A VHDL-BASED DIGITAL SLOT MACHINE IMPLEMENTATION USING A

COMPLEX PROGRAMMABLE LOGIC DEVICE

by

Lucas C. Pascute

Submitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science of Engineering
in the
Electrical Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

December, 2002

A VHDL-BASED DIGITAL SLOT MACHINE IMPLEMENTATION USING A

COMPLEX PROGRAMMABLE LOGIC DEVICE

Lucas C. Pascute

I hereby release this thesis to the public. [understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:
A C. S A — [2-3-07
Lucas C. Pascute, Student Date
Approvals:

O_\/"M/\ 12/3/02

[Or. Faramarz Mossayebi, Thesis Advisor Date

Yilde Uil LY/ (2-3-02

Dr. Robert H. Foulkes, Cofnmittee Member Date
S Q p{ Iv/oz /G2
Dr. Salvatore Pansino, Committee Member Date

(2)/ iffy

Dr. Peter J. Kévinsky, Dean of Gradua Studies /Date

iil

ABSTRACT

The intent of this project is to provide an educational resource from which future
students can learn the basics of programmable logic and the design process involved.
More specifically, the area of interest involves very large scale integration (VLSI) design
and the advantages associated with it such as reduced chip count and development time.
The methodology used within is to first implement a design; using small and medium
scale integration (SSI/MSI) packages in order to have a baseline for comparison. The
design is then translated for use with the very high speed integrated circuit hardware
description language (VHDL) and implemented onto a complex programmable logic
device (CPLD). A discussion of this implementation process as well as VHDL lessons is
provided to serve as a tutorial for the interested reader. This thesis concludes with a

summary of the project results and ideas for future research topics.

v

ACKNOWLEDGEMENTS

I would first and foremost like to thank Dr. Mossayebi for his patience and time
that he gave to me throughout this entire process. I greatly appreciate the fact that he
often went beyond what was required to help me complete this research in the time frame
I desired. Also, I must graciously thank Dr. Pansino and Dr. Foulkes for serving on my
thesis committee on such short notice. The time spent reviewing my thesis during the
busy holiday season is well appreciated. The other professors that I have had in the
department over my academic career (Dr. Jalali, Dr. Munro, and Dr. Rost) must also be
recognized because they have taught me many of the principles I needed to be able to
undertake a project of this magnitude. In addition, I have to thank all of my friends and
family who kept me as sane and motivated as possible during some of the tough times
experienced while doing this research. Last but not least, a huge thank you goes out to
Carolyn for helping me with all of the odds and ends that I have needed during my five
and a half years here, she always was willing to help even when it seemed I was in there

more than once a day!

TABLE OF CONTENTS

PAGE
ABSTRACT .. 1ii
ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS ... v
LISTOF FIGURESo viil
.CHAPTER
L INTRODUCTION ..ot 1

II. PROGRAMMABLE LOGIC BASICS AND DEVICES 5

2.1 Introduction to Programmable Logic 5
2.2 Simple Programmable Logic Devices (SPLDs) 7
23 Complex Programmable Logic Devices (CPLDs) 10
24 Field Programmable Gate Arrays (FPGAS) 13
2.5 Computer-Aided Designc.ccooviiiiiiiiiiiinna... 16

II. ALTERA’S PROGRAMMABLE LOGIC COMPONENTS..... 20

3.1 INtroductionccoviiiiiiii i e 20
32 TheHardwareccooiiiiiiiiiiiiiiiiis e 21
33 The Softwareccooiiiiiiii i 23
IV. ANOVERVIEWOFVHDL 27
4.1 History of VHDLoooiiiii e 27
42 Basicsof VHDL e e e 30
V. BASIS OF SLOT MACHINE DEVELOPMENT 31

5.1 INtroduction ...oovviiii e, 31

5.2 History & Origin of Slot Machine Technology
5.3 Discussion of Mathematical Models
5.4 Project Specificationsccceueiiiiiiiiiiiiiiiinnn...
5.5 Actual Model Parameterscooceiiiiiiiiii
VI. THE COMMON SOFTWARE PACKAGE APPROACH
6.1 The Microsoft Excel Approachcooenn
VII. THE COMMON LOGIC HARDWARE APPROACH
7.1 Description of Logic Packages Used
7.2 Interaction of Logic Chips in Implementation
VII. THE CPLD APPROACH USING ALTERA PRODUCTS
8.1 Introductioncoiiiiiiiiiiii
8.2 The Design Entry Stage...........coeeeviiiiiiiiiiinn..
8.3 The Design Processing Stage.........coeevviiivinieennaneans
8.4 The Design Verification Stage.................ccoviiiniin
8.5 The Design Programming Stage..............c.ccoeevenennnn.
VIII. CONCLUSION ...ttt e
9.1 SUMMATY ..o,
9.2 ProjectResultscooeiiiiiiiiiii
9.3 Future Ideas for Researchcoooiiiiiiiiiii.
REFERENCES ...
APPENDIX A. VHDL LESSONS FOR STUDENT USE
A.1 Lesson 1: Introduction & Examples of VHDL

A2

Lesson 2: Introduction to Architecture Bodies

32

36

41

44

50

50

58

58

60

65

66

74

80

90

94

94

95

96

98

101

101

105

vi

A3 Lesson3: Arrays and Operatorsccoevviiuieinnninnn,
A4 Lesson4: Structural Modelingcccovivviiieii.l.
A5 Lesson 5: Dataflow Modelingcccoovviviiiinnnnnn...
A.6 Lesson 6: Behavioral Modelingcooooeviiiiinnnn
APPENDIX B. EXCEL SLOT MACHINE DESIGN CODING
APPENDIX C. LOGIC SYMBOLS AND TRUTH TABLES
C.1 The 74x85 Magnitude Comparatoroevinnnn
C.2 The 74x86 2-Input XOR Gatec.ccoevueviiiieinniiennn
C.3 The 74x154 4-Line to 16-Line Decoder/Multiplexer
C.4 The 74x163 Synchronous 4-Bit Counter
C.5 The 74x194 4-Bit Bidirectional Universal Shift Register ...
APPENDIX D. SSI/MSI DESIGN TIMING INFORMATION
D.1 The Clock(s) Setup for the PSpice Simulation
D.2 The Timing Analyses for the SS/MSI Design in PSpice
APPENDIXE. THE DESIGN REPORT FILEccoeennnen.
APPENDIX F. THE DESIGN DELAY MATRIXc.oo.0.

122

124

124

125

126

127

128

129

129

131

vii

LIST OF FIGURES

FIGURE

2.1 The basic architecture of a PLA devicec.oooviiiiiieiiinineannnn.

2.2 The basic architecture of a PAL devicecooiiiiiiiinenn.

2.3 The basic architecture of a CPLD ...

2.4 Thebasic architecture of a FPGA ...t

3.1 The Altera UP1 education boardcoeiiiiiiiiiniiinenn.

5.1 Typical range of slot machine variablescoeiiiienn.

5.2 The actual model parametersoceeviriiieiiiiiiienieeiiiienaens

53 The number of “spots” assigned to each color in each column

5.4 The corresponding color to each digit by column

5.5 The payout percentage of the slot machinec.oee

5.6 The probabilities for each possible combination on any given turn

6.1 Display of a non-winning combination as shown to the user

6.2 Display of a winning combination as shown to the user

6.3 The coding used inside of the “handle” macro

6.4 Display of a non-winning combination as shown “behind the scenes”

6.5 Display of a winning combination as shown “behind the scenes”™
7.1 The design for a single-reel of the slot machine in PSpice
8.1 The main MAX+PLUS® IISCreenoovveeiiiiiiiniiiiiiiiniinenienee
8.2 The main MAX+PLUS® II text editor SCreencocevvivrienieninnn...
8.3 The slot machine design writtenin VHDL code

viii

PAGE

11

15

21

41

45

46

47

48

49

52

53

54

56

57

64

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

The MAX+PLUS® II compiler screencooevveveiiiiiiiininiinninn... 75
The MAX+PLUS® II screen after a successful compilation 77
The MAX+PLUS® II screen after a unsuccessful compilation 78

The MAX+PLUS® II compiler with the smart recompile commandon 79

The waveform editor’s main SCreencooevviriieenineiinniieiinennnne 81
The “Enter Nodes from SNF” dialogue boxcccovviiiiiiiiiiinnnane... 82
The “Overwrite Clock” dialogue boxccoviiiiiiiiiiiiiiiiininae 83
The “Overwrite Clock Value” dialogue boxc.ocooviiiiiiiinn 83
The MAX+PLUS® II simulator main SCTeenc...oeuvueveeeuenennnen. 84
The message box for a successful simulation 85
The full simulation results for the slot machine design 86
The simulation results over an 8ms time periodc.oeeeeinnnne 87
The delay matrix screen for the timing analyzero..e. 89

The Altera MAX+PLUS® Il programmer SCTeencceevreenvennnnnn 92

X

CHAPTER 1

INTRODUCTION

The topic of digital design is the fastest changing and most diverse branch of
electrical engineering. This diversity stems from the fact that some aspect of almost all
topics of electrical engineering can relate to digital design. On the most basic level,
electrical components such as resistors, transistors, etc. can be interconnected in a manner
to produce various logic functions. This basic level also requires knowledge of
electromagnetic field theory since these fundamentals are inherent to any type of circuit;
analog or digital. Once logic gates (functions) are built through electrical components,
they can be used as the building blocks for digital design. Next, the gates can be
connected to form registers, which in turn can form chips. The highest level of digital
systems is a collection of many chips and is called the process memory switch level.

This level refers to hardware devices such as computer central processing units (CPUs).
This hierarchy demonstrates how the topics can vary from basic electromagnetic field
theory to computer engineering as the levels grow to increasingly more macro levels. For
this thesis, the areas of interest focus mainly on the gate, register, and chip levels since
one of the project’s intents is to demonstrate various digital logic components and design

processes.

The gate, register, and chip levels consist of integrated circuits (ICs) of various
sizes and were originally measured by the number of gates present on a single chip. The
smallest category of these ICs is referred to as small-scale integration (SSI). The
traditional definition of SSI is an integrated circuit that contains between one and twenty
gates. An example of SSI would be any of the 7400 series single function logic gates or
flip-flops. These chips are typically contained within a 14-pin, dual-inline-pin (DIP)
package.

The next size of IC is called medium-scale integration (MSI). An example of this
size of integrated circuit would be a multiplexer, counter, or decoder. For an IC to be
considered MS], it needs to contain anywhere from twenty to two hundred gates. The
SSI and MSI ICs are used as building blocks to combine and form LSI and VLSI
integrated circuits.

Large scale integration (LSI) refers to digital components such as programmable
logic devices (PLDs) and encompasses ICs with between two hundred and two hundred
thousand gates. Originally, LSI was the largest category used to describe an integrated
circuit. However, as the number of transistors on a single chip continues to double every
eighteen months, a new category has been formed.

This newly titled category is very large scale integration (VLSI). VLSI can be
applied to any IC that contains at least one million transistors. This level of integration is
currently the most researched and fastest growing and includes field-programmable logic
arrays (FPGAs) and complex programmable logic devices (CPLDs).

The main intent of this project is to investigate VLSI and demonstrate the ability

of these devices to reduce chip count and design time. A second goal is to present the

information in such a manner that an interested student could learn enough information to
build his or her own design without having to delve through many additional resources.
In order to accomplish these objectives, two main sections are presented within that
describe and demonstrate the functionality of FPGAs and CPLDs.

The first section encompasses Chapters I, III, and IV. Chapter II describes the
evolution of logic devices into the types currently being used today. Also, this chapter
contains information about the various architectures as well as how software packages are
used in conjunction with hardware devices to create and optimize designs. Chapter 111
provides specifications about the hardware and software that were used during this
project. These components were graciously provided by the Altera Corporation as part of
their university program design laboratory kit. An explanation of the details of this
program can be found in [1]. Chapter IV introduces the VHSIC (Very High Speed
Integrated Circuits) hardware description language (VHDL) that can create circuits for
implementation onto CPLDs or FPGAs. The development history of this language is
provided as well as a series of six informational sheets to aide future students with
learning this intricate programming language.

The second section of this thesis describes the design of a digital slot machine
through various stages until final implementation onto a CPLD. Chapter V discusses the
origin of the design idea, many of the thought processes involved, and the final design
parameters. Chapter VI presents a visual representation of this design using Microsoft
Excel. Industry often uses models in order to communicate the objectives of a project to
all team members. This model was developed in the spirit of this idea so that the reader

can best follow and visualize the desired outcomes. Chapter VII describes a

representation of the digital slot machine design using SSI and MSI parts. This chapter is
included to give the reader a comparison of the design using previous technology with
respect to VLSI. Chapter VIII details the process of creating and implementing the
design onto the university program 1 (UP1) education board using the VHDL language
with the MAX+PLUS® II software. The information is presented in such a manner that
the reader could follow the details and create and implement a design of his or her
choosing with this package. A conclusion containing a discussion of the results as well

as ideas for future research is presented in Chapter IX.

CHAPTER 11
PROGRAMMABLE LOGIC BASICS AND DEVICES
2.1 Introduction to Programmable Logic

The topic of digital design began with the use of small unchangeable IC logic
packages to create logic circuits. Engineers would design an appropriate interconnection
of these packages in order to achieve the desired function. The particular ICs being
referred to are similar to the 7400-series TTL logic chips that can presently be found in
every undergraduate digital laboratory. This method allowed simple digital circuits to be
designed quickly and with low cost. However, as the circuits and logic grew larger, the
designs also grew increasingly difficult and the time to build and troubleshoot them grew
increasingly long. For this reason (and the advent of the personal computer), devices
such as application-specific integrated circuits (ASICs) énd programmable logic devices
(PLDs) were created.

The first device credited with being the father of ASICs is called the Micromosaic
and was introduced by Fairchild Semiconductor in 1967. This device allowed the user to
program a desired logic function through use of a computer program. The computer
program would connect the previously un-connected transistors that were present on the

device in order to achieve the designed function.

After the creation of the Micromosaic, the traditional ASIC (as it is referred to
today) began to take form. An ASIC is a device that is designed by the customer to
produce a specific function. This new product allowed circuits that previously required
several IC packages to be built on a single chip, thus making a significant reduction in the
amount of power used and space consumed. However, the process of troubleshooting
ASICs is difficult and the development costs can be great. This is due to the fact that the
device is actually created by an outside manufacturer, even though it is designed by the
customer. These disadvantages led to the development of the programmable logic device
(PLD) in the mid 1970’s.

The PLDs provided the same advantages as the ASIC but allowed the end-user to
configure them instead of a separate manufacturer. This feature also allowed greater
information security since the design would not need to be passed to another company for
manufacturing purposes. For these reasons (and others), the “boom” of programmable
logic began.

Programmable logic refers to an IC device that is configurable by the user after it
is manufactured and is able to implement digital logic functions. There are three
common programmable architecture categories presently used that are pertinent to this
discussion. These architectures include Simple Programmable Logic Devices (SPLDs),
Complex Programmable Logic Devices (CPLDs), and Field Programmable Gate Arrays

(FPGAs).

2.2 Simple Programmable Logic Devices (SPLDs)

Simple Programmable Logic Devices include such devices as the Programmable
Logic Device (PLD), Programmable Array Logic device (PAL), Programmable Logic
Array device (PLA), and the Generic Array Logic device (GAL). The SPLDs are just as
the name suggests; the smallest and cheapest architecture available for programmable
logic. A single device of this architecture is capable of replacing a handful of the 7400-
series TTL logic packages.

PLDs have wide varying characteristics including: the electronic technology
implementation (bipolar, CMOS, etc.), implementation of the fusible links, erasure
capability, and the ability (or lack thereof) to reprogram the device. The main deterrent
to replacing 7400-series built circuits with PLDs in the past was related to slowness in
propagation times. However, as PLD technology has matured, they have become as fast
as the quickest TTL chips on the market. From all the sub-categories of SPLDs, the term
“Programmable Logic Device” is used as a generic term that encompasses the others.
The most popular and basic forms of PLDs are PAL devices, PLA devices, and GAL
devices. It is beneficial to discuss each of these briefly so that the reader can get a better
understanding of terms, such as macrocells, for future topics.

PLAs were the first widely-used programmable logic devices. The development
of this device grew out of research done by IBM and Texas Instruments during the late
1960s and early 1970s and was first introduced by Signetics in 1975. This device allows
the user (unlike with the ASICs) to program the connections to be made and consists of a

two-level AND-OR array (sum of products) of terms. The basic structure of a four input,

four output PLA is given as Figure 2.1. Through observation of this figure, many of the
basic characteristics of a PLA can be observed. First of all, each input and its
complement are available for use as an input to any of the AND gates. Also, each
product term in the array can be connected to any of the OR gates present on the chip.
The possible connections, which are represented by the dots in Figure 2.1, can be

implemented in various ways including fuses or memory cells.

