Figure 5.36 Motor closed-loop response to a 5V square wave. o=Pn.

]
-
T —
Y — S
0 D P S U UO PSP SO
— A
[— B
3 05 ct
— C2
-
1.5 ; ,,,,,,,
B |]
2 i
0 100 200 300 400 500
Time (.1s)
Figure 5.37 Motor calculated system parameters. fo=Pn.
- ! A

— yimat

e =
——

Volts

b N L o a4 N w
!r—Y

{
SR
T

50_1(!0\\\J\jm;05i\\

Time (.1s)

Figure 5.38 Motor closed-loop output and estimated output. fo=Ppn.

52

(R T T e
I B B
R R N
| |
£ O}V\\ L »\\A - \ - l L j ‘ h\\ -
g M [1/ / | /
INERERRNER
- IR
|

N

| |
<E
83
e

i

0 100 200 300 400 500
Time (.1s)
Figure 5.39 Motor input u(k) and tachogenerator output Vizcn. Bo=Pn.
1.5 T T
]
I e .
O S _
— A
) — B
E 05 o
— C2
2 OO S0 OO OO YOS
T VPSRN S S ~
0 ISR SO SO SIS S ,,,,,,,,,,,,,,,,,,,,,,,, _
2
0 1000 2000 3000 4000 5000 6000
Time (1s)

Figure 5.40 Motor calculated system parameters after 10 minutes. fo=pn.

53

54

Figures 5.41 and 5.42 show the response when the parameter values were set to
Bo=1/2(Pn). Inspection of Figure 5.41 shows a large initial overshoot in the response.
The subsequent pulses, both positive and negative show no overshoot, but demonstrate
that the system is having difficulty recovering to a smooth response. Figure 5.42 shows
the parameter estimates as they slowly converge toward steady-state. Like the GP-6, the
control system converged to the parameter values much more slowly than the Simulink
model.

Figures 5.43 and 5.44 show the response for fy=2pn. Figures 5.45 to 5.48 show
the results for By=4pn. As Figure 5.45 shows, the system was very unstable in response
to the first pulse. For the next several pulses the response looks overdamped. It is
interesting to see in Figure 5.46 that the parameters settled near the By values, but the
output response remained bad. The system was allowed to run for a full 10 minutes and
the results are in Figures 5.47 and 5.47. Figure 5.47 shows the last minute of the test and
demonstrates that the system had recovered to a reasonable response. Figure 5.48 shows
that the parameter estimates seemed to drift slightly for the entire run time.

Figures 5.28 and 5.29 show the response when Bo=-p.

10

! Y
R S
° %fm B e e
A - VI T VO W VA N VR R
IR EREREN

e
—
T

R
e

P/
g

Time (1s)

Figure 5.41 Motor closed-loop response to a 5V square wave. Bo=1/28x.

2 f T T T
' — A
— B
¢l
L] E—————— oo & - s S — C2 H
1 \A L
F0)] SO S ———
[
s |
©
> /\,———fh—
) SO UGN SRSV UUUU. SO UPOTOUR
05
e
‘——t_k,.
—-——k—'_"fk—./———--v_‘_v_&.‘w
45 i i P i i
100 200 300 400 500 600
Time (.1s)

Figure 5.42 Motor calculated system parameters. Bo=1/2fn.

W _
nl [j
4 ! """"" B I f
|
IRERRE
2t = | | |
EE RN
£ ol ‘ %
= ‘ 1 l
—w 1 \
et i
J | \
Lo
L \ \ |
-60 100 260 300 400 500 46‘00

Time (1s)

Figure 5.43 Motor closed-loop response to a SV square wave. By=2pn.

2 — ;
i — A
- B
c1
__________ — C2 ||
g
© B S T —
>
/“"g'\ 1 Y SIS
2 ’l ----------------
_3f AAAAAAAA i
4 | | s ; |
0 100 200 300 400 500 600
Time (.1s)

Figure 5.44 Motor calculated system parameters. Bo=2pn.

10 ey

- 1)

Volts
—
A
h—
\“\\‘

% | —— Vpot ||

(Y - | S) | H {}{ \\ fofh

T
o \ \

ooV T N

Time (.1s)

Figure 5.45 Motor closed-loop response to a 5V square wave. Bo=4Bn.

8 T) T
: — A
i — B
c
[o e T &
7 0 O S G SO —
2 SR S SSOUUUO N SOUOt S
g Ll :
Tu‘ 0
>
I\/\\ -
SO SO SO SUO RPN SO .
AJ--- rrrrr
|
of |
_8 . 1 l H
o] 100 200 300 400 500 600
Time (.1s)

Figure 5.46 Motor calculated system parameters. Bo=4fn.