IN 3 ‘N4

e ome
NN NN YN ey

A X3 -

Figure 2.1 — The basic architecture of a PLA device

Using the basic PLA device architecture as a model, Monolithics Memories Inc.
(MMI) produced the first PAL device in 1976. The introduction of this device helped
PLDs gain extensive acceptance throughout the digital design community and were the
first PLD to use versatile bi-directional input/output pins. The PAL device is similar to a
PLA device as it contains an AND/OR array, however, the difference is that the OR array

is not variable but instead is fixed to specific product terms. The architecture of a four

input, two output PAL device is given as Figure 2.2. This figure clearly shows how each
product term is not available to every OR gate as was the case for the PLA device. The
logical question to ask is how is this technology even beneficial without the previous
flexibility? The answer is that a PAL device is cheaper and faster than its counterpart and
can implement functions close to the same size. This is why the PAL device is the most

commonly used form of the PLD in the market today.

Figure 2.2 — The basic architecture of a PAL device

From the PAL architecture, a newer PLD was created by Lattice Semiconductor
and was called a Generic Array Logic device (GAL). The GAL device is virtually the
same as a PAL device because it was produced in such a way that it could emulate any

combinational or sequential PAL device through use of AND/OR arrays and flip-flops. It

10

even contains the same fixed product term structure as in the PAL device. Also, GAL
devices were built so that they could be electronically erased and are thus re-
programmable, making it valuable for prototyping and trial runs. There are many GAL
device architectures that have been introduced and are on the market today; [2] and [4]

give a thorough discussion of them and many examples of GAL devices.

2.3 Complex Programmable Logic Devices (CPLDs)

As logic circuits grew larger, the size of PLDs also continued to grow. The
problem with this phenomenon is that both the physical and the AND/OR array size on
the PLD began to be inefficient. These problems were also in addition to an increase in
capacitive effects and a decrease in speed. To remedy these difficulties, the complex
programmable logic device (CPLD) was developed. The basic CPLD architecture
consists of three main parts: logié blocks, an interconnect structure, and input/output
(I/O) blocks. A CPLD is very flexible since it allows the individual logic blocks and
interconnect structure to be programmed. A typical configuration of a CPLD is depicted
in Figure 2.3. Since the three main parts of the CPLD are also what distinguishes
different variations of these logic devices, they will be investigated further in depth
individually below.

The architecture of the CPLD shown in Figure 2.3 contains four logic blocks
similar to PLDs but these devices can contain as few as two or up to as many as sixty-
four or more of these blocks on a single chip. Each one of these logic blocks is then

broken down further into sections called macrocells. A macrocell typically consists of a

11

2-level AND/OR array, a flip-flop, a multiplexer, and various other small logic circuitry.
These macrocells allow for wide fan-in and typically between four to sixteen product
terms. Depending on the particular architecture being examined, a single logic block
generally contains up to sixteen interconnected macrocells. One useful feature on some
architectures is the ability of the macrocells to share product terms. This is particularly
valuable for architectures that contain only four product terms per macrocell since it
allows for great flexibility. One disadvantage of this feature is that the propagation time
is slightly slower and thus must be considered (as any variable should) when choosing the

best architecture for the designer’s specific need.

OO00000000oo0o0ooooopooooo
0O O
O O
a (]
O Logic Logic O
] Block Block |
O O
O Inter- =
g Conect O
o Switch g
O Madrix O
(] O
O O
0 Logic Logic O
O Block Block 0
[H] a
O |
0O |
O0000000000000ooooooooo

Figure 2.3 — The basic architecture of a CPLD.

The second part of the architecture which can be seen in Figure 2.3 is the
interconnect switch matrix. The function of this switch matrix is to connect the logic
blocks within the CPLD just as the macrocells are connected inside of them. There are

two basic categories into which switch matrices fall into: partially populated and fully

12

populated. A fully populated switch matrix can connect all the logic blocks present on
the CPLD in any and all possible combinations whereas a partially populated one lacks
the capability of providing some of these combinations.

Since there are more connections in a fully populated switch matrix, designs are
more often easier to route than in a partially populated one. This routing process is done
through use of a software package and is thus considered programmable. The ease of
routing is important since the design is often constrained by a fixed pinout that must be
used. It obviously makes more sense to be able to keep this fixed pinout then to redesign
the peripheral circuitry around the CPLD to be compatible with a new layout. Also,
partially populated switch matrices have problems with delays since they are not as
predictable as their counterparts are. It almost seems as if there is no reason to ever use a
partially populated switch matrix from the previous comments but the main variable in
business to always remember is cost; partially populated matrices are cheaper. So in
order to find the most appropriate device for a design, all variables such as speed, area,
and cost should be considered.

The last component of a CPLD is the input/output blocks. These /O blocks are
used to receive the input signals from the outside or to seﬁd output signals. As for the
output signals, there are often many conditions to which they can be set. For example,
they typically have the ability to be set to active ‘high’ or ‘low’, a disconnect or open
state, or connected to the global enables that are present on the CPLD. Also, as stated in
[2], /O block architectures now contain various analog controls in addition to the digital
ones. Some of these controls include slew-rate control to manage the speed at which

output signals vary, a pull-up resistor (and sometimes a pull-down resistor) to prevent

13

situations in which a float condition is undesirable, and a user-programmable ground to
best handle high changing currents on the device.

Most modern CPLDs are manufactured using electrically eraseable programmable
read-only memory (EEPROM) technology. With this technology, the CPLD is non-
volatile (saves it memory contents even while power is removed) and re-programmable.
Since the memory is not lost through the removal of the power source, the logical
assumption would be that the CPLD could only be programmed once and thus be
unchangeable. This is not a valid assumption, however, as the name of the device states,

it can be erased electrically.

2.4 Field Programmable Gate Arrays (FPGAs)

A destre for performance improvement to that of the CPLDs led to the
development of field-programmable gate arrays (FPGAs) by the Xilinx Corporation in
1984. Instead of using a few PLD-like logic blocks with a central and fairly simple
interconnect switch matrix, FPGAs use many small programmable logic blocks with a
complex interconnect structure. A general architecture of FPGAs is shown as Figure 2.4
on Page 15. All FPGAs contain the same basic parts as the CPLD (logic blocks,
interconnect, and I/O blocks) but each is substantially different, so each structure will be
examined individually.

The logic blocks separate FPGAs into two separate categories: coarse-grained and
fine-grained. A coarse-grained architecture is the most common and the best performing

type used and consists of larger logic blocks as well as a few look-up tables and flip-

14

flops. The fine-grained architecture has a larger number of logic blocks but they are
smaller in size. These logic blocks typically contain a single flop-flop and a small
AND/OR array. Depending on the architecture, a FPGA can contain anywhere from tens
to tens of thousands of logic blocks on a single chip with even more flip-flops available.
The key goal for FPGA logic blocks is getting as much capability as possible through use
of the least smallest sized logic blocks as possible.

The decision of which particular architecture should be used depends mainly on
the user’s design. Coarse-grained FPGAs are good for applications that have a few fairly
independent large logic structures. The reason for this is that the large space available in
these logic blocks tends to be quite wasted when used for small logic functions. These
small logic functions are best suited for fine-grained FPGAs. The main problem with
fine-grained architectures is that they require a significantly larger number of
interconnect paths. This increase in interconnection circuitry can lead to a considerable
amount of delay and a decrease in the amount of available space. For these reasons, it is
important to examine the design chosen for implementation and choose the most
appropriate architecture in order to best optimize one’s design.

The next part of the FPGA architecture is the programmable interconnect
structure. As evident in Figure 2.4, there is no central device that controls the way in
which the logic blocks are connected, it is instead done through an intricate scheme. This
scheme involves connecting each of the logic blocks that are present on the FPGA with a
set of wires containing programmable connections. It is important that the interconnect
scheme is well thought out since the large number of wires present can result in long

delays. This is especially true for fine-grained architectures that require more

15

interconnections and thus have more potential for delays. In order to minimize this delay,
computer-aided design packages use a variety of optimization tools to best “route” the
design, where routing is described as the process of interconnecting the resources in a
manner that meets project specifications. It is beyond the scope of this project to describe
the interconnect structure or optimization methods to great detail due to the extreme
variance between the many available architectures from each particular vendor. The
interested reader should consult references [2] and [12] for additional information

regarding these topics.

ooo0ooooooooonnoooonoooog

oooOoooopoooooooooon

0oooppoonoobooiooipal

Intexconnect
Struciure

Figure 2.4 — The basic architecture of a FPGA.

The last part of the FPGA architecture is the input/output blocks. These /O
blocks are the components most similar in nature to their counterpart on a CPLD. They
can be defined as not only inputs or outputs but also as three-state or bi-directional. In

addition to the same analog components availabie on the CPLD such as pull-up resistors,

16

pull-down resistors, and slew rate control, some FPGAs allow the user to provide edge-
triggered flip-flops or latches to the I/O blocks. Reference [2] provides a discussion of
the XC4000 FPGA (available from the Xilinx Corporation) and notes that an additional
feature it has is “a delay element to guarantee that the input will have a zero hold-time
requirement with respect to the external system clock”.

Most of the FPGAs built today are done so using a technology called static
random access memory (SRAM). SRAM technology’s main advantage is its re-
programmability and can be found in a similar fashion in microprocessors. Some
disadvantages inherent to SRAM are that it is volatile (which means that the memory
contents are lost when power is removed) and that it typically requires high power during
operation. The way that SRAM works is through use of an external configuration
memory source, which stores the integral program information. This includes the
direction definitions of the I/O blocks, the functionality of the logic blocks, and the
manner these blocks are connected together. This information is then “downloaded” or
programmed onto the FPGA for design implementation. A thorough discussion of

SRAM technology can be found in [2].

2.5 Computer-Aided Design

The computer-driven environment present in the world today has integrated itself
into the field of digital design and has become a very important tool in it. Computer-
Aided Design (CAD), also called Computer-Aided Engineering (CAE), allows the

designer to create high-quality logic circuits through use of a wide variety of software

17

tools. Typical software packages sold today contain various methods for the entry of the
design, simulation tools, timing analyses, and synthesizing capabilities once the creator is
confident of the correctness of the design. The discussion to follow gives a look into
these main components of CAD.

In order to create a design with the objective of physical implementation using
CAD, it must first be entered into the software package in some sort of fashion. Most
packages today allow a great deal of flexibility to the designer when it comes to the
manner of entry. The first type of these methods to be discussed and perhaps the most
basic and common is schematic entry. This method allows the schematics of logic
circuits to be drawn onto an editor on the computer by placing various logic symbols.
More advanced software packages include a large catalog of devices available for use on
the schematic as well as various troubleshooting capabilities. Schematic entry is most
useful for small circuits since placing a large number of symbols and making sure they
are connected properly can become cumbersome. This complication, along with the need
to work out the exact design using basic logic symbols as well as documenting the design
ultimately led to the development of Hardware Description Languages (HDLs).

These languages (such as ABEL, VHDL, and Verilog) allow the designer to
model and design various sizes of functions, chips, and digital systems. This is done
through use of programming techniques similar to those of high-level languages (Visual
Basic, C++) to model the desired behavior instead of the actual combinational or
sequential logic circuit required. The editors used with these HDLs are very similar to
those of the other programming languages since they often provide certain tools to aide in

debugging the code for successful compilation.

18

In addition to these entry methods, there are various other techniques that are
available in software packages. Some of these methods include: state diagrams to
describe the behavior of a desired state machine, truth tables describing the
corresponding outputs for assorted inputs, and waveform editors to describe the timing
behavior of inputs, outputs, and the relationships between the two.

Once the design has been entered in the desired manner, it can then be compiled
and simulated. Once the compilation process is successful, the program will create data
that can be used to verify the functionality of the circuit. Some of the tools available to
the designer are various test benches and timing analyzers. A test bench uses items called
“test vectors” in order to check the behavior of the circuit. These vectors can range from
a single source of inputs created by the designer to a complete set of possible input
combinations generated by the program itself. The timing analyzer then works together
with the test bench in order to describe the time dimension and functionality of the
design. Time is a very important variable to consider in the design of logic circuits since
races and glitches are very difficult errors to predict and are common complications in
initial design attempts. Using the combination of these available tools, the designer is
able to perfect the design to his or her content without ever physically building it.

The last stage of the design development, called logic synthesis or programming,
is the process of transferring the compiled and tested design onto an actual physical
circuit. This procedure is often complicated by the limitations that arise on both the
software package and on the hardware device being used. These constraints vary from
the total number of gates and space available on the hardware device to the amount of

computing power available to the software. Because of these constrictions, modern

19

compilers contain optimization capabilities so that the physical circuit is not only
functional but is programmed in a manner so that variables such as the cost and amount
of circuitry needed are minimized.

A common feature available in modern compilers is a list of possible architectures
for use as the targeted hardware device. Each of the architectures that are then listed
contains algorithms specifically written for the optimization of designs for that device.
The major logic manufacturers taken this path to encourage the users of their software to

also purchase their hardware.

20

CHAPTER IlI

ALTERA’S PROGRAMMABLE LOGIC COMPONENTS

3.1 Introduction

The aim of this chapter is to provide a more specific extension to the information
presented in the previous chapter. While Chapter 2 discussed the general structure of the
hardware and software used in programmable logic, Chapter 3 converses about the
package that was used to build the design presented within this work. This is one of the
standard packages developed by the Altera Corporation to help aide in teaching digital
logic design. This package; which is called the university program design laboratory
package, contains a version of the company’s MAX+PLUS® II software, a UP1
education board containing a EPF10K20 FPGA device and a EPM7128S CPLD, and a
ByteBlasterMV ™ parallel port download cable. This package is available to any
accredited university that actively instructs students in digital logic design. These
materials provide all the necessary tools to create and implement basic digital logic
designs. The capabilities of this package’s hardware and software will be summarized in
the following sections, which heavily rely on the user guides available from the Altera

website [16].

21

3.2 The Hardware

The main piece of hardware in the university package is the UP1 education board.
This board contains many features including two VLSI devices. In addition to these
components, there is a 25.175 MHz crystal oscillator that can be used as a global clock
input. Also, there four push-buttons and sixteen switches that are connected to pull-up
resistor to provide input values. To view the outputs of a design, sixteen LEDs
illuminated by active-low logic, and two dual-digit, seven segment displays are provided.
More detailed information about each of these features as well as others seen on the

board depicted in Figure 3.1 (taken from [33]) can be found in reference [14].

Figure 3.1 — The Altera UP1 education board

22

The FPGA included in our particular package is the EPF10K20 device and is part
of the Altera Corporation’s FLEX 10K device family. This particular device is contained
within a 240-pin power quad flat pack package and is based on reconfigurable SRAM
technology. It contains 1,152 logic elements and six embedded array blocks containing
2K bits of memory. A logic element is Altera’s term for a small bit of logic circuitry
similar to a macrocell discussed in Chapter 2. Each PL.A-like block (called Logic Array
Blocks by Altera) contains eight logic elements and thus one hundred forty four logic
array blocks on the EPF10K20 device. The embedded array blocks can be used as RAM
or ROM for the device and support synchronous and asynchronous operation. These
They can also be used to implement common functions such as microcontrollers,
multipliers, and state machines.

The other device on the UP1 educational board is the EPM7128S CPLD, which is
part of the Altera Corporatibn’s' MAX 7000 device family. As opposed to the FPGA
device, which used SRAM technology, this particular device uses EEPROM elements
instead. It is packaged within an eighty four pin plastic J-lead chip carrier and contains
one hundred twenty eight macrocells. These macrocells contain the normal features
described in Chapter 2 as well as a “configurable register Witﬁ (an) independently-
programmable clock™ as stated in the user’s guide [14]. For the interested reader, the
Altera website [16] provides a great deal of information about not only these devices, but

also the architectures of the other packages that they offer as well.

23

3.3 The Software

Even though the MAX+PLUS® II university development software was included
in the package, the version used for the design of this project was the commercial version
This was due to the fact that the commercial version was already installed and contains
additional resources unavailable in the student version. MAX+PLUS® II offers a very
flexible design environment that supports almost all of the Altera programmable logic
device families and will run on most modern operating systems. As stated ‘in [15], the
design process for MAX+PLUS® II consists of four phases: design entry, design
compilation, design verification, and device programming.

The MAX+PLUS® 1I software provides three main design entry editors (graphic,
text, and waveform) as well as a symbol editor to complement the others. Perhaps the
most basic and easiest way to enter a design is through what the company calls graphic
design entry. This method involves placing logic symbols (of SSI/MSI devices) and
wiring them up in the desired manner with appropriate labels. The software provides
over 300 typical symbol functions as well as the ability to create user-defined symbols in
the symbol editor. Also, this flexible software allows schematics from other companies’
software (such as Cadence’s OrCAD) to be imported into the schematic screen.

Another popular entry method is text design entry. MAX+PLUS® 1I supplies a
text editor in which the user can input VHDL, Verilog HDL as well as AHDL (Altera’s
Hardware Description Language) constructs or codes. Even though the software can read

in coding that was written within any common text editor, the particular one available

24

within the software contains features such as syntax coloring to easily observe keywords
and basic templates for all the supported languages.

Also, the software provides a waveform editor that can be used to generate
waveforms for input vectors as well as view the simulation output results after
compilation. This design entry method is often popular when using state machines.
Another nice feature of this software is that the these above-mentioned methods can be
combined in a “mix or match” fashion to allow the greatest amount of flexibility to the
user.

The next phase of the design process is the design processing stage. After the
design is entered by one of the methods described above, it is then processed through the
MAX+PLUS® II compiler. The compiler takes in these various files, checks them for
errors, synthesizes the logic, and creates output files that can be used for programming,
simulation, and timing analysis. Also, the complier optimizes the efficiency of the
project so that minimal resources are required. The flexibility provided in the software
allows synthesis settings to be adjusted, timing requirements entered, and unused pins
and logic blocks specified.

The complier also consists of a feature called the message processor. This feature
checks the files being compiled for errors, such as connection or syntax ones, and
displays appropriate error or warning messages. Also, it provides the ability to
automatically open the design file that is the source of the error or warning by a simple
double-click. These features are invaluable to the digital logic designer in search of an

elusive troublesome error.

25

Once the design project has been compiled, the next step of the process is design
verification. The MAX+PLUS® II software includes two main features for verification:
a simulator and timing analyzer. The simulator is used to test the logic integrity of the
design as well as the internal timing. The input for the simulator is typically produced
using a set of waveforms, which are generated in the waveform editor. Once the design
1s simulated, the results can be viewed by opening the waveform editor and adding a trace
for the desired output. Also, there are options available that allow the design to
monitored for glitches, oscillations, and other potential problems. The main reason for
simulating a design is to ensure that it is working as expected before spending the time
and money to actually program the device. Additional features available in the
MAX+PLUS® II simulator include the ability to specify the expected logic levels, define
the time interval of what constitutes a glitch, and insert breakpoints.

The purpose of the timing analyzer is to determine propagation times of the
internal signals and ali of the critical paths. This software feature provides the user with
three possible types of analyses: delay matrix, setup/hold matrix, and the registered
performance display. The delay matrix calculates all possible combinations of paths
between the source and destination nodes and displays the shortest and longest of these
paths. The setup/hold matrix displays the minimum required setup and hold times for
devices such as latches and flip-flops. The registered performance display allows the
user to define variables within the analysis and displays the results of a registered
performance analysis. Once an analysis has terminated, the software provides a few
more useful tools to the user. One of these tools is the ability to choose any of the source

nodes and destination nodes and view the corresponding delay pattern. Also, the

26

software provides a message processor, which lists all possible paths for any specified
node.

The last step of the design process is the programming phase. In order to program
the hardware device, it is first connected to the computer through the ByteBlasterMV ™
parallel port download cable, which is included in the university package. The
programmer module in the software then uses certain files that were generated during the
compilation stage to program the hardware. Also, the MAX+PLUS® II programmer
allows the user to configure, verify, examine, blank-check, and functionality test the
hardware in addition to programming it. Lastly, the software provides (sometimes)
helpful error messages that are generated if any problems occur while programming the

device to aide the user in troubleshooting.

27

CHAPTER1V
AN OVERVIEW OF VYHDL

4.1 History of VHDL

VHDL is an abbreviation for the VHSIC (Very High Speed Integrated Circuits)
Hardware Description Language. The development of VHDL was initiated in 1980,
when the Department of Defense introduced what was called the VHSIC program. It
should not be a surprising fac£ that this language was started by the government since
many new technologies such as the internet were created in this manner. The reason for
this is that the government has the power and money to implement certain regulations to
push the completion of projects. This particular project was derived out of the need to
create a common descriptive language in the field of digital design. This need was the
direct result of the government having many different vendors supplying integrated
circuits to them. Since there was no standard at that time, each of these suppliers had
their own descriptive language that was used for design and development. In order to get
this project started, the government funded it with $16 million for VHDL design tools as
well as an additional $17 million allotted for direct VHDL development.

The next step in the evolution of the language was the Woods Hole Workshop,

which was held in Massachusettes during June 1981. The workshop brought together

28

members of industry, government, and academia who were involved and knowledgeable
in the design of VHSIC chips. This workshop was used for discussion of VHSIC goals
and the initial planning for VHDL began.

The next major step in development occurred in July 1983 when a team consisting
of the IBM, Intermetrics, and TI organizations were awarded a contract to develop the
baseline structure of the language. In order to get the best outcome, these three
companies did not keep the process development results closed but instead allowed
public review and suggestions. This constant review and improvement lead to the
development of VHDL versions 1 through 7.1.

The final modifications before official release were implemented into version 7.2
in August of 1985. Once this initial launch occurred, the government immediately passed
military standard 454, which mandated that documentation was required for any and all
government contracts that contained an ASIC (Application Specific Integrated Circuit).
An ASIC is “an integrated circuit that is designed using standard logic blocks to reduce
the time to market of a new chip.” [25]. In order to best adhere to this standard, there was
a push for suppliers to use the VHDL language throughout the entire design process.

This final release, however, did not conclude the evolution of VHDL. In
February of 1986, all rights to the language were transferred to IEEE (Institute of
Electrical and Electronic Engineers) with the responsibility of updating and maintaining
it. Upon transfer, IEEE formally endorsed it. This lead to a proposal the following
month for a new and improved version to extend the capabilities of the existing language
as well as to change and fix any identified problems. After a year of improvements and

modifications, VHDL became classified as IEEE standard 1076-1987 (also called 1076.1

29

or VHDL-87) in December of 1987. This version of VHDL was at first intended not as a
design tool, but instead to provide a precise model of circuitry. Along with this new
standard, the IEEE VHDL language reference manual was published. Soon thereafter, in
1988, this IEEE standard became approved by the American National Standards Institute
(ANSD).

The next significant changes in the language occurred around September 1993. It
is stated under the IEEE standard guidelines, that all standards have to undergo a review
every five years to determine their future relevance to the industry. Because of this
review, VHDL was re-standardized in order to further fix and enhance the language and
was later passed as IEEE standard 1076-1993 (also known as VHDL-93). This new
standard included improved file handling, predefined standard packages, expanded
functions, more consistent syntax, and larger keyword libraries and attributes.

Since this revision, VHDL has become a draft international standard by the
International Electrotechnical Commission (IEC). Also, VHDL is no longer just a
description language as its initial design was intended, but instead is a design tool with
increased modeling capability. These new features allow the simulation as well as the
testing of complete digital systems before they are manuféctured. This allows companies
to save time and money, since wasteful and costly prototypes are virtually unnecessary.
VHDL has become one of two widely used hardware description languages. The other
popular one is Verilog, which was published by Cadence in 1991 and remained a
proprietary language for numerous years thereafter. This business strategy actually

allowed VHDL to “catch on” since all of the other vendors were unable to use or modify

30

Verilog and thus put all of their resources behind VHDL. A good discussion comparing

the development of the two languages can be found in [24].

4.2 Basics of VHDL

VHDL is an intricate language that takes a good amount of time to learn and
perhaps years to master. This fact is additionally complicated when the person learning it
has no previous programming experience. Most publications do not typically take this
into account and instead assume prior programming skills. Since this is obviously not
always the case, a series of six lessons are presented in Appendix A that cover the basics
of VHDL on the level of a novice programmer. These lessons, when accompanied by a
short lecture and textbook (to provide further examples) would allow the baseline
language to be covered quite thoroughly within a three to four week time frame.

These lessons are presented in an order that would likely be most beneficial to the
student. Here is a listing and order of the topics that are covered by the reports and
located within Appendix A:

1. Introduction & Examples of VHDL
2. Introduction to Architecture Bodies
3. Arrays and Operators

4. Structural Modeling

5. Dataflow Modeling

6. Behavioral Modeling

31

CHAPTER YV

BASIS OF SLOT MACHINE DEVELOPMENT

5.1 Introduction

The design concept for this thesis originated during a trip to Las Vegas in
December of 2000. The need to find a topic for an upcoming undergraduate senior
electrical engineering project combined with the overwhelming amount of “one-armed
bandits” present in Las Vegas inspired the author and a colleague to further investigate
these machines: While the initial senior capstone project concentrated on the
mathematical model as well as-the many surrounding aspects of gambling such as ethics,
business, psychology, etc.; the following discussion is solely on the design and
implementation using various software and hardware technologies.

The design description gives a brief history of slot machines to give the reader a
feel to how the problem of building one would be attacked. Also, project specifications
are discussed and the mathematical model given. This is in addition to other
specifications mentioned in order to give a basis for which the various designs will be

built and compared upon.

32

5.2 History & Origin of Slot Machine Technology

Charles Fey (1862-1944) is recognized as the inventor of slot machines. Fey was
an American entrepreneur who began manufacturing these devices inside of his San
Francisco workshop in 1894. When asked about his new invention, he described them as
such, “Take a coin chute for the people to put their money in, and a cash box for the
money to go into, and put something in between that will interest the people, and you’ve
invented a slot machine”. Fey was a true pioneer of the gaming field and was the true
originator of the three-wheel slot (that is commonplace today), which he built in 1898.
This slot machine that he invented, known as the “Liberty Bell”, was so well thought out
and revolutionary that the same basic design is being used in today’s high tech gaming
facilities.

Fey began marketing these devices throughout San Francisco’s Barbary Coast in
the late 1890°s. However, there was one huge cobstacle that remained in his way:
California laws during that time period prohibited any type of gambling machines that
paid out monetary jackpots. As any great business person knows how to do, Fey looked
for a loophole in this law. Instead of paying out a certain monetary sum for lining up
three of the same symbols, the owner of the machine would pay out the equivalent in
cigars for instance. This is where the symbols originated that are commonplace today.
Such popular symbols like the cherry, plum, orange, etc. were used as the designation of
the flavor of chewing gum the player would win if he or she matched three of them in a
row. However, gambling was like prohibition, when the police were not around, these

gaming machines most likely turned back into having monetary payouts. The main

33

difference between the machines of that era and the ones of today are in the general
makeup. The machines back then were mechanically driven using springs, wheels, and
gears and consisted of three reels that normally would hold 20 symbols. Each symbol
would have as likely a chance of being hit on each of the three reels. Nowadays, these
machines have evolved into microprocessor-controlled devices in which the
mathematical makeup can be programmed and can carry up to five wheels or more.

It wasn’t until 1931 that the first state in the United States legalized gambling. It
should be no surprise that this state was Nevada. This legislature created the first legal
American market for these devices. The 1930’s saw these machines spread across
America, and in the late 1940’s, the famous Bugsy Segal inserted the machines into his
Flamingo Hilton, which is still standing in Las Vegas, Nevada. The mindset into which
these machines were marketed was quite different back in that era. Slot machines were
first used to just entertain the wives and girlfriends of the high rollers until the revenues
began supplanting that of the table games. The mechanical machines continued to thrive
until Bally’s created the first electromechanical slot machine during the early 1960’s.
This machine titled “Money Honey” was a huge success.

The next milestone in the evolution of slot machinés came in 1981 when
computerized reel-spinning slot machines were introduced along with video-display
gaming devices. Also around this same time, the popularity of slot machines became
equal to that of the table games, which at one time was thought to be impossible.

The next decade introduced two new huge developments. The first was that
legalized gambling expanded beyond the traditional areas of Las Vegas and other Nevada

cities, which opened the way for riverboat casinos. The reason for this legislation was

34

that governments at both the state and local levels were investigating ways in which to
increase tax revenue. Seeing the huge impact on the Las Vegas area, they began to
explore the possibilities of creating legalized gambling facilities inside their own
boundaries. The second development that had a huge impact on the industry of slot
machines were federal rulings that allowed for the expansion of gaming on Native
American soil. As odd as that sounds, the world’s largest casino called Foxwoods is
owned by the Pequot tribe and located in Leyward, Connecticut. These two
developments helped generate a significant amount of money for the slot makers, which
allowed them to enhance their research and development departments. Nowadays, these
machines make up 67% of a typical casino’s revenue and are almost all microprocessor-
based that either spin virtual reels or produce graphic pixels onto a video screen [9]. The
trend is now to market these machines as multimedia machines of an enhanced
entertainment value than those of yesteryear.

With these technolegical changes, the internal architecture of these devices had to
be varied as well. The traditional architecture was ROM-based, with all of the game code
and multimedia effects residing on programmable, read-only memory modules called
EPROMs. This architecture, which is still being used in some machines today, has the
advantage that the internal composition cannot be changed once it is burned into the
EPROM. This is important to maintain the integrity of these games since enormous
amounts of money can be at stake. However, some limitations are that EPROMs work at
very slow clock speeds, contain very little memory and have only the basic graphical
support available. C compilers and DOS-prompt linkers are used to produce these

platforms but are constrained severely by the aforementioned limitations. In order to

35

produce the best gaming experience, the security of the EPROM needed to be combined
with some technology that would allow for a greater enhancement of multimedia
capabilities.

This breakthrough came about in 1997 when the state of Nevada passed
legislation that allowed a new platform of gaming devices to use personal computer
styled hardware. These new gaming machines actually contained a Pentium processor, a
hard drive, and a graphical interface just as a typical PC would have. The technology
was not advanced enough to store the game code unto EPROMs but was instead
encrypted and contained onto a protected hard disk. These new machines offered
significantly more entertainment value than those of previous architectures but were still
looked upon by many gaming areas as being security risks. For this reason, a company
called Casino Data Systems, developed a fully integrated system in which EPROMs were
used to carry all of the game control functions and the PC-based devices were used for
only the execution and storage of the multimedia functions. This technology is being
increasingly implemented today with amazing results. At a recent trip to Las Vegas, it
was observed that single machines could play video poker (with many variations),
blackjack, and also other popular games. This is extremely valuable to a casino owner
since it allows for greater versatility and provides a more customized experience to the
consumer.

Along with the parts of the machine that the consumer can see, there are many
other interacting components beneath the surface. I/O functions are used to handle many
of the internal utilities such as coin and bill handling, integrity checks, etc. and are

programmed to go into “tilt” mode if anything is found to be wrong. Also, the machines

36

are required to be able to handle any unexpected shutdowns quite easily since most
casinos do not use uninterruptible power supplies to these machines. The most
interesting internal feature is the fact that the complete game history is kept on an
EPROM chip so that customer disputes can be easily handled and verified by casino
personnel.

Lastly, many of the present day machines are networked to one another. This
enables casinos to monitor the activity of not only the machines but also the players.
Some increasingly popular things found at casinos today are slot clubs. A person
belonging to a slot club would get a card, which looks like a credit card. Whenever the
person wants to play a slot machine, he or she would enter the money as normal but also
enter this card into a designated slot. The casino is then able to track the amount of
activity by this player and offers benefits such as free slot pulls, meals, shows, etc. The
consumer benefits since he or she is rewarded with merchandise for just merely playing
and the casino benefits from the loyalty toward their particular casino and valuable
marketing information. This networking also allows many machines to “communicate”
with each other within the casino and also other casinos. This “communication” allows
for such things as progressive jackpots throughout the city rthat grow once a credit is

inserted into one of the many machine locations.
5.3 Discussion of Mathematical Models

Now that the actual history and makeup of these machines have been discussed,

the mathematical aspects surrounding gaming and slot machines will be examined. The

37

mathematics and probability concepts of slot machines are perhaps the most important in
the development process. Even though the outcomes are virtually random, the math
model is what ultimately determines how much the house or player is going to win over a
long stretch of time. However, there is a thin line between making the machine profitable
for the casino yet entertaining for the user.

The first thing that must be determined before the model can even be created is
the bottom line payout. There are laws that govern the minimum percentage that a slot
machine must payout in a legalized gambling state. For example, in the state of Nevada,
the minimum payout is 75%; in New Jersey, this number is 83%. However, despite these
small minimum required payout percentages, most moderm games pay out well over 90%.
The reason for this is to give the user a better sense that he or she is winning. This in turn
will prompt the player to play this certain machine for a longer period of time and thus
will be more profitable for the casino than the machine in which the player only puts two
or three credits into and walks away.

This leads to the second main statistical number in the math model: the hit
frequency. The hit frequency is the percentage associated with the number of times the
user hits a winning combination on a particular turn in relation to the number of times the
user has played. It is usually inversely related with the size of the jackpot; the bigger the
jackpot, the less frequent the player will win. This is another tradeoff that must be
considered while designing a slot machine. The jackpot must be big enough to warrant
the player to try his or her luck at this machine and the hit frequency should be high

enough to keep him or her there, all while still being profitable for the casino. As one can

38

see, there are many variables that must all be considered by a statistician while trying to
keep the player’s psychology in mind.

Other variations that can be considered are different types of jackpots. There are
two main types of jackpots: flat tops and progressive. A flat top jackpot is one that will
always pay the winner a predetermined set amount. A progressive jackpot is one that
grows through a percentage of the amount of coins being wagered. These progressive
jackpots can be networked throughout many different machines and casinos and can grow
to over millions of dollars. It is important to remember though that the hit frequencies
and sometimes the payout percentage will be lower on these machines since the money
will need to be obtained from somewhere to pay these huge amounts. For example, on
the Megabucks slot machine, the jackpot can often reach over five million dollars but the
payout percentage is only 87% as opposed to other similar machines with not quite as
high a jackpot but with a payout of 95%.

Another variation on jackpots can be on what is necessary to win it. On some
machines, a user must play multi-coins at a time to even be eligible to win the shown
jackpot. This is very effective in getting a player to play more than one coin at a time
since hitting the potentially winning combination while only playing a single coin can be
very, very frustrating!