57

af {/ﬁ ,,,,,,,, / M /]/fﬁ {/ﬁ
; Lol |
J J L /’J f ,,,,,,,,,,,,,, j)
J(I 1 I & | | (:
g o] l} j *; |
EREEREN
2 (‘1\ 1\ . \ |
| | | |
J i I \
N AN I A AN A

Time (.1s)

Figure 5.47 Motor closed-loop response (last 600 samples of 6000). Bo=4Px.

— A
— B
[os]
6 2
4, AAAAA
2_,
3
L]
N
b
7 S SO SURVOU OO
£
_8 L 1 J 1 L
[¢] 1000 2000 3000 4000 5000 6000

Time (.1s)

Figure 5.48 Motor calculated system parameters after 10 minutes. fo=4pn.

58

59

i OO S) m
ﬁ/(,ffq,
........] 8
|eg B
s — ==
|
/rf/.l(e R S
. e S ‘\v\ﬂ
..... SN g
‘\'»\.l\««x\l\\l\L\ﬁ
........ s 8
i — M m\\’lﬁ\
+ i .mz o o~ A 60
STYN

Time (.1s)

Figure 5.49 Motor closed-loop response to a 5V square wave. Bo=-Bn.

—

15

05 iy

anjeA

0.5

1.5
2

500

100

Time (.1s)

Figure 5.50 Motor calculated system parameters. Bo=-Pn.

60

Table 5.1 lists the final parameter estimates, PrinaL, for each trial of the three
systems. The initial values, By, are also given for reference. Table 5.2 lists the average
BrinaL for each system.

Table 5.1 Parameter Estimate Data

Table 5.2 Average Final Parameter Estimates

AL B IC G

067 -214 032 0.28
079 -1.577 027 0.34
0.81 -1.45 0.38 0.28

1
¥

61

CHAPTER VI

SUMMARY AND CONCLUSION

This thesis investigated an adaptive state-variable feedback control system. As
introduced in Chapter I, adaptive control uses signal synthesis or parameter estimation to
adapt to the system being controlled or to changes in system characteristics. Modern
control sofiware packages like LabVIEW and MATLAB in conjunction with data
acquisition hardware can implement an adaptive system. The effectiveness of such a
system was studied here.

In Chapter II, the real-world plant to be controlled was discussed. The modular
servomotor system was configured with high gain and a defined time constant to behave
like a linear system. The continuous-time model was presented and this was used to
derive the discrete transfer functions between the input and tachogenerator and between
the input and position potentiometer output. The discrete state-variable model was then
developed and the open-loop response to a step function was shown.

A discrete state-variable feedback controller was developed in Chapter III. Since
the system states were not physically measurable, an observer was introduced to estimate
the states. Next, the Recursive Least-Squares algorithm for adaptive control was
outlined.

Chapter IV introduced the hardware and software used in the control
implementation. The NI 6024E multifunction I/O card was employed for data
acquisition. A Simulink model was developed using a custom S-Function block to
perform the RLS algorithm. LabVIEW and MATLAB were then integrated in the real-
world control system. The LabVIEW virtual instrument was developed using MATLAB
scripts for control calculations. A GP-6 test system was then constructed to define an
expectation of motor-system performance.

Finally, in Chapter V the systems were simulated with varying initial parameter
estimates and the results were plotted. The Simulink model adapted in all cases within
the first 5V input pulse. After the first pulse, the transient response was smooth with no
overshoot in all the trials. The GP-6 and motor systems showed somewhat different
behavior. The adaptation (seen in the system parameter convergence plots) took longer
for these two systems than for Simulink. This generally led to a less smooth transient
response. The motor system seemed to have difficulty recovering from initial instability.
Even after the system parameters had converged, the response remained visibly jittery.

This investigation leads to several conclusions. The motor system has
characteristics that are not accounted for in the system model. Brush friction, coupling
shaft torque, and noise are likely factors in the response that are not modeled in the
system equations. These unmodeled properties seem to cause a continuation of any

62

initial instability through many subsequent reference pulses. For instance, an
underdamped response to the initial pulse seems to be followed by what appear to be
noisy responses for many subsequent pulses. In both the Simulink and GP-6 systems the
initial underdamped response is gone by the second pulse of the input signal.