Once the bottom line numbers are determined for the gaming devices, it is time to
effectively implement them onto the slot machine. Even though some decisions have
been made, there are plenty more to make! The first of these is most likely how many
wheels to use on the machine. The most traditional slot machines almost always had

three spinning wheels of characters. However, it seems as if this trend has become less

39

and less popular. The advantage with having more than the traditional three wheels is
that there is a great deal more freedom for the designer when it comes to the odds of the
game. More wheels enable greater and more creative payouts. However, the increase of
wheels also makes the user feel that there is an increased difficulty in the game play and
gives the sense that it is harder to hit big when five cherries must be hit in a row as
opposed to three on another machine.

Another similar decision is the determination of how many characters or “stops”
to put onto each of these wheels. The pros and cons for these are the same as in
determining the number of wheels to use. However, the digital age has brought on a
unique twist to this aspect. In previous years, one stop on a gear corresponded to one
visible character on the screen. Nowadays, random numbers are produced by random
number generators in order to determine which character is shown on the screen. This
enables a manufacturer to “weight” certain characters. This process is as follows:

1. Three random numbers (or however many wheels there are) are generated by

the random number generating device.

2. This number is divided by a fixed number (which is a power of two for

simplicity) and modulo math is performed. For example, a fixed number of
64 would be used to divide the random number and would enable the
possibility of the numbers (0-63) for each wheel.

3. These 64 possibilities are then assigned to actual characters on the wheel. A

typical wheel might only contain 18 real characters so that some characters
might have several of the random possibilities assigned to them while another

character might just have one.

40

Once this process is determined, the mind games for the manufacturer still
continue. A typical machine would use this process in order to weight non-paying
characters such as blanks more heavily than paying characters. Also, such places as
blanks right above and below high-paying spots on the wheel are typically “heavily
weighted” to give the illusion that a big jackpot was nearly missed. This methodology is
also used in making the first reel the loosest of them all. A high paying character would
come up often on the first reel but be increasingly unlikely to come up on following reels.
This weighting system was such a great innovation that it has been actually patented. A
company by the name of IGT had the patent until 2001 on using fixed numbers greater
than or equal to 64 for modulo math.

Once again, this emphasizes that there are many variables taken into consideration
while determining the math makeup of one of these machines. Once all of these
determinations have been made, it is time to implement the math model into the machine.
This can be done using a computer package similar to Macromedia Director, which
integrates a sketched math model into a computer format. Once approval is granted for
the project, this computer format would be polished and finalized using C++ code or
another high-level language unto an EPROM. This would conclude the process for the
math segment of the gaming device and then would be “livened” up using an artwork

software package such as Photoshop.

41

5.4 Project Specifications

Using the information presented in Section 5.3, some specifications for the design
were decided upon. The variables that needed to be addressed included the following:
number of wheels, range of random numbers to be generated per wheel, number of
physical symbols and blanks per wheel, payout percentage, jackpot payout, and the hit
frequency. These variables and their corresponding specification range are presented in

- Figure 5.1 and are discussed in the text that follows.

Variable Spec. Range|

Number of Columns/Wheels 3-5
Range of Random Numbers Per Column 8-64
Number of Symbols Per Column 4-10
Number of Blanks Per Column 4-10

. Payout Percentage 83% - 98%

Hit Frequency 8% - 15%
Jackpot Type Fixed

Jackpot Payout 250 - 5000

Figure 5.1 — Typical range of slot machine variables

A typical slot machine today has three to five wheels so this is the range I used for
the actual model. From the discussion in Section 5.3, the relationship between number of
wheels and mathematical freedom of the designer is directly proportional and inversely
proportional to consumer confidence of hitting the jackpot.

The range of random numbers generated per wheel determines the flexibility of
the mathematical model as well as the number of symbols and blanks per wheel.

Obviously, there cannot be more total symbols (including blanks) per wheel then there

42

are “spots” produced by the random number generator. Since International Gaming
Technology (IGT) had a patent on the maximum number of “spots” allowed to be
produced by a slot machine, which was sixty-four, this is the number used as the
maximum specification for this design. A minimum of eight “spots” was determined
since it is the lowest number that could be used while still having a somewhat flexible use
for the designer.

The number of physical symbols and blanks per wheel are typically the same
number. This is due to the fact that two symbols are separated by a blank on the
conventional slot machines. However, in this design case, traditional circular reels did
not necessarily need to be used so this normality was not a limitation. Also, as stated in
the above paragraph, the total number of symbols and blanks must not exceed the number
of “spots” produced by the random number generator. A ratio between the number of
“spots” and the number of total symbols produces a number that is directly proportional
to the flexibility of the mathematical model. Thus, the higher the ratio, the greater the
flexibility allowed.

The previous variables discussed the physical construction of the slot machine
whereas the next three variables are more related to the mathematical structure. Both sets
of variables are interrelated, however, as evident by the previous discussion. The first of
these variables and also the one most commonly referred to, is the payout percentage.
The minimum payout percentage for this model was determined to be 83% since that is
the lowest percentage allowable by law in New Jersey. Nevada has its minimum set at
75%, but the choice of 83% was used to make this model able to be used in all legalized

gambling states. A maximum of 98% was set by looking through slot magazines that

43

listed actual ranges of new slot machines on the market. This percentage pays back a
good deal of what it takes in but still allows for a 2% profit for the casino. High
percentage payouts are found more frequently on high denomination machines since
obviously a greater amount of money is being bet and being lost over the long run.

The hit frequency variable refers to the odds of the player hitting a winning
combination each time the “wheels are spun”. This is believed to be the most important
parameter since it directly correlates to player retention. By consistently hitting winning
combinations, the player feels that he or she is winning, even if these jackpots are small
ones. For this purpose, I have determined that I would like to set the specifications of
this parameter to be in the high range of 8%-15%. This figure is often advertised in a
misleading fashion today to be around the 50% mark for some machines. The figures
that these companies use is based upon maximum credit play (which is often up to 90
credits per play). A winning combination of 50% includes all possible winning
combinations even ones that include as few as 1 credit payback. It can obviously be seen
how misleading this statistic can be since even though there is a 50/50 chance of hitting a
winning combination, the player is far from winning by placing a 90 credit bet and
receiving 1 credit back in return. The range of 8%-15% in this design is accurate and not
misleading since there will only be one winning line possible per play.

The last variable related to the mathematical structure is the jackpot payout. This
variable refers to the highest payout possible on one spin of the wheels. A fixed jackpot
was decided upon since they are still the most popular jackpot design. A high jackpot
increases the visibility of the player but also typically decreases the above-mentioned hit

frequency since there will be less lower jackpots to compensate for the large amount of

44

revenue lost when the jackpot is hit. High “spots” to total symbols ratios allow for higher
jackpots since the design flexibility is increased. A minimum specification of 250 was
decided upon because anything lower would discourage players from playing this
particular machine since most slot players are looking to “get rich quick” and depending
on the denomination played, less than 250 times the initial bet does not usually make
someone rich. A maximum of 5000 was used to allow for the highest hit frequency as

possible since these variables are typically inversely correlated.
5.5 Actual Model Parameters

After much trial and error while using the project specifications as a guideline for
the slot machine design, the actual mathematical model was determined. The
characteristics of this model are given in Figure 52 It is impossible to list or describe
the entire thought process of how this particular model came about with all of the many
variables present. However, a description to defend the validity of each decision will be
presented in addition to a thorough investigation of all of the important mathematical
statistics involved.

The decision of three wheels for the model was determined for two reasons. The
first reason is that most current “mechanical looking” slot machines have three wheels
while the video slots normally have five. Since the ultimate goal here is to implement the
model onto hardware rather than a pure software version, three wheels would be more
typical a choice. Also as stressed before, the complexity of this design has been

simplified as much as possible for the benefit of the reader. The next variable in Figure

45

5.2 refers to the range of random numbers per wheel. Fifteen was the number of choice
mainly due to the nature of the “random number generator” used in Section 7.2 of this
report. This random number generator (in the chip design) consists of a shift register that
produces a sequence of sixteen numbers and in this case the number ‘0000’ is being
omitted for reasons discussed later in Section 7.2. It is important to note that each of the

wheels in this model will have a random number generator assigned to it.

Variable Spec. Value

Number of Columns/Wheels 3
Range of Random Numbers Per Column 15
Number of Symbols Per Column 5
Number of Blanks Per Column 5

Payout Percentage 93.48%

Hit Frequency 12.27%

Jackpot Type Fixed
Jackpot Payout 500

Figure 5.2 — The actual model parameters

Once this variable was set at fifteen, the next task was to determine the total
amount of physical symbols (including blanks) to use in the design. It is obvious in this
case that the number could be no higher than fifteen or else there would be unused
symbols with no random number associated to them. The resolution was to provide nine
total symbols (five physical symbols and four blanks) to allow six extraneous “spots” for

design flexibility as well as to provide a realistic number of symbols on each reel.

46

These variables dealt mostly with the physical construction of the design whereas
the next ones deal with the mathematical structure. Since the origin of this design was
more of a trial and error nature as previously discussed, it is hard to pinpoint the reason
that these figured were picked other than the reason as to meet the outlined specifications.
Figure 5.3 lists the number of “spots” assigned to every individual color and each

column.

Column 1 |Column 2 |Column 3
Red 1 1 1
Blue 2 1
Green 3 2 1
Orange 3 3 1
Purple 2 4 4
White 4 4 7
Total 15 15 15

Figure 5.3 — The number of “spots” assigned to each color in each column

The next logical step after creating Figure 5.3 was to actually assign each of the
numbers (one through fifteen) to one of the colors. This was done on as random a basis
as possible to try to maximize the unpredictability of the entire machine. The number

assignments for each color in each column are given in Figure 5.4.

47

Digit |Column 1| Column 2 |Column 3
1 Blue Orange | Purple
2 Orange | Green Red
3 White White | White
4 Red Purple Blue
5 Orange Blue Purple
6 Green Green | White
7 White Red Purple
8 Green Purple | White
9 Purple White | White
10 White | Orange | Green
11 Orange | Purple | Purple
12 Blue White White
13 Green | Orange | Yellow
14 White Purple | White
15 Purple White White

Figure 5.4 — Corresponding digit to color by column

Figure 5.5 on the following page uses the data shown in the previous two figures
and displays the payout for each winning combination as well as the probability that each
winning combination will occur. The colors can be representative of any type of symbol
used. The total payouts for each combination are summed and a total payout percentage
0f 93.48% is calculated. This falls within the project specifications of between an 83% to

98% payout. Note that the colors represent different symbols while white is a blank.

48

Possible Total
Combinations Total Combinations | Payout | Combination Name| Payout
1 15*15*15 = 3375 500 3 Red's 500
2 15*15*15 =3375 100 3 Blue's 200
6 15*15*15 = 3375 50 3 Green's 300
9 15*15*15 = 3375 25 3 Orange's 225
14 15*15*15 = 3375 20 2 Red's then ANY 280
28 15*15*15 = 3375 10 2 Blue's then ANY 280
210 15*15*15 = 3375 5 1 Red then ANY 2 1050
32 15*15*15 = 3375 3 3 Purple's 96
112 15*15*15 = 3375 2 3 White's 224
3155

Winning Percentage (Total Payout/Total Combinations):] 93.48%

Figure 5.5 — The payout percentage of the slot machine model

Figure 5.6 on the following page lists the probability for each combination during
each play. The total of these probabilities gives the total hit frequency. As was
mentioned in the project specifications, an attempt was made to make this number as high
as possible. As can be seen from Figure 5.6, the hit frequency of this model is a
respectable 12.27%. As can be seen from the various figures, it is apparent that different
colors have different probabilities of occurring on each wheel. Also, by viewing the
color green on Figure 5.3, it is also apparent that the same color can have different
probabilities depending on which wheel is being discussed. The design was created like
this to increase the user’s feeling that he or she was closer to winning then actually might

have been.

Combination Probabilities

3 Red's 1*1*1=1/3375 0.03%

3 Blue's 2*1*1=2/3375 0.06%

3 Green's 3*2*1=6/3375 0.18%

3 Orange's 3*3*1=9/3375 0.27%

2 Red's then ANY 1*1*14=14/3375 0.44%
2 Blue's then ANY 2*1*14=28/3375 0.83%
1 Redthen ANY 2| 1*14*15=210/3375 [6.22%
3 Purple's 2*4*4=32/3375 0.95%

All White's 4*4*7=112/3375 3.32%
Non - Winning | 3375 - Winning = 2961/3375 187.73%
Hit Frequency | Winning/Total = 414/3375 [12.27%

Figure 5.6 — The probabilities for each combination on any given turn.

49

50

CHAPTER V1
THE COMMON SOFTWARE PACKAGE APPROACH

6.1 The Microsoft Excel Approach

Microsoft Excel was chosen as the software package of choice to model a slot
machine since it is a program that many people use everyday and are thus familiar with it.
Also, it shows that a simple program with flexibility and programmability can be used for
purposes that do not typically come to mind.

For the three slot machine designs contained within this report, they can be
broken into these main parts: the random number generator, the physical output seen by
the user, and the interface between the first two. For this reason, these discussions of the
designs will also be broken into these same parts.

Designing the random number generator in Microéoft Excel was perhaps the
easiest of the three parts. Excel has a built in random number function called ‘rand()’
that “returns an evenly distributed random number greater than or equal to zero and less
than one” (as taken from Microsoft Excel’s help files). Since the goal is to produce
random integers between one and fifteen as discussed in Section 5.5, some slight
modifications had to be made to this function. In order to achieve the goal, the ‘rand()’

function was used in the formula as so: ‘(INT(RAND()*15))+1°. This formula multiplies

51

the random fraction by fifteen so that the number can take on any value between zero and
fifteen (not including fifteen). From this, the ‘int()’ function is then used to drop any
fractional parts of the number and keep just the integer value. Since the range is between
zero and fourteen, one is added to the final number to produce the desired results. This
formula is then placed in three separate cells so that three independent random number
generators are produced; one for each virtual wheel.

The second part of the Excel design involves the physical output seen by the user,
which is divided into four additional sub-sections. These sub-sections include an
interface for the user to begin the game, visual representation of showing the symbol
selected on each of the three wheels during a turn, a noticeable signal that a winning
combination has occurred, and the resulting payout (if any). The first sub-section was
created by inserting a clip-art picture resembling a handle into the Excel spreadsheet.
This picture was then assigned a macro, which would run anytime that the “handle” clip-
art was clicked. The actual codingof the macro will be discussed later. The manner in
which the symbols were to be displayed on the spreadsheet was the next concern. In
order to accomplish the mathematical model as described in Section 5.5, there must be
actual symbols and blanks that can be seen by the user. The way this design fulfilled the
requirement was to make a three column by nine row space available for these symbols.
Each of the colors described in Section 5.5 are then actually written out in the individual
cells. A base color of brown was used as the background color to show when the symbol
1s “off”, while the color typed in the cell would be the background color when the symbol
is “on”. A visual of this setup can be seen in Figure 6.1 on the following page, which

displays a non-winning combination of “Green-Red-White”’.

£3 Murosoft Excel Excel Thesss xbs

(B e gt Vlew jrmert poemat Took

0 ~im 7 u«}

e

i

7 , faon KR

A sheety 7

Figure 6.1 — Display of a non-winning combination as shown to the user

The third sub-section provided the challenge of sending an obvious indication to
the user to signify that a winning combination has been hit. This was accomplished by
displaying the word “WINNER!” in large red font at the top of the screen whenever a
winning situation occurs. This is depicted in Figure 6.2, which displays the output of the
slot machine during a winning combination of “White-White-White”.

Lastly, the payout had to be displayed as well when winning combinations
occurred. This is listed at the bottom of the screen and is zero for non-winning

combinations and the payout value for winning ones.

£ Mwriosolt Excel Excel Thesis xis

D@ W@
[

: ' i % T BALE

P (0] Awoshaos 4N L E]On
Ready :

Figure 6.2 — Display of a winning combination as shown to the user

The last part of the slot machine is also the most intricate one to explain since it
involves interfacing the random number generator with the physical model seen in Figure
6.1. The first challenge was to get the handle to physically begin the start of a turn upon
being clicked. In order to do this, a macro was created and assigned to the handle so that
it runs whenever a user clicks on it. A macro is just a small program created in Visual
Basic that is run to completion whenever the specified event occurs (in this case, the
clicking of the handle is the event). The coding of this macro is shown as Figure 6.3.
The manner in which this macro works is a very simple concept as is evident by the
concise coding shown in Figure 6.3. The macro invokes the delete command to run in

Excel, which produces an effect that is not often observed. The delete command forces

54

Excel to recalculate all of the formulas present in the worksheet, including generating
new numbers for the ‘rand’ command, thus making it a perfect fit for this application. In
summary, each time the handle is clicked, the macro calls the delete command, which in
turn re-generates the three random numbers needed to run the entire slot machine. This
solves the problem of how to use the handle as a start function. It is important to note
that these random numbers should not be visible to the end user as can be seen in Figure
6.1. The user should never be able to see which symbols are represented by each of the
random numbers since reconstruction of the mathematical model would be simplified.
Part of the excitement and mystery of slot machines is not knowing the exact payout of

each machine and is considerably lessened when the mystery can be calculated!

Sub Spin_Reels()

' Spin_Reels Macro
' Macro recorded 2/24/2002 by Luke Pascute

Selectlon.ClearContents
End Sub

Figure 6.3 — The coding inside of the “handle” macro.

The random numbers generated are then connected to the simulated symbols on
the spreadsheet through use of the “conditional formatting” ability in Excel. This option
can be found on the drop down menu under FORMAT >> CONDITIONAL
FORMATTING and allows the appearance of a particular cell to be changed depending
on certain circumstances. This option allows the base color of brown to be the

background color of a particular cell when a random number is generated that is not

55

assigned to that symbol. When a random number assigned to a particular symbol is
produced, the cell takes on the color typed inside of it. Each of the cells in the grid are
then assigned at least one of the numbers one through fifteen so that all fifteen numbers
are accounted for in each column (See Figure 5.7). This in effect “lights up” one of the
cells in each column. This is the same manner that a typical slot machine works. It
generates a random number for each of the wheels present and stops the wheel on the
symbol (or blank) that has been designed to correspond to that number.

Once the wheels display the selected symbols, the program needs to determine
whether it is a winning combination and if so, how much the payout needs to be. The
way that this problem was attacked was to make it as structural and easy to understand as
possible. Using intricate IF statements, the same outcome could have been achieved but
it would have been more difficult for the reader to understand. The final draft of the
design is shown in Figure 6.4, which unlike Figure 6.1, shows the coding involved that is
normally hidden from the user. As can be seen from this figure, each possible winning
combination is listed with a number to the right of it. Built in ‘IF’ statements are used to
display a zero when that particular combination has not been hit and a one when that
bonus has been achieved on the machine. Once these ‘IF’ statements determine if a
winning combinations has been hit, additional ‘IF’ statements are used to assign the
corresponding value to each combination.

The two main cells that determine payout can be found in the normally hidden
section of the machine shown in Figure 6.4 and are labeled ‘Payout’ and ‘Red Bonus’.
The reason that an initial “payout” and a “red bonus” need to be calculated separately lies

within the structure of an Excel ‘IF’ statement. These statements allow only seven

56

“ELSIF” statements within each one. Since there is a total of nine different winning
combinations with different payouts assigned to them, they need to be broken up into two
separate statements. The most logical way to do this was to separate the two bonuses
involving the first cell being red and the first and second cells being red from the rest of

the other bonuses. The final payout is what is tabulated and shown to the user in the form

seen in Figure 6.1.

1
3
S
ot
8
7v
8
9
10.@
1 1 i
12 Nl Red Bonus (All 3) 0
13 Blue Bonus (Al 3) 0
14 Green Bonus 0
15 Fayout [i] . B Orange Bouns 0
16 Red Bonus 2 1 Red Bonus (et) 1]
7 Fayout. .)) Bius Bonus (1st 2) o
18 : : 0
13t o
20 'White Bonus o
21 o
2;
23
24
5
26
Fig -
pe]

(7475 THiNSheets £ ShentE A Sest T e -
foowe Bt agoshapes N\ WO MBS 4.4 =
Ready . :

Figure 6.4 — Display of a non-winning combination as shown “behind the scenes”

Lastly, a total is taken of all of the winning combinations in order to display if one
has actually occurred. Since the number next to each of the combinations is normally a
zero if no winning combination occurs, the sum would be zero. When any of the
combinations are hit, a one is displayed next to it and a total of one would be summed.

An ‘IF’ statement is used at the top of the screen to display the word “WINNER!” real

57

large whenever ANY winning combination occurs. This also serves the purpose of
attracting attention to other potential users that this machine has just won someone
money. Figure 6.5 shows the internal composition of a winning combination.

A summarization of the coding behind each of the cells is provided in Appendix
B. This provides an almost comprehensive description for the reader if he or she would

like to try to recreate this design.

1 bxcel Thess

Dl aR ha

1
.3
by
4
B
7]
28,
9
10
13
12 Red Bonus (All 3)
13 Blue Bonus (Al 3}
14 . . v o i Green Bonus
15 Payout B Orange Bouns

Red Bonus i R i Red Bonus (15t 2)
Fay ot T T g Blue Bonus (1t 2)
fRed Bonus (15t 1)

Purpte Bonus
'White Bonus

-~ 000 ~-~00COQ

Figure 6.5 — Display of a winning combination as shown “behind the scenes”

38

CHAPTER VII

THE COMMON LOGIC HARDWARE APPROACH

7.1 Description of Logic Packages Used

This chapter deals with incorporating the mathematical model into a small-scale
slot machine using common digital logic chips. This design is made up of five different
logic chips that will be examined within this section. These chips include the XOR
digital logic gate (74x86), a comparator (74x85), a decoder (74x154), a counter (74x163),
and a shift register (74x194). Each of the symbols and corresponding truth tables can be
found in Appendix C.

The 74x86 chip contains four two-input XOR digital logic gates. The active-high
output is asserted when exactly one of the two inputs is high. Since the output is asserted
only when the two inputs are different, an individual XOR gate can be used as a 1-bit
comparator (comparators will be discussed more in depth with the 74x85 package).
Lastly, this gate can be used in conjunction with counters and shift registers to implement
various counting schemes as is the case in this design.

The second package to be discussed is the 74x85 4-bit comparator. This is a
standard MSI package that is commonly found within computer systems and networks.

The 74x85 takes in two 4-bit binary numbers as inputs and compares them against one

59

another. After this comparison, either the less than, greater than, or equal to, active-high
output pin is asserted. Pins with these same labels are also present as input pins to
provide the capability of cascading two or more of these chips in order to create
comparators of a larger magnitude than 4-bit. It should be noted that the truth table
shown in Appendix C.1 does not list all possible combinations since there would be 2 or
2048 possibilities! The output should be quite apparent to the reader for any combination
not listed, however, since the functionality of this package is quite simple. It is important
to note though that only one of either the less than, greater than, or equal to inputs and
outputs should be asserted at any given time if the chip is being used properly.

The 74x154 commercial MSI package works as a 4-to-16 bit decoder. The
decoder receives a 4-bit signal unto its four input pins and asserts one of the sixteen
active-low output pins. Since there are 2 or sixteen possibilities from the four input pins,
there is one particular output pin corresponding to each combination. However, for the
decoding process to work properly, both of the enable inputs present on this chip must be
asserted. This package, like the 74x85, can be cascaded together to construct larger sized
decoders.

The fourth package used in the design is the 74x163 4-bit synchronous counter.
The word “synchronous” refers to the fact that all of the states change on the rising-edge
clock pulse since they are all tied to the same clock. This package 1s perhaps one of the
most popular MSI counters since it can count in multiples of 2, 4, 8, or 16 independently
by using either one, two, three, or all four of the outputs respectively. The active low
load input, when deasserted, allows the next state to be specified by the inputs D, C, B,

A. The active low clear input allows the next state to be the value ‘0000°. When either

60

ENP or ENT is not asserted, the counter is held in its current state. The RCO output
produces a high logic level when the output count is ‘1111 and the value of the ENT
input is ‘1’. Once again, as is the case with many of the previous packages, the 74x163
can be cascaded in order to produce counters with ranges larger than 16.

The last chip to be examined is the 74x194 universal 4-bit, bi-directional, parallel
in & out shift register. This chip is very popular due to its extreme flexibility. It allows
the contents of its outputs to be shifted in a left or right direction and can be “wired” to
perform the functions of almost all the other common shift registers as well. In addition
to the ability to shift in the left and right directions as mentioned above, a hold and load
function is also present on this chip. A common use of this package is to use other digital
logic chips with conjunction with it to produce a “random” counter, which cycles through

all sixteen combinations in a non-sequential fashion.

7.2 Interaction of Logic Chips in Implementation

As discussed in Chapter 6, the layout of this machine can be broken up into three
different parts: the random number generator, the physically seen output, and the other
internal hardware. The first of these parts to be discussed is the random number
generator. When it comes to the computing world, random is a term that virtually does
not exist. The only real random events are the ones that occur in nature and cannot be
predicted by scientific methods, which makes the only real way to incorporate random
into a computing environment is through an interface with nature (such as amplifying

noise and sampling it). However, in most applications, it is sufficient enough to use a

61

“pseudo-random” generator. This style of number generation is not truly random but it is
so close that the normal user would not be able to notice. Pseudo-random number
generation is much easier, efficient, and cheaper technique so therefore it is the one of
choice for this design. The purpose of the pseudo-random generator is to randomly
generate three numbers when the ‘BEGIN’ switch is asserted. This approach uses a
linear shift register to continually produce four random binary numbers at the desired
clock specification until the user asserts the ‘BEGIN’ input, which will hold the numbers
being generated at this exact time. Once the game is (;:ver, the random number generator
would work again and generate more random numbers until the same sequence occurs.
The reason that the randomness can be assured is that the user has no visible means of
seeing just what numbers are being produced at any given time along with the fact that
the average user would.not know that a 74x194 chip was being used as a random number
generator or the actual clock cycle speed for each reel.

The shift register is hooked up so that three of the four binary inputs are wired to
ground while the fourth is wired to 5 Volts. Outputs “Qa” and “Qb” of the linear shift
register are connected to the inputs of an XOR gate. The output of the XOR gate is then
connected to the ‘SL’ input of the shift register. This alloWs the outputs of the shift
register to cycle through all of the binary numbers starting from ‘0001’ through ‘1111’ in
a pseudo-random fashion. All of the above-mentioned connections can be viewed by
referencing the schematic in Figure 7.1 at the end of this section.

The second part of the slot machine is the other hardware components besides the
random number generator. The chips themselves have already been discussed in depth

but the integration of them will be discussed further here. The 74x163 counter is used to

62

cycle through all of the possible combinations starting from ‘0000’ through ‘1111’ in
numerical order. These numbers are fed into a 4-to-16 decoder and also the comparator.
The comparator compares the number being produced by the 74x163 counter against the
one that was produced by the random number generator. Once these two numbers are
equal, the comparator’s “equal to” output is asserted and is used to stop the 74x163 from
cycling. Once the cycling has ceased, the 4-to-16 decoder asserts one of the 16 total
outputs possible and thus becomes the selected symbol for that reel. The next reel is then
asserted and the process continues until a symbol has been selected by all three and
remains there until the begin switch is asserted again. Once more, these connections are
available for viewing in Figure 7.1.

The third part of the design that has yet to be discussed is the visible part to the
user. The three reels of the slot machine could be simulated using three different
columns of multicolored LED’s. There are nine visible lights in each reel with a color
LED representing a symbol and a white (or clear) LED representing a blank. This output
would be displayed in exactly the same manner as is modeled in the Excel model except
that it would actually be hardwired to the circuit. The digital logic chips along with the
main power and ground are all wired to S/K sockets (breadboards) and a begin switch is
constructed on the Heathkit Trainer so as to simulate the beginning of a game when a
coin is normally inserted.

In order to verify the functionality of this circuit, the design of a single reel was
configured and simulated using MicroSim’s PSpice Version 8. While this could have

been done using the MAX+PLUS II software as well, PSpice was used in order to show

63

the multitude of tools available at the university to the interested designer. The
aforementioned schematic shown in Figure 7.1 was used as the input for the simulation.

Through observation of this figure, the previous discussions in this chapter should
become more apparent. An input signal ‘BEGIN’ is connected to a clock signal, which is
used to simulate a user starting the machine. Each of values ‘C1R1’ to ‘C1R16’ would
represent all of the possible random values for a particular reel. Since the 74x194 is
configured to never take on the value zero, it is impossible for the ‘C1R1’ value (which
represents 0) to be selected. For the interested reader, the programming of the four
clocks present in this device is shown in Appendix D.1.

Appendix D.2 contains two timing diagrams that were generated upon simulation
of the circuit in Figure 7.1. The first diagram shows the circuit’s behavior for times Os to
700us. It can be seen from this figure that once the begin input is asserted, the ‘SHIFT1’
internal signal (which is the output of the 74x194 linear shift register) holds at it’s present
number (E;¢in the first case and B¢ when ‘BEGIN’ is asserted for a second time). The
‘COUNTTY’ internal signal (which is the output of the 74x163 counter) would continue
counting until the same number as was produced by the random number generator
(74x163) was reached. In the first assertion of the ‘BEGIN’ input, this value was never
reached before ‘BEGIN’ was de-asserted. This would be a problem in real life but
generally a delay would be built into the slot machine that would hold the ‘BEGIN’
signal for at least one count cycle at the absolute minimum. During the second assertion
of the ‘BEGIN’ input, it can be seen that the value of B¢ 1s reached by the counter while
‘BEGIN’ is still asserted and thus holds it’s value at Bj¢. It can be seen that the system

output that would be connected to the physical output seen by the user is also held and is

64

represented by the ‘C1R12’ signal (representing a value of 11 in the mathematical
model).

The second timing diagram in Appendix D.2 is a magnification of the first. This
was provided so that it would be possible to see the counting sequence of the ‘SHIFT1’
signal. Since the clock pulse for it is moving so quickly, it is impossible to distinguish
anything legible from the first timing diagram. The second shows the characteristics
between Os and 30us and clearly demonstrates that the ‘SHIFT1’ is indeed producing a
non-sequential counting sequence. It can also be seen that this counting sequences ceases

at almost the exact instance that the ‘BEGIN’ input is asserted.

DSTM12
[T > uz2 o u1
BEGIN UNTA C1R1
—F ETEEE] o o=
© CTIR
5 S5|Toun E»——a 62 Y2 jo——Fira
COUNT RCO |~ Y4lo E g
: af ==
1_ENTP 15 ¥7lo
LOAD B v8 O 1. -
~ = kel
—CTRTT
LR C vl —STRIT
. 74163 Y11 o
~. US54 D w12 o__mm_c"ﬁ 3
404 T3 o——crRTS
}o ' Y18 —CIRTE
Y15 o
u7 74154
g‘é‘ Qa |_SHIFT1 LJ;
3L B3
sk o8 sHiFT2 aa
& ac HFTA [B2
C B1 A<B|— ~UBA
b ao SHIFTE Al A=E o
WCLK BOA>B|— L/
e | o5 AQ 7404
ROWH AT i =y
F>—— A=87IN
RCWW é UaA A=BTIN
! R 7485
7486
U10A
\\
Ve
__—"_’/
7432

Figure 7.1 — The design for a single-reel of the slot machine as seen in PSpice.

65

CHAPTER VIII

THE CPLD APPROACH USING ALTERA PRODUCTS

8.1 Introduction

A detailed description of how to use the MAX+PLUS® II software distributed by
the Altera Corporation along with the UP1 Educational Board in order to implement the
slot machine design is presented in this chapter. In order to accomplish this, VHDL was
used as the design entry method of choice. The process in which VHDL translates into
an actual circuit for this design 1s through use of the MAX+PLUS® II software design
approach as described in Chapter 4, which consists of four main steps: design entry,
design processing, design verification, and device programming. Since all of these areas
require quite an extensive discussion, they will be examined within this chapter as
separate sections. Along with this discussion, the steps of design implementation are
outlined as specifically as possible so they could be followed like a tutorial. Most of the
information in this chapter is based upon the references [14], [15] and [31], thus the
interested reader should consult these sources for a more detailed discussion about any of

the topics contained within.

66

8.2 The Design Entry Stage

When using the MAX+PLUS® II software, there are a variety of options
available to the user for design implementation. For this particular project, the goal was
to implement the design using VHDL, thus making the text editor the key utility needed
for entry. The text editor allows not only VHDL designs to be entered but also Verilog
HDL and AHDL coded ones as well. While it is also possible to write the code in other
word-processing editors, this particular one is useful since it provides color-coding for
reserved keywords, basic templates, and troubleshooting advantages. The text editor is
invoked from MAX+PLUS® II's main screen, which is shown in Figure 8.1. As can be

seen, the shortcut to launch the editor is found under the menu titled “MAX-+plus II”.

s it MAX vplus B Managen - ¢ wark \whdNuke)

Opens an unitted Text Editor window ot brings art open Ted Ednorwindow ko the {oreground

Figure 8.1 — The main MAX+PLUS® II screen.

67

Once the mouse is used to click on this shortcut, the text editor is executed and
the screen shown in Figure 8.2 appears. This figure shows that there are new menu
selections in the text editor that are not available on the main screen. One of these
features can be found by selecting the “Utilities” menu on the top of the screen. From
this menu, the aforementioned templates for the AHDL, VHDL and Verilog languages
are found, which provide the basic format for structures ranging from case statements to
architecture bodies to a full counter design. This allows the novice programmer to get a

better feel for the language format as well as allow the advanced user to skip some

monotonous coding.

kot WK eplus IF - o vmax2work \vhdi\tuked
WWII Fle KR Tenglates Astign | Utibes QM Mindow Heb (i : - ar : s ¥
Dera kel -vonssprs PRa Ede 2222 2 [T A0 2T

ﬁljnlnlledl - Text bdter

Figure 8.2 — The main MAX+PLUS® II text editor screen.

68

The text editor also contains utilities that can be used to manually assign pin
numbers, hardware devices, and timing requirements to the design. These features can
appropriately be found under the “Assign” menu. Also, there are attributes in this editor
that are common to most others. A “find text” feature can be found on the “Utilities”
menu, the font type, size and the ability to switch on and off syntax coloring is under the
“Options” menu, and there is a help section containing information on the text editor in
addition to VHDL, AHDL, and Verilog advice.