Conclusions about the control implementation can also be made. The LabVIEW
program is not well suited for mathematical computations, especially matrix algebra.
Building a block diagram to implement the RLS algorithm would have been time-
consuming and would have been extremely complicated to troubleshoot. It was much
easier to insert a MATLAB script to do the control calculations. The main disadvantage of
this is that the MATLAB software must be purchased in addition to LabVIEW to use this
feature. Another problem with LabVIEW is that the real-time plotting functions take
significant computing power. This steals processor time from the control program and
slows down the maximum sample rate that can be achieved. The data plotting
capabilities of LabVIEW are also limited. To plot data for presentation, LabVIEW must
write the data to a spreadsheet file and the spreadsheet software (also an additional cost)
must create the plots.

Overall, the adaptive control implementation worked reasonably well on the GP-6
system and on the motor system. The control objective of position control with a fast rise
time and no overshoot was met. Also, no steady-state error to the reference input was
seen in the GP-6 system and only slight steady-state error (-0.2V) was seen for the motor
system. Correcting this steady-state error and reducing noise in the motor response
would be a starting point for further research. Other ideas for further study include
implementing the controller in a Linux environment [6]. Since Windows is a
multitasking operating system, the control program must share processor time with other
background applications. Linux provides the ability to prioritize tasks so that the control
program can monopolize the processor time to achieve real time control. Much higher
sample rates could be achieved using Linux.

The LabVIEW program itself is also a good place for more study. Attempting the
adaptive control scheme using only LabVIEW functions and subVIs could demonstrate
that cost-savings could be achieved in this system. Another area for investigation would
be to explore the other features of the 6024E DAQ card. This card has thermocouple
inputs that could be employed for an adaptive temperature-control system. A buffered
data acquisition scheme could be used, and the discrete I/O card functions could be
investigated.

APPENDIX

PROGRAM LISTINGS

Appendix Sections A.1 and A.2 list the program files used in the Simulink system model.
The initialization routine used to set up variables in the MATLAB workspace is listed in
Section A.1. This routine had to be executed before the Simulink model was simulated.
The sections of the Simulink S-Function template that were modified to implement the
RLS algorithm are listed in Section A.2. The other sections of the S-Function template

were left unedited.

A.1 Simulink Initialization m-file: rls2init.m
% Adaptive motor control - Initialization

%

% Create global parameters and plot variables
global P1;

global betal;

global P2;

global beta2;

global betalA;

global betalB;

global beta2Cl1;

global beta2C2;

global ii;

global tplot;

ii=0;

tplot=[];

betal A=[];

betal B={];

beta2C1=[}];

beta2C2=[];

%

% simulation parameters

T=0.1;

%

% system parameters

Km=6.5;

tm=.25;

Kpt=6;

A=exp(-T/tm);

B=-Km*(1-exp(-T/tm));
C1=Kpt*(T-tm+tm*exp(-T/tm))/(1-exp(-T/tm));
C2=Kpt*(tm-tm*exp(-T/tm)-T*exp(-T/tm))/(1-exp(-T/tm));
%

% initial values

P1=[100;0 10];

%betal=[A;B];

betal=[-.763;1.64];

P2=[10 0,0 10];

%beta2=[C1;C2];

beta2={-.364;-.311};

1i=0;

Ltrack(1)=0;

%

% control & observer poles
% calculate closed-loop poles
al=-4+j;

a2=-4-j;

pl=exp(al*T);
p2=exp(a2*T);

p=[p1 p2};

%

% calculate observer poles
a3=-9;

ad4=-10;

p3=exp(a3*T);
p4=exp(a4*T);

pp=[p3 p4l;

%

% controller parameters
AA=[A 0;B 1];

BB=[1;0];

CC=[B 0;C1*B C1+C2];
DD=[0;0];
Kp=place(AA,BB,p);

%

% Observer parameters
L=place(AA',CC',pp)’;
Aobs=[AA-L*CC};
Bobs=[BB L];

C11=[CC;1 00 1];
D11={000;000;0 0 0;0 0 0];
D2=[0;0;0;01;

%

%solve for initial Nx and Nu
M=[[AA-eye(2)] BB; CC [0;0]];
R=({0;0;0;1];

N=M\R;

Nx=N(1:2),

Nu=N(3);

A.2 Simulink S-Function (Modified Template Sections)
function [sys,x0,str,ts] = RLScalc(t,x,u,flag)

%RLScalc M-file S-function

% This is an s-file subsystem with no states. It uses the Recursive

% Least Squares algorithm to calculate the system parameters of the

% servo-motor system.

%

ARL LIS LI LI S I E
)

64

O

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.

(1}

%
function [sys,x0,str,ts]=mdlInitializeSizes

%

% call simsizes for a sizes structure, fill it in and convert it to a

% sizes array.