Now that the basics of the text editor have been discussed, the VHDL code being
inserted into it for the slot machine design will be examined. This code is displayed as
Figure 8.3 on Pages 70-74 of this report. Through observation of the code, it can be seen
that there is a single entity and architecture declaration like any typical VHDL program.
The entity reveals that there are ‘START’ and ‘GO’ inputs in addition to three clock ones
(‘CLK’, ‘CLK2’, and ‘CLK3’). The clocks inputs will be set to three different
frequencies for the design and are used as the drivers for the random number generator.
The ‘GO’ input is used solely as a stability feature to eliminate glitches and will be
connected so that it is always set to a ‘1’ logic level. Lastly, the ‘START’ input is used
to simulate the user inserting a new credit just as the ‘BEGIN’ input was used in the
Chapter 7 design. Once ‘START’ is asserted, one output will be selected from each of
the three reels.

The entity also contains the declaration for three output columns in the design.
They are labeled as ‘COLUMNY’, ‘COLUMN?2’, and ‘COLUMN3’ and are declared so
they contain nine elements in the array for each column (which are used to represent each

color or blank). The entity is then terminated with the end command. It is important to

69

note that the entity name in the MAX+PLUS® II software must match the filename it is
contained within or else it will not compile!

The second main part of the VHDL program is the architecture. Judging by the
length of this particular architecture, the reader would assume it is complex. This is not
the case, however, since the same string of code is copied over three times for each of the
reels with only slight modifications. The first section in the architecture is the declaration
of signals and constants. For each of symbols that are present on the reels, there is a
corresponding constant associated with it. This constant would set the logic value to ‘1’
for the light that is being declared, while the rest on that reel remain at ‘0’. Also, three
signals are declared for each of the random numbers being generated during execution.

After completion of the declarations, a process statement is used to signify a logic
circuit written in a behavioral style. This statement requires that all statements following
the ‘begin’ keyword be performed in a sequential fashion as opposed to the typical
concurrent execution.

Each of the three reels is then setup in the same manner with a different clock
frequency associated to each of them. A block of ‘IF’ statements are first used to
increment the random number associated with each reel during each clock pulse’s rising
edge when the ‘START” input is not asserted. A nested ‘IF’ statement then checks to see
if the total has reached fifteen, and if so, it resets the value back to one. This creates a
sequential counter of integers taking on values from one to fifteen. This sequence
continues to execute until the ‘START’ input becomes asserted. At this time, the current

random value of each reel is checked upon a series of conditions within a case statement.

70

Each of the fifteen possible values has been assigned a corresponding color
output as outlined by Figure 5.4. While the ‘START’ input continues to be asserted, one
symbol from each reel is asserted as well to signify the selected combination for that
particular tumn. Once the user changes the ‘START’ input to zero (which would represent
the end of one game play in a real setting), this entire process begins again. The
procedure will be more clear in Section 8.4, which displays the simulation results.

Once any VHDL code is completed within the text editor, it should be saved
using a “.vhd” extension to signify it is written in VHDL code. Also, the file should be
set to the current project as this will be necessary for future steps. This is done by
selecting FILE >> PROJECT >> SET PROJECT TO CURRENT FILE.

The last step of the data entry portion of the design process is to check the
program for basic erfors. This is accomplished by selecting FILE >> PROJECT SAVE
& CHECK or by pressing CTRL+K as a shortcut. This saves the current file and invokes
the compiler window. The compiler’s extractor module then checks the file for errors

and outputs a message stating the total numbers of errors and warnings found.

-- Slot Machine Design written in VHDL

library ieee;

use ileee.std logic_1164.all;
use ieee.std logic_arith.all;

entity luke3 is
port (CLK, CLK2, CLK3, START, GO: in STD_LOGIC;
COLUMN1: out STD_LOGIC_VECTOR(8 downto 0);
COLUMN2: out STD_LOGIC_VECTOR(8 downto 0} ;
COLUMN3: out STD_LOGIC_VECTOR(8 downto 0)});

end luke3;

architecture SLOT MACHINE of luke3 is
constant RED: STD_LOGIC VECTOR(1 to 9) := "100000000";

Figure 8.3 — The slot machine design written in VHDL code.

constant WHITEl: STD LOGIC_VECTOR(1 toc 9) := "010000000";
constant BLUE: STD LOGIC_VECTOR(1l to 9) := "001000000";
constant WHITE2: STD LOGIC_VECTOR(1 to 9) := "000100000";
constant GREEN: STD LOGIC VECTOR(1l to 9) := "000010000";
constant WHITE3: STD LOGIC_VECTOR(1 to 9) := "000001000";
constant ORANGE: STD LOGIC_VECTOR(1 to 9} := "000000100";
constant WHITE4: STD_LOGIC_VECTOR(1 to 9) := "000000010";
constant PURPLE: STD LOGIC VECTOR(1 to 9) := "000000001";
signal RAND1: UNSIGNED (3 downto 0);
signal RAND2: UNSIGNED (3 downto 0);
signal RAND3: UNSIGNED (3 downto 0);
begin
process (CLK, CLK2, CLK3, RAND1l, GO)
begin
if CLK'event and CLK='1l' then
if START/='0' then
elsif (GO='1') and (RAND1=15) then RAND1l <= ('0','0','0','1");
elsif (GO='1l') then RAND1 <= RAND1 + 1;
end if;
end if;

case RAND1 is

when "0001" => if (START='1') and (GO='1l') then COLUMN1l <= BLUE;
else COLUMN1 <= "000000000";
end if;

when "0010" => if (START='1') and (GO='1l') then COLUMN1l <= ORANGE;
else COLUMN1 <= "(Q00000Q00O0";
end if;

when "0011" => if (START='1') and (GO='1l') then COLUMN1l <= WHITEl;
‘else COLUMN1l <= "000000000";
end if;

when "0100" => if (START='1l') and (GO='1l') then COLUMN1 <= RED;
else COLUMN1 <= "000000000";
end if;

when "0101" => if (START='1') and (GO='1l') then COLUMN1l <= ORANGE;
else COLUMN1 <= "000000000";
end if;

when "0110" => if (START='1') and (GO='1l') then COLUMN1l <= GREEN;
else COLUMN1l <= "000000000";
end if;

when "0111" => if (START='1') and (GO='1') then COLUMN1l <= WHITE3;
else COLUMN1 <= "000000000";
end if;

when "1000" => if (START='1l') and (GO='1') then COLUMN1 <= GREEN;
else COLUMN1l <= "000000000";
end if;

when "1001" => if (START='1l') and (GO='1l') then COLUMN1l <= PURPLE;
else COLUMN1 <= "000000000";
end if;

when "1010" => if (START='1l') and (GO='1l') then COLUMN1l <= WHITE2;
else COLUMN1 <= "000000000";
end if;

when "1011" => if (START='1l') and (GO='1l') then COLUMN1l <= ORANGE;
else COLUMN1 <= "000000000";

Figure 8.3 (cont.) — The slot machine design written in VHDL code.

72

end if;

when "1100" => 1f (START='l') and (GO='1l') then COLUMN1l <= BLUE;
else COLUMN1l <= "000000000";
end if;

when "1101" => if (START='1l') and (GO='1l') then COLUMN1l <= GREEN;
else COLUMN1 <= "000000000";
end 1if;

when "1110" => if (START='1') and (GO='1l') then COLUMNl <= WHITE4;
else COLUMN1 <= "000000000";
end if;

when "1111" => if (START='l') and (GO='1l') then COLUMNl1 <= PURPLE;
else COLUMN1 <= "000000000";
end if;

when others => COLUMN1 <= "000000000";

end case;

if CLK2'event and CLK2='1l' then
if START/='0' then

elsif (GO='1') and (RAND2=15) then RAND2 <= (’O;,'O','O','l');
elsif (GO='1l') then RAND2 <= RAND2 + 1;
end if;

end if;

case RAND2 is

when "0001" => if (START='l') and (GO='1') then COLUMN2 <= ORANGE;
else COLUMN2 <= "000000000";
end if;

when "0010" => if (START='1l') and (GO='1') then COLUMN2 <= GREEN;
else COLUMN2 <= "000000000";
end if;

when "0011" => if (START='1l') and (GO='1l') then COLUMN2 <= WHITEZ;
else COLUMN2 <= "000000000";
end if;

when "0100" => if (START='1') and (GO='1l') then COLUMN2 <= PURPLE;
else COLUMN2 <= "000000000";
end if;

when "0101" => if (START='1l') and (GO='1l') then COLUMN2 <= BLUE;
else COLUMN2 <= "000000000";
end if;

when "0110" => if (START='1') and (GO='1') then COLUMN2 <= GREEN;
else COLUMN2 <= "000000000";
end if;

when "0111" => if (START='1l') and (GO='1l') then COLUMN2 <= RED;
else COLUMN2 <= "000000000";
end if;

when "1000" => if (START='l') and (GO='1') then COLUMN2 <= PURPLE;
else COLUMN2 <= "000000000";
end if;

when "1001" => if (START='1l') and (GO='1l') then COLUMN2 <= WHITE1l;
else COLUMN2 <= "000000000";
end if,'

when "1010" => if (START='1l') and (GO='1l') then COLUMN2 <= ORANGE;
else COLUMN2 <= "0Q000000000";
end if;

when "1011" => if (START='1') and (GO='l') then COLUMNZ2 <= PURPLE;

Figure 8.3 (cont.) — The slot machine design written in VHDL code.

else COLUMN2 <= "Q00000000";

end if;
when "1100" => if (START='1"')

and

(Go="1")

else COLUMN2 <= "000000000";

end if;
when "1101" => if (START='1"')

and

(Go=11")

else COLUMN2 <= "000000000";

end if;
when "1110" => if (START='1l"')

and

(Go='1")

else COLUMN2 <= "000000000";

end if;
when "1111" => if (START='1l"')

and

(Go='1")

else COLUMN2 <= "000000000";

end if;

when others => COLUMN2 <= "000000000";

end case;

if CLK3'event and CLK3='1l' then
if START/='0' then

elsif (GO='1l') and (RAND3=15)

then RAND3 <=

then

then

then

then

elsif (GO='1') then RAND3 <= RAND3 + 1;

end if;
end if;
case RAND3 is
when "0001" => if (START='1"')

and

(GO="'1")

else COLUMN3 <= "(000000000";

end if;
when "0010" => if (START='1"')

and

(Go="1")

else COLUMN3 <= "000000000";

end if;
when "0011" => if (START='1")

and

(GO="'1")

else COLUMN3 <= "000000000";

end if;
when "0100" => if (START='1"')

and

(Go="'1")

else COLUMN3 <= "000000000";

end if;
when "0101" => if (START='1')

and

(Go="1")

else COLUMN3 <= "000000000";

end if;
when "0110" => if (START='1")

and

(Go='1")

else COLUMN3 <= "000000000";

end if;
when "0111" => if (START='1"')

and

(GO='1")

else COLUMN3 <= "000000000";

end if;
when "1000" => if (START='1')

and

(GO="'1")

else COLUMN3 <= "000000000";

end if;
when "1001" =»> if (START='1l")

and

(GO="1")

else COLUMN3 <= "0Q00000000";

end if;
when "1010" => if (START='1"')

and

(GoO="'1")

else COLUMN3 <= "000000000";

then
then
then
then
then
then
then
then
then

then

*COLUMNZ2

COLUMN2

COLUMN2

COLUMN2

('0','0',’

COLUMN3

COLUMN3

COLUMN3

COLUMN3

COLUMN3

COLUMN3

COLUMN3

COLUMN3

COLUMN3

COLUMN3

<=

<=

WHITE3;

ORANGE;

PURPLE;

WHITE4;

Ol,lll)l.

PURPLE;

RED;

WHITEI;

BLUE;

PURPLE;

WHITEL;

PURPLE;

WHITEZ;

WHITEL;

GREEN;

Figure 8.3 (cont.) — The slot machine design written in VHDL code.

73

end if;

when "1011" => if (START='1l') and (Go='1"')

else COLUMN3 <=
end if;

when "1100" => if (START='1l"')

else COLUMN3 <=
end if;

when "1101" => if (START='1l') and (GO='1l"')
"000000000";

else COLUMN3 <=
end if;

when "1110" => if (START='1') and (GO='1"')

else COLUMN3 <=
end if;

when "1111" => if (START='l') and (GO='1l"')

else COLUMN3 <=
end if;

"000000000";

"000000000";

"000000000";

"000000000";

and (Go='1l")

then COLUMN3
then COLUMN3
then COLUMN3
then COLUMN3

then COLUMN3

when others => COLUMN3 <= "000000000";

end case;
end process;
end SLOT_MACHINE;

<=

PURPLE;

WHITE2;

ORANGE;

WHITE4;

WHITE3;

74

Figure 8.3 (cont.) — The slot machine design written in VHDL code.

8.3 The Design Processing Stage

The design processor within the software is designed to process projects for most

of Altera’s Hardware including the UP1 educational board devices. The main feature of

the processor in the MAX+PLUS® II software is the compiler. The compiler is a utility

that performs many critical functions for future stages of design implementation. Some

of these functions include error-checking capabilities, timing analyses, and device fitting.

It is the link that deciphers the information input by the user into computer-friendly data

used in the verification and programming stages.

In order to invoke the compiler, it should be selected from the MAX+PLUS® II

menu on the main screen. Once the compiler has been selected, the screen shown as

Figure 8.4 (on the following page) will appear. In order to properly run the compiler,

however, a device must first be specified so that the design can be properly routed for the

75

desired hardware. The device is specified by selecting ASSIGN >> DEVICE from the
menu. A dialog box appears and from the MAX7000 device family, EPM7128SLC84-7
should be chosen when targeting the CPLD on the UP1 educational board. It is important
to note that the box next to “Show Only Fastest Speed Grades” on the “Assign Device”
dialog box should be unchecked or else the EPM7128SLC84-7 device will not be shown!
Once the device is specified, the compilation process is ready to begin. In order to start
it, the user must simply click the “Start” button depicted in Figure 8.4. While the
compiler is running, the hourglass will begin to empty and flip and a tracking bar
indicating the completion percentage at the bottom of the screen will grow. If any errors
occur during the process, Altera’s message processor window will open and display what
kind of problem was found. This feature will be discussed more in depth later in this

chapter.

i MAR pluz 1 ¢ \maxwork \vhditlub ¢ 3
Fie Procetang. irelaces: Arugr Qotnrs Nfiodow Helg.

B

Figure 8.4 — The MAX+PLUS® II compiler screen.

76

Another event that occurs during the compilation process is that the modules
inside the rectangular boxes seen in Figure 8.4 are darkened as they are completed. Each
of these modules represents a component of the compilation process. These modules will
be summarized briefly to enlighten the reader on all that is occurring “behind the scenes”
during this stage of the design process.

The first module the compiler uses is the compiler net extractor. The
responsibility of this module is to convert all of the design entry files associated with the
project into a single binary netlist file. Also, for projects containing more than one file,
this module records how these files and all nodes presented in the design are interrelated.

Using the information generated above, the next module (database builder) is able
to construct a single database containing all of the necessary information for the rest of
the compilation process. While building the database, this module also checks for
connectivity, consistency, and errors throughout the design. This database serves as a
base for constant updates as the compiler moves along to the following modules.

Once this database has been created, the logic synthesizer accesses the
information and attempts to minimize the necessary resources for the device specified. It
also removes information for any unconnected nodes found within the design to
maximize efficiency.

Once in a while, despite the fact that the logic synthesizer acts to minimize the
number of resources necessary on the design, it is still not possible to fit everything on
the single device specified. It is then the job of the partitioner to divide the database in a

manner that the smallest number of devices possible is required for implementation.

77

After leaving the partitioner module, the updated database enters the fitter. The
fitter uses the project information from the database in addition to the identified resources
available from the specified device in order to best implement the design. The fitter then
assigns details of the design such as the logic and I/O cells and specific pin numbers to
use. This information is then stored in a report file, which can be viewed by double
clicking on the rectangular object titled “.rpt” underneath the fitter block after the
compilation is completed. The report file can be quite lengthy such as the case for this
particular circuit, which can be found in Appendix E.

The next module in line for the compilation process is the timing simulator netlist
file (SNF) extractor. This module’s job is to create a netlist file, which is used to hold the
timing information for the project. This file is important during the simulation stage of
the design process since this information is often needed for functional and timing
analyses.

Lastly, the process reaches the assembler module. Where the timing SNF
extractor generated crucial information for simulation, the assembler produces critical
data for the programming stage. It creates a plethora of different programming images to
be used in conjunction with the MAX+PLUS® II software and the Altera hardware.

Figure 8.5 below displays the screen shown upon a successful compilation.

=101 x|

i

(3]

R o QG B
irpti

EIE

] 50 00

Database Logic Virning
Builder Syathesizer Partitioner Fitter SHF Assembler
Extractor
w— j

Figure 8.5 — The MAX+PLUS® II screen after a successful compilation.

78

Despite the fact that a design appears to be correct before attempting to compile it
for the first time; there inevitably seems to be at least one error. With this fact in mind,
Altera created a message processor to be used in conjunction with the compiler. When a
compilation fails for any reason, this processor automatically opens up and gives
pertinent information to best help the user troubleshoot the problem. Figure 8.6 shows

what the screen looks like during an unsuccessful compilation.

v s MEOGplus U - ¢ \max 2wk \vhdiluke3
Ml Ble : fsvign: Qoon: Window ' Help
Ds i

e cimax2workvhduke3.vhd: Assignment error: width of source "100000060" in Signal

nt does not mateh the width of result

]

4 Message) Tof? " Locate in Floorplan Editor
Goft

Figure 8.6 — The MAX+PLUS® II screen after an unsuccessful compilation.

As seen from the figure, the progress bar on the compiler screen does not fully
reach 100% and error (written in red font) and warning messages (written in blue font)

appear inside of the message processor. For VHDL simulations, these messages detail

79

the line number, the file, and the reason for the error. By pressing the locate button
below the processor, the user is automatically taken to the location in the code for the
error currently highlighted. In addition to these helpful items, Altera also provides a
listing of almost all possible errors and warning messages in the help menu and
suggestions to troubleshoot them. This menu can be reached easily by clicking on the
help on message button as seen in Figure 8.6.

There are also two other utilities that can be selected during the compilation stage
that were found to be very helpful. The first of these is the smart recompile command.
After a full compilation, this utility determines which of the modules are needed for
subsequent compilations based on changes since the previous one. The advantage of this
command is that it can greatly reduce the time required for compilation; especially for
large projects. If there were no changes since the last time the compiler was initiated, a

screen identical to Figure 8.7 will appear.

ﬁ Compiler

Compiler Database lm;w T;mam}
Netlist Builder Synthesizer Partitioner Fitter SHF Assembler
Extractor Extrsctm :

-’

snf @

Info: Project has not changed since 1ast compiiation

¢ Message b 00f1 I™ Locate in Eloorplan Editor

{ Locate bl0otD _Locate Al

Figure 8.7 — The MAX+PLUS® II compiler with the smart recompile command on.

80

The second useful utility available from the processing menu is the design doctor.
This utility, when turned on, checks the design files in the project for consistency on a
system-level since these are not easily caught in simulation. The checks performed are

user-selected ones through the specification of a set of design rules.

8.4 The Design Verification Stage

Now that the design has been entered and translated into a computer recognizable
format, it is time to verify it before implementation. In order to do this, Altera provides a
simulator application to be used in conjunction with the waveform editor and timing
analyzer.

In order to successfully run the simulator, a “.scf” file must first be created with
the waveform editor. Both the simulator and waveform editor can be selected from the
MAX+PLUS® II menu on the main screen. When opening the waveform editor, a
screen appears as shown in Figure 8.8 on the following page.

On the screen shown in Figure 8.8, various signals can be added that represent
inputs, outputs, or internal signals found in the design. In order to enter these signals, the
user should select NODE >> ENTER NODES FROM SNF. Once this has done, the
dialogue box seen in Figure 8.9 on Page 82 appears. The “List” button located in the
upper right hand comer of the dialogue box allows all of the nodes available in the design
to be viewed. These nodes will appear selected in the “Available Nodes & Groups”
textbox. They can then be selected to use on the waveform editor by pressing the arrow

pointing to the right and then OK.

e MAXplug I - © AmaxZwoark\vhdBluke3 - [Untitledl - Wavefom Editod

4 WAl I B View “Node' Asugn Uiy Oplion Wrdow Hel L

ol
DERE & e 28 L PRAEER =3
GifRet 0Ons — |[¢]s] Time [1746ns Inteval: [174.6ns
A; 0.0ns
it
% | Name; ﬂw;ue Aﬂpns mpns Im.pns 150;0ns 2!1]._0ns 240l0ns

Figure 8.8 — The waveform editor’s main screen.

Once the desired nodes have been selected, they are denoted on the waveform
editor screen with either an ‘I’ for input, ‘O’ for output, or ‘B’ for a buried or internal
node. The initial default value is also shown, which is a logic low ‘0’ for inputs and an
indeterminate ‘X’ for outputs and buried nodes.

Now that the desired nodes have been entered, it is time to modify them so that
they can be used for simulation. There is no need to change anything on the outputs or

buried nodes since the simulator will update them accordingly depending on the input

values.

82

Enter Nodes from SNF :
Node/ Gioup: i“ L

Available Nodes & Groups:

Figure 8.9 — The “Enter Nodes from SNF” dialogue box.

The first step to editing a signal starts with selecting the waveform. This is done
by a single mouse ciick on the desired waveform. Once this is performed, the toolbar on |
the left side of Figure 8.8 is used to edit the input waveforms. There are four buttons
present on this toolbar, which can create a constant waveform throughout the duration of
simulation. These buttons are labeled ‘0°, ‘1°, ‘X’ and ‘Z’ and represent constant low,
high, undefined, and hi-impedance values respectively. These buttons are valuable tools
especially when determining outputs for one particular set of inputs, however it is often
necessary to simulate clocks or rapidly changing inputs. For this reason, the
MAX+PLUS® II software provides functions that can either specify a clock or counter
sequence. The button with the alarm clock symbol represents the overwrite clock
function. When selecting this function, the dialog box as shqwn in Figure 8.10 will

appear. As can be seen in the figure, the starting value of the clock function can be

83

specified as well as the clock period. One important note to keep in mind is that the

clock period will not be able to be varied unless the “Snap to Grid” utility is turned off.

Overwnte Clock %]

Intetval Cans -

Figure 8.10 — The “Overwrite Clock” Dialogue Box.

The other waveform editor button that allows changing values to be specified is
called “overwrite count value” button. A snapshot of this dialogue box is shown in
Figure 8.11. This particular function is very similar to the overwrite clock function but is
simpler with multi-node waveforms. It allows the user to specify the starting and ending

values of count sequences as well as the increment value, count type, and count interval.

The last tool for editing waveforms can be selected by pressing th: button.
This tool allows the user to manually edit the waveforms on the editor as deemed

necessary.

Overwrte Count Value B3

Intetval Q0ns - - To: 10s
Radix is: Hesxadecimal -
Starting Value: ﬁ——- E
Evinn Vatue r———_— : Lancel I

& Binary irsqemeriBy.]

€ Gray Code : o

CoutEyey: [200ns | MukipiedBy: [T —

Count Type:

Figure 8.11 — The “Overwrite Count Value” Dialogue Box.

84

The last step in setting up the “.scf” file is to edit the simulation screen

appropriately. The end time of the simulation can be specified by going to the FILE >>

END TIME. Also, the grid size can be changed, turned on or off in addition to the snap

to grid function from the ‘Options’ menu to best suit the user’s intentions. The procedure

of creating the most relevant “.scf” file is often a cyclical one since it is often necessary

to go back and edit the waveforms appropriately when changing any of the grid or end

time options.

Once the “.scf” file is properly setup, it is possible to now run the simulation at

this point. The first step of this process is to launch the simulator by selecting it from the

“Max+PLUS II” menu on the main screen (Figure 8.1). A snapshot of the window

generated by invoking the simulator is depicted in Figure 8.12.

£ Sunulotor Tuming Sumaation - B B

Simutation lnput: luked.scf
Simulation Time: 1.0s

Start Time: End Time:
o T Use Device ro B Bow

 SetwpfHold sciflation

I Check Outputs ™ Giitch

i - 20

! Stant I

—|

Tiep™ ' OpcnSCF]

Paneg ‘

4 facale bloofe

{~ Locate in Fioorptan Editor

Figure 8.12 — The MAX+PLUS® II simulator main screen.

85

From this screen, the simulator can be executed by pressing the “Start” button. If
the waveform file is not visible, it can be opened by pressing the “Open SCF” button.
Also, the starting and ending times of the simulation can be specified in the dialogue box.
If a successful simulation occurs, a red bar will fill the progress bar and a message box
will pop up on the screen similar to the one shown in Figure 8.13. This box displays the

simulation’s end time and the number of errors and warnings generated.

;) ol ss&ssmpm

Simulation endad at 1.0¢

Figure 8.13 — The message box for a successful simulation.

For the slot machine design, two pertinent simulation waveform graphs are
provided on the following two pages. The first simulation shown in Figure 8.14 displays
each of the most important signals included in this design. The total time for these
signals were scaled down to one second to save on compilation time and resources, yet, it
still allows the functionality of the design to be conveyed. The input ‘GO’ should always
be set to a logic high value when the circuit 1s working properly. The ‘CLK’, ‘CLK2’,
and ‘CLK3’ inputs are connected to clocks of different frequencies to drive the three
random number generators. The other input ‘START’ holds each random number being
produced at the instant of assertion until the value changes back to a logic low value. The
buried signals ‘RAND1’, ‘RAND?2’, and ‘RAND?3’ are the actual random numbers being
generated. It can be seen from Figure 8.14 that these values hold their value once

‘START” is asserted just as they were designed to do.

86

s iol
HENeniosiol
ZERANIODINT
ECHANIO MO
m— FENNTICDIO]
)) B serwnIoaiol
sernnooiol
LENNNI0 R
2ENNN VST
TpznwnIooiol
LTNRNIO0 0]
oo lo]
PatiTiskvied o]
sENINIO0OL
szrnoniol
| T T ’ gzrnn ool
. - . . . SRS A On Tl
CezZRRAIGS IOl
QIMNNTOS O]
RN p s ekel
Zipanonicl
LINANTICTIDE
PN I0)
SHINIVIOO]
IRy el tiel]
T leWEs |

L wvis
. : i
¥ 008 SHY 26 510098 SWE 0P8 SWD (03 SWE 05 SO 0274 SWD 599 SWG OFS SWH 008 S0 (8% SE 02§ SWCRF SWIC Oy SW0 00% SWIQ 0RE $W0 CTE S5 0BT By O WY 00T PW0 093 SWO BEL $1C 09 SWg Oy BN

Figure 8.14 — The full simulation results for the digital slot machine design.

87

TR

T T
“aerwosicl
eyt

AT IO

(2 iRl =]

i st
HET e nt
{ezwan ook

T e SRR
(((((o PR oL ST e
TR e
R]
rneakd
{5 oo kol
S
s oo kR

—

b RS]
T A
R
842 T 1]
*»13 K
gevn M

[zl

A — N RN

) { v i W
TS) o< ik wag 25 way Lol e o B o

TrkraaIooict |
ISP TON S |
oo

coevroskd
Cwreyresskd

Lenvrsakd
ool

pirenn IR
Resarciaky

e B

PR SONELE RIANTON RRO TY CRTERRVIAINEIONS 1 Wl LDk SR

Figure 8.15 — The simulation results over an 8ms time period.

38

The method by which the outputs are labeled are by applying the word COLUMN
followed by the column number and a symbol number displaying where it would appear
on the slot machine output. Figure 8.14 shows that one and only one value is selected for
each column when ‘START’ is asserted. Figure 8.15 depicts a portion of the simulation
shown in Figure 8.14 over a much smaller time period so that the actual counting
sequences of the random numbers can be viewed.

Once the functional simulation part of the verification process has been
completed, it is time to perform a timing analysis. Some timing results such as glitches
can be found by simply viewing the “.scf” file after simulation. However, the actual
values of the timing information can be found by using the timing analyzer in the

MAX+PLUS® 11 software. This utility can be invoked by selecting the timing analyzer

from the under the MAX+PLUS® II menu on the main screen (Figure 8.1).

Within this application, there are three typical analysis modes that can be
performed and are found under the “Analysis” menu upon launching. The first of these
and the most common is the delay matrix. This matrix allows the user to specify a series
of input and output nodes and then the corresponding delay time between each is
calculated. The main screen for the delay matrix is displayed in Figure 8.16. In order to
specify which nodes to use during the analysis, the user should select NODE >> TIMING
ANALYSIS SOURCE to specify the desired input nodes and NODE >> TIMING
ANALYSIS DESTINATION for the outputs. Once this is performed, the output nodes
are shown on the top of the matrix whereas the inputs will be seen on the left side of it.
The last step of the process is to press the ‘Start’ button on the delay matrix screen and

the delay values will then appear.

89

The results of the delay matrix for this project can be found in Appendix F. The
propagation times for the clocks to reach the outputs were calculated to be 9.5ns, 9.5ns,
and 12.5ns for the symbols on reels one, two, and three respectively. The important fact

is that these times are small enough to be non-visible to the user as well as consistent for

all of the symbols on each reel.

i MAX epius 1l ¢ \max 2wtk \vhdiMuked - [Timing Analyzer}

mmpuu Fie Node Anawt A::w umu Qp(ms yndw Hep': o =181
DeEas rvel - 2 a 2llasel , '
Delay Matrix o
Destination
5
o
Y]
¢
L]
Ki| A
& 2 ﬁ
Stant Sun {161 Paths

Figure 8.16 — The delay matrix screen for the timing analyzer.

Another tool that can be selected in the timing analyzer is the registered
performance mode. This mode “analyzes registered logic for a performance-limiting

delay, minimum clock period, and maximum circuit frequency”. Also, a Setup/Hold

90

Matrix mode is available for use for circuits containing flip-flops and latches. It does
exactly what its name states and calculates “the minimum setup and hold requirements
from input pins to signal inputs” [15]. These modes were not as pertinent to this design
like the delay matrix was so the generated results were omitted from this report.

One useful feature about the timing analyzer is that it allows the user the select a
specific node (either source or destination) and view any and all delay paths that are
attributed to it. Also, the Message Processor can be used in accordance with the Timing
Analyzer by selecting the “List Paths” from the delay matrix screen shown in Figure 8.16
once the analysis has taken place. This opens the message window and displays all paths

for a specific node.

8.5 The Design. Programming Stage

The last stage of the design process involves the actual programming of the
hardware device. In order to transfer the appropriate information from the software to the
hardware, the device must first be setup properly. On the UP1 educational board, there
are four sets of jumpers that can be set to either program the CPLD, the FPGA, both, or a
string of multiple boards together. To configure the jumpers properly, one should consult
the user guide [14] that is packaged with the board. For this particular application, the
goal was to solely program the CPLD so the jumpers were placed on the upper two
positions in each of the columns.

Another requirement for of the UP1 educational board setup is to connect a seven

to nine Volt DC power supply with a minimum of three hundred fifty mA to the DC_IN

91

power input. The ideal source is a nine Volt DC power supply with close to one Amp of
current. For this particular experiment, a nine Volt, eight hundred mA DC power supply
purchased from Radio Shack was used and converts its power from a regular household
power outlet. Once proper power is supplied to the board, the ‘Power’ LED should be lit
to indicate it is functioning properly.

The last step with the hardware setup is to connect it to the parallel port of a
computer running MAX+PLUS® II with the proper software key. This is done through
use of the ByteBlasterMV™ download cable. It connects between the parallel port to the
‘JTAG_IN’ ten pin male header on the UP1 education board. The board must be
powered up to transfer information since the ByteBlasterMV™ receives its power and
ground from the board itself. This concludes the necessary adjustments to be performed
on the actual hardware.

As for the software aspect of the programming process, the MAX+PLUS® 11
software provides an application that is launched from the MAX+PLUS® II main screen.
The screen for the programmer application is shown in Figure 8.16. It uses files that
were previously generated by the compiler and allows the user to do the multitude of
activities displayed on the buttons in Figure 8.16. Before performing any of these
activities though, it is important to make sure that the file and device are the desired ones
for the project. The name of the file should be the name of the project with a ‘.pof’
extension and the CPLD for the educational board is the EPM7128SLC84-7.

Since the CPLD on the education boards is EEPROM based, it is not necessary to
run a blank check because the device does not have to be blahk to program over the

existing information. In order to change the file name, select FILE >>

92

PROGRAMMING FILE from the menu on the programmer screen. The device can be
changed by selecting the device option by going to ASSIGN >> SELECTING THE

DEVICE.

< Programmer

| Program l I Security Bit
- Verify } File: luke3.pof

. Examine | Device: EPM7128SLC84-7

Blank-Check | Checksum: 001D0A85
Qb;igme ‘
Test J
0 _50 i 00

Stop ~ Open SCF]

Figure 8.16 — The Altera MAX+PLUS® II programmer screen.

The last task is then to simply press the “Program” button from the programmer
screen. If no problems arise, the progress bar will fill to completion and no errors or
warnings will appear in the message processor window. To test that the data contained
within the current ‘.pof” file is the same that is now on the hardware device, the “Verify”
button can be selected from the programmer menu. The device can now be unconnected

from the ByteBlasterMV™ download cable and be used in the desired application. Since

the EPM7128SLC84-7 CPLD is a non-volatile hardware device, the power supply can

also be unconnected and moved without the chip losing the contents.

93

94

CHAPTER IX

CONCLUSION

9.1 — Summary

The development of programmable logic devices began in the mid 1970’s out of a
need to produce a logic device that could not only be designed but also built by the same
company. As the need for larger capabilities continued to grow, so did the complexity of
the architectures of these devices. The most commonly used devices today are integrated
circuits in the very large scale integration category such as complex programmable logic
devices (CPLDs) and field programmable gate arrays (FPGAs).

Since the architecture of these devices is so complex that it is virtually impossible
to list all the single connections needed to implement a design, computer aided design
tools and hardware description languages were developed. One of the established
manufacturers of programmable logic hardware and software products is the Altera
Corporation. One of the most common software packages they produce is the
MAX+PLUS® II software, which provides a fully integrated environment for
programmable logic design. This software allows the designer to use this package for the
entire design process from entry to implementation.

The multitude of entry methods supported with this software helps provide a
friendly environment for designers of various skill levels. The advent of the hardware

description languages provides the designer with the ability to input the specifics and

95

behavior of the desired circuit into a text editor to allow the software to generate the
design logistics that formerly had to be worked out manually. This allows the designer to
make slight modifications to a design in a quick and efficient manner.