%

% Note that in this example, the values are hard coded. This isnota

% recommended practice as the characteristics of the block are typically

% defined by the S-function parameters.
%
sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes. NumOutputs = 12;

sizes.Numlnputs =35;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

65

%

% initialize the initial conditions
%

x0 = [}

%

% str is always an empty matrix
%

str =]

%

% initialize the array of sample times
%

ts =[00];

% end mdlInitializeSizes

%

0/0 —

% mdlOutputs

% Return the block outputs.

0/, —.

%

function sys=mdlOutputs(t,x,u)

% Set up global variables and constants. Run the file rls2init.m before running

% the Simulink simulation of RLS_trial.mdl
global P1;
global betal;
global P2;
global beta2;
global betalA;
global betalB;
global beta2Cl;
global beta2C2;
global ii;

global tplot;
ii=ti+1;

tplot(ii)=ii;

%

% system parameters

jambda=.9;

%

% Give the inputs recognizable names.
yl=u(l);

ylold=u(2);

uold=u(3);

y2=u(4);

y2old=u(5);

%

% Perform the RLS algorithm. betal=[A; B]. beta2=[C1; C2].
psil={ylold;uold];
K1=P1*psil/(lambda+psil*P1*psil);
Pl=(eye(2)-K1*psil"y*P1/lambda;
betal=betal+K1*(yl-psil'*betal);
betal A(ii)=betal(1);

betal B(ii)=betal(2);

psi2=[yl;ylold];
K2=P2*psi2/(lambda+psi2'*P2*psi2);
P2=(eye(2)-K2*psi2")*P2/lambda;
beta2=beta2+K2*((y2-y2old)-psi2'*beta2),
beta2C1(ii)=beta2(1);
beta2C2(iiy=beta2(2);

%

% update controller parameters
Arls=[betal(1) O;betal(2) 1];

Bris=[1;0];

Crls=[betal(2) 0; beta2(1)*betal(2) beta2(1)+beta2(2)};
al=-412%j;

a2=-4-2%j;

pl=exp(al*.1);

p2=exp(a2*.1);

p=[p1 p2};

Kp=place(Arls,Brls,p);

a3=-9;

ad=-10;

p3=exp(a3*.1);

pa=exp(ad*.1);

pp=[p3 p4];

L=place(Arls',Crls',pp)';
Aobs=Arls-L*Crls;

%

%Solve for Nx and Nu
MI1=[[Arls-eye(2)] Brls; Crls [0;0]];
R1=[0;0;0;1];

N1=MI\RI;

Nx=N1(1:2);

%

% send output to Simulink workspace
sys=[Aobs(1) Aobs(2) Aobs(3) Aobs(4) L(1) L(2) L(3) L(4) Kp(1) Kp(2) Nx(1) Nx(2)];
%

% end mdlOutputs

66

67

Appendix Sections B.1 and B.2 list the program files embedded in the LabVIEW control
program. The initialization routine used to set up variables in the MATLAB workspace is
listed in Section B.1. The loop routine that performed the control and RLS calculations is
listed in Section B.2.

B.1 LabVIEW: MATLAB Initialization Script
% Adaptive motor control - Initialization

%

% simulation parameters

T=0.1; Tp=5; Tthl=8*Tp; time=0:T:Ttnl;
refamp=5; ref=refamp*sign(sin(2*pi/Tp*time));
%

% system parameters

lambda=1;

Km=6.5;

tm=.25;

Kpt=6;

A=exp(-T/tm);

B=-Km*(1-exp(-T/tm));
C1=Kpt*(T-tm+tm*exp(-T/tm))/(1-exp(-T/tm));
C2=Kpt*(tm-tm*exp(-T/tm)-T*exp(-T/tm))/(1-exp(-T/tm));
%

% initial values

x1hat=0; x2hat=0; uold=0; y1old=0; y20ld=0;
y1=0; y2=0; indx=1;

P1=[10 0;0 10};

betal=[A;B];

P2=[10 0,0 10];

beta2={C1;C2];

ii=0;

Ltrack(1)=0;

%

% control & observer poles

% calculate closed-loop poles

al=-4+1%j;

a2=-4-1%j;

pl=exp(al*T);

p2=exp(a2*T);

p=ip1 p2};

%calculate observer poles

a3=-9;

ad4=-10;

p3=exp(a3*T);

p4=exp(ad4*T);

pp={p3 p4];

%

% controller parameters

AA=[A 0;B 1};

BB=[1;01;

CC=[B 0;C1*B C1+C2];

DD=[0;0];

Kp=place(AA,BB,p);

Kp1=Kp(1);

Kp2=Kp(2),

Arls=[betal(1) O;betal(2) 1];
Brls=[1;0];

Crls=[betal(2) 0;beta2(1)*betal(2) beta2(1)+beta2(2)};
L=place(Arls',Crls',pp)’;

Li=L;

Aobs=[Arls-L1*Cris];

%solve for initial Nx and Nu
M=[[AA-eye(2)] BB; CC [0;0]];
R=[0;0;0;1];

N=M\R;

Nx1=N(1);

Nx2=N(2);

B.2 LabVIEW: MATLAB Loop Script
% Adaptive motor control - Loop Script

%

% calculate control output
u=Kp1*(Nx1*ref{indx)-x 1hat}+Kp2*(Nx2*ref{indx)-x2hat);
%

% save data for plotting

ii=ii+1;

Pl1plot(iiy=P1(1);

P12plot(iiy=P1(2);

P13plot(ii=P1(3);

Pl4plot(ii)=P1(4);

tplot(ii)=ii;

betal A(ii)=betal(1);

betalB(ii)=betal(2);

beta2C1(ii)=beta2(1);

beta2C2(ii)=beta2(2);

ylold1(ii)=ylold;

uold1(iiy=uold;

uplot(ii)=u;

vtachplot(iiy=y1;

vpotplot(ii)=y2;

%

% calculate next states
nxlhat=Aobs(1)*x1hat+Aobs(3)*x2hat+u+L1(1)*yl+L1(3)*y2;
nx2hat=Aobs(2)*x1hat+Aobs(4)*x2hat+L1(2)*y1+L1(4)*y2;
%

% update parameter estimates
psil=[ylold;uold];
K1=P1*psil/(lambda+psil"*P1*psil);
Pl=(eye(2)-K1*psil')*P1/lambda;
betal=betal+K1*(yl-psil *betal);

psi2=[yl;ylold};
K2=P2*psi2/(lambdatpsi2"*P2*psi2);
P2=(eye(2)-K2*psi2')*P2/lambda;
beta2=beta2+K2*((y2-y2old)-psi2'*beta2);

uold=u;
ylold=yl;
y2old=y2;
%

68

% update controller parameters
Arls=[betal(1) O;betal(2) 1];
Brls=[1;0];
Crls=[betal(2) 0;beta2(1)*betal(2) beta2(1)+beta2(2)];
Kp=place(Arls,Brls,p);
Kp1=Kp(1);
Kp2=Kp(2);
L=place(Arls',Crls',pp)';
Li=L;
if abs(L(1))>1

L1(1)=-4;
end;
Aobs=[Arls-L1*Crls];

%%%Solve for Nx and Nu
M1=[[Arls-eye(2)] Brls; Crls [0;0]];
R1=[0;0;0;1];

NI=MI\RI;

Nx1=N1(1);

Nx2=N1(2);

%

% update states

xlhat=nx1hat;

xZhat=nx2hat;

70

REFERENCES

(1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Gupta, editor, Adaptive Methods for Control System Design. NewYork:IEEE
Press, 1986.

Modular Servo Type MS 150 Technical Information. Crowborough, England:
Feedback Ltd.

G.F. Franklin, J.D. Powell, and M. Workman, Digital Control of Dymanic Systems,
2" ed. Reading, MA: Addison Wesley, 1990.

J. S. Bay, Fundamentals of Linear State Space Systems. Boston: WCB/McGraw-
Hill, 1999.

K.J. Astrom and B. Wittenmark, Computer-Controlled Systems: Theory and Design,
3" ed. Upper Saddle River, NJ: Prentice Hall, 1997.

Y.-C. Chen and J. Naughton, “An Undergraduate Laboratory Platform for Control
System Design, Simulation, and Implementation”, IEEE Control Systems
Magazine, pp. 12-20, June 2000.

DAQ: PCI-6023E/6024E/6025E User Manual. Austin, TX: National Instruments,
October, 1998.

National Instruments LabVIEW User Manual. Austin, TX: National Instruments,
November, 2001.

D. Hanselman and B. Littlefield, Mastering MATLAB 6: A Comprehensive Tutorial
and Reference. Upper Saddle River, NJ: Prentice Hall, 2001.

J.B. Dabney and T.L. Harman, Mastering Simulink 4. Upper Saddle River, NJ:
Prentice Hall, 2001.

LabVIEW 6i Start-up Screen> Search Examples> /O Interfaces> Data Acquisition
(DAQ)> Simultaneous Analog 1/0> Analog I/O Control Loop (Hardware-Timed).
Austin, TX: National Instruments, July, 2000.