The author has provided two designs to contrast the previous design methodology
with the one currently used in industry today. The circuit using VHDL demonstrates the
advantages of the newer design processes, which includes faster development time, less

hardware components, and ease of modification.

9.2 - Project Results

The intent of this design was to provide an educational resource from which
future students could learn the basics of programmable logic and the design process
involved. In order to accomplish this, the history for many aspects of the topic was
given as well as a thorough discussion of the design thought process. Also, a series of
tutorials is given to aide the novice programmer to easily learn VHDL. Furthermore, the
design implementation is described in a step-by-step fashion so that any interested reader
can easily follow the steps to develop his or her own design.

While providing this research, some ideas were generated for improvement on the
design tools. One of these was to make the VHDL text editor in Altera more user
friendly. It seems as if the company is trying to impose their version, AHDL, upon the
users by providing additional features. VHDL is such a complex language to learn that
all attempts at providing a friendly environment (such as Visual Basic’s) should be made.

Also, it would be nice if the schematic editor provided a list of components to choose

96

from, as does MicroSim’s PSpice and Xilinx’s Foundation Series. These programs allow
the user to see what components can be used for a schematic without having to reference
the help menu in addition to drag and drop capabilities. Lastly, the hardware provided
with Altera’s educational package is not very conducive to a lab environment. The pin
numbers are poorly labeled on both the hardware and manual, the connections for wire
connections are very tight, and the components seem to be very fragile. The author’s
experience in undergraduate laboratory leads him to believe that these problems will lead

to the need for numerous replacements.

9.3 — Future Ideas for Research

The extensive research on this particular topic also provided a variety of
additional interesting ideas that were beyond the scope of this project. Most of them
arose from the software packages and hardware devices that keep rapidly evolving and
changing.

In addition to the Altera Corporation, the Xilinx Company is also another major
programmable logic company. They provide hardware and software packages that are
very similar to that of their competitor. An interesting study would be to produce a
unique design in both of the environment and compare and contrast the two
methodologies. Currently, Youngstown State University has the resources available from
both companies to be able to do this type of comparison.

In a similar fashion, the different hardware description languages could be

compared through developing a design implementation in each of them. The Altera

97

MAX+PLUS® II software provides the capability of creating a design using AHDL,
VHDL, and Verilog HDL.

Finally, the design created within this report utilized only the CPLD on the Altera
UP1 educational board. However, there are plenty of other features available on this
hardware including the “FLEX” device. An interesting study would be to program a
design on both devices and discuss the timing and performance characteristics and

differences between the two.

(7]

[8]

[10]

[11]

[13]

98

REFERENCES

“Altera University Program.” Altera Corporation. 8 August 2002.
<http://www.altera.com/education/univ/unv-index.html>.

Wakerly, John F. Digital Design Principles & Practices. 3" ed. updated. Upper
Saddle River, NJ: Prentice Hall, 2001.

Armstrong, James R. Chip-Level Modeling with VHDL. Englewood Cliffs, NJ:
Prentice Hall, 1989.

Pellerin, David and Michael Holley. Practical Design Using Programmable
Logic. Englewood Cliffs, NJ: Prentice Hall, 1991.

“The First Integrated Circuits.” Maxfield & Montrose Interactive Inc. 28 May
2002. <http://www.maxmon.com/1952ad.htm>.

Alcorn, R. B. “A Digital Circuit Design Implementation Using ABEL-HDL and
Programmable Logic Devices.” Master’s Thesis, Department of Electrical
Engineering, Youngstown State University, 1997.

“FPGA, EPLD, CPLD, PLD Suppliers.” OptiMagic Inc. 20 May 2002.
<http://www.optimagic.com/companies.html>.

“FPGA, EPLD, CPLD, PLD Suppliers Summary Table.” OptiMagic Inc. 20
May 2002. <http://www.optimagic.com/summary.html>.

“Programmable Devices/Technology.” Arbeitsgruppe CAD. 12 April 2002.
<http://argon.iaee.tuwien.ac.at/lehre/thwn/prog_logic_devices.pdf>.

“Frequently Asked Questions About Programmable Logic, FPGAs, and CPLDs.”
OptiMagic Inc. 20 May 2002. <http://www.optimagic.com/faq.html>.

“Field-Programmable Devices.” EDN Magazine. 28 May 2002.
<http://archives.e-insite.net/archives/ednmag/reg/1996/101096/
21df 07.html>.

“Programmable Logic Devices.” Imperial College of Science, Technology &
Medicine. 17 June 2002. <http://www.ee.ic.ac.uk/pcheung/teaching/
ee3 DSD/DSD3small.pdf>.

Sandige, Richard S. Digital Design Essentials. Upper Saddle River, NJ: Prentice
Hall, 2002.

99

[14] Altera Corporation. University Program Design Laboratory Package User
Guide. Version 2.0. October 2001.

[15] Altera Corporation. MAX+PLUS II Programmable Logic Development System
& Software Data Sheet. Version 8. January 1998.

[16] “Altera Corporation: The Programmable Solutions Company.” Altera
Corporation. 10 May 2002. <http://www.altera.com>.

[17] BhaskerJ. A VHDL Primer. 3™ ed. Upper Saddle River, NJ: Prentice Hall,
1999.

[18] “History of VHDL.” MicroLab — Swiss Microelectronics Laboratory. 14 January
2002. <http://www.microlab.ch/academics/courses/vlsi/vhdl-
ieee/TUTORIAL/MOD1/SEC2/HTML/SLIDE4.HTM>.

[19] “Basic VHDL.” RASSP E&F. 14 January 2002. <http://www.people.vcu.edu/
~rhklenke/tutorials/vhdl/modules/m10_23/s1d001.htm>.

[20] Miller, Scott. “History of VHDL.” The Duct Tape Guide to VHDL. 14 January
2002. <http://phoenix.nmt.edu/~hllywood/history.html>.

[21] Eaton, Deran S. “The VHDL Solution.” Naval Surface Warfare Center. 14
January 2002. <http://www.nswc.navy.mil/cosip/feb98/vi0298-2.shtml>.

[22] “A Brief History of VHDL.” Doulos Limited. 14 January 2002.
<http://www.doulos.co.uk/fi/desguidevhdl/vb2_history.htm>.

[23] Chang K.C. “Digital Design and Modeling with VHDL and Synthesis — Preface.”
Institute of Electrical and Electronics Engineers, Inc. 14 January 2002.
<http://www.computer.org/cspress/catalog/bp07716/chapt.html>.

[24] “Case Study — Verilog vs VHDL.” University of California, Berkeley.
14 January 2002. <http://www-inst.eecs.berkeley.edu/
~eecsbal/s97/reports/eecsbalh/verilog.html>.

[25] “Glossary of EDA Terms.” IKOS Verification Innovation. 21 March 2002.
<http://www.ikos.com/investors/glossary>.

[26] “Slot Machines — Their history, how they work & a couple of tips.” Real
Entertainment LTD. 17 January 2001. <http://www.casino-
info.com/slots.htm>.

[27] “Odds and Strategy for Slot Machines.” The Wizard of Odds. 17 January 2001.
<http://www.thewizardofodds.com/game/slot.html>.

[30]

[31]

[32]

[33]

100

Bourie, Steve. “American Casino Guide.” Slot Machines. 17 January 2001.
<http://www.americancasinoguide.com/Tips/Slots.shtm]>.

Boelhouwer, Steve. “Playing for Keeps: Developing Casino Games.” CMP
Media LLC. 2001 February 5. <http://www.gamasutra.com/features/
20000424/gambling 01.htm>.

Strictly Slots — The Magazine for Slot & Video Poker Players. ACE Marketing
Inc. Volume 4 No.2. February 2002.

Dueck, Robert K. Digital Design with CPLD Applications and VHDL.: A Lab
Manual. Albany, NY: Delmar Publishers, 2001

“Xilinx: Programmable Logic Devices, FPGA & CPLD” Xilinx Company 20
July 2002. <http://www xilinx.com>.

“Altera” Georgia Tech University. 1 December 2002.
<http://users.ece.gatech.edu/~hamblen/ALTER A/altera.htm>.

101

APPENDIX A

VHDL LESSONS FOR STUDENT USE

A.1 - Lesson 1: Introduction & Examples of VHDL

What is VHDL and what does it stand for? VHDL stands for Very high-speed
integrated circuits Hardware Description Language with the abbreviation coming from
the initials of the capitalized words. As the title states, it is a descriptive language that is
used to model digital systems at any level from a simple gate to a massive digital
electronic system. The language provides the capability of building systems with or
without timing constraints as well as providing the means of simulating concurrent and
sequential logic statements.

The two main parts of any design simulated in VHDL are:

e Entity — The entity is used to describe the external interfaces (usually the inputs
and outputs) of a digital iogic system. Port statements are then used inside the
entity to describe the internal and external terminals and their directions.

e Architecture - The architecture is used to describe the internal functionality of
how the system (and entity) operates.

The generic syntax of a basic entity is:

entity entity name is
[port (list of interface port names and their types) ;]
end entity name ;

There are other parts of an entity as well but these are the main concepts to know to begin
learning the basics. For a more complete description of entities consult the world wide
web or your textbook. Please note in VHDL examples that the text in BOLD are VHDL
keywords and the text in italics are user-defined variables, types, etc.

As can be seen, the main parts of an entity are:

1. Entity name — The name of the entire entity. It must follow the rules as outlined
in the identity discussion.

2. Port statement — The ports are defined as the signals through which the entity
interfaces with other objects in the outside environment. They are often the input
& output signals of the entire system.

3. Port name — The names of each individual port. They must follow the rules as
outlined in the variable discussion.

102

4. Port mode — There are four modes that a port can be defined as that are pertinent
to us:

a. in: The value is only able to be read within the model.

b. out: The value can only be updated within the model.

c. inout: The value can be read AND updated within the model.

d. buffer: The value can be read AND updated as well but cannot have
greater than one source and can only be connected to other buffers or
signals with one source.

5. Port type — The set of values that the port can hold. Common types are
INTEGER, BOOLEAN, BIT, and STD_ULOGIC. A discussion on types can be
found later in this report.

An example of creating an entity is given below with Figure 1 and the corresponding
code:

v 3 COU2A o
%) .)o o . o
L T):g ZouT

7410

entity FIRST is
port (W, X, Y, Z: in BIT; ZOUT: out BIT);
end FIRST;

Figure 1: Example circuit for the creation of an entity titled “First” in the VHDL
language

Figure 1 gives a good feel of how VHDL relates to the circuit implementation.
The entity name in this example is ‘FIRST’, the port names are ‘W’, ‘X’, °Y’, ‘Z’, and
‘ZOUT", the port modes are ‘in’ for the input signals and ‘out’ for the output signal, and
the port types are ‘BIT’ which allows only the values of ‘0’ and ‘1’ to be passed along
these signals. Notice how all of the commas, semicolons, and parenthesis are used in this
example; syntax is very important in VHDL!

103

The signals can be named individually as was seen in Figure 1 or can be stored in
a vector array. This notation is common in decoders, multiplexers, etc. In Figure 2, the
outputs are defined in a ‘Y’ vector ranging from zero to three so that the following values
are created: YO, Y1, Y2, Y3. It should be noted that this array can be named anything
and be any size; it is entirely up to the user.

A 1[\\91A 2| 7408 3 1Y)

1/'.)(73204 o ﬁ AA‘ '

:) 4
'] SA.
5 U2A 1“—1\3 v
o l/ 2| 7408 (_)
7404 o .

7 7408)——3 Y@

entity ARRAY is
port(A,B: in BIT; Y: eut BIT VECTOR(O to 3));
end ARRAY;

Figure 2: Example circuit using the ‘BIT_VECTOR’ array type

Now that entity declarations have been discussed in depth, certain parts of the
entity will be examined further. The first involves the naming of the ports, entities, and
variables as well as future things such as architectures, functions, etc. These names are
given by objects, which are called identifiers.

Identifiers are any names that are permissible for such objects that are described
above. Within VHDL, there are two basic types of identifiers with their own set of

rules.

1. Basic Identifier — A basic identifier is a combination of one or more characters
that adhere to the following constraints.

The first character of the identifier must be a lower or uppercase letter.
All alphanumeric characters are allowed; this includes only uppercase and
lowercase letters, digits, and the underscore character.

Two of the underscore characters cannot be used consecutively.

Basic identifiers are never case-sensitive.

Spaces cannot be present within basic identifiers.

104

Keywords such as begin, for, in, case, after, next cannot be used as basic
identifiers. Keywords in examples of this report are given in bold to make
the reader familiar with which are reserved and which are not.
ENGINEER, O1IN1E1, UNDER_SCORE are examples of valid basic
identifiers.

1_UNDER, WHAT!, TWO_ _SPACE are examples of invalid basic
identifiers.

2. Extended Identifier — An extended identifier includes any combination of
characters in between two backslashes that adheres to the rules of the basic
identifier in addition to these constraints.

All of the characters that are valid in basic identifiers are also valid for
extended identifiers. However, the . ! @ © $ characters are valid as well.
Unlike basic identifiers, extended identifiers are case sensitive within the
backslashes.

In order to represent a backslash within an extended identifier, two
consecutive backslashes are used (in addition to the two backslashes
denoting the start and end of the extended identifier.

\Extended\. \Money$3$$\ are examples of valid extended identifiers

Lastly, comments can be provided within the VHDL code using two consecutive
hyphens. These consecutive hyphens must be provided before every line of
comment in the code. An example of a comment is shown in Figure 3 below.

entity FIRST is

end FIRST;

port (W, X, Y, Z: in BIT; ZOUT: out BIT)
--This is how to insert a comment into Figure 1
--This 1s where a second line of commenting would go

Figure 3 — An example of how to comment within a block of code.

105

A.2 - Lesson 2: Introduction to Architecture Bodies.

Introduction to Architecture Bodies:

As mentioned in Lesson 1, there are two main parts of any design simulated in VHDL
code and are the entity and the architecture. Since the entity was discussed in the first
lesson, the architecture will be further examined in this and future lessons. As also
mentioned previously, the architecture is used to describe the internal functionality of
how the system (and entity) operates.

The general syntax of a basic architecture body is:

architecture architecture-name of entity-name is
signal declarations
constant declarations
variable declarations
type declarations
other declarations
begin
concurrent statement |
concurrent statement 2

concurrvent statement n
end architecture-name;

As can be seen, the main parts of an architecture body are:

1.

Architecture name — The name of the particular architecture, which must follow
the rules laid out in the identifier section. It can be seen from the architecture
declaration statement that it is linked to a particular entity as well.

Declaration statements — These statements will be further discussed in this
lesson. These statements (as well as any entity declarations) declare items that
can be used within the architecture body.

Concurrent statements — These parallel statements are used to describe the
internal composition as outlined by the entity statements.

There are also 3 different popular styles that can be used to describe an architecture body

1.

2.

Structural modeling — An entity is described as a set of components that are
connected by signals.

Dataflow modeling —Concurrent statements are used to describe the circuit by its
operations and flow instead of explicitly defining the structure of the design.
Behavioral modeling — Uses processes to execute a collection of sequential
statements.

106

Declarations:

What are declarations and what are they used for? Declaration statements are used to
name and define the data type associated with a data object. Data objects are just
memory spaces named by an identifier that are available to hold a certain value(s).

The three main type of data objects are:
1. Signal — As seen with entities in Lesson 1, signals are data objects that can hold a

signal’s present and future values. Within architectures, signals are most often
used for intermediate steps within the circuitry.

2. Constant — Holds a single value of a specified type. A constant cannot be
changed within execution of the program. Allows identifiable and clear name to
be given to such things as universal constants (pi, e, etc.).

3. Variable — Similar to a constant in that it holds a single value of specified type.
Unlike a constant, however, is that this value can be changed during execution.
Also, unlike a signal, variables need not have a physical representation within the

circuitry.

How are these data objects declared? Now that the data objects have been discussed,
there needs to be a structure so as to formally name and associate a data type with each.
The valid names have been discussed with identifiers and data types will be discussed
later in this lesson. Figure 1 shows the generic syntax for declaring the above data
objects

constant name : type = initial value; constant MyAge : integer := 21,
variable name : type = initial value, variable TodaysDate : integer := 3185,
signal name : type = initial value; signal AandB : bit := 0;

Figure 1 — Generic Syntax and Examples for declaration statements of data objects.

What are data types? Data types should be somewhat familiar since they have been
touched on in previous discussions but have yet to be covered in depth. A data type
represents a set of values that a data object can hold. The flexibility of VHDL allows the
user to define certain data types in addition to the ones that are pre-defined within the
VHDL language or in popular library packages. A common variation of a data type is a
subtype. Subtypes are just data types with some constraint. A subtype range is used to
specify the constraint on the type and can be declared in ascending order using ‘to” or
descending order using ‘downto’ as seen in Figure 2.

type name is values;,
subtype name is type-name range stari-value to end-value;
subtype name is type-name range start-value downto end-value;

Figure 2 — Generic syntax and examples for declaration statements of data types.

107

There are 2 main categories of common data types:
1. Scalar - Values of this type are in sequential order.
2. Composite — Consists of many elements of same type (array) or elements that can
be of different type (record). This data type will be discussed further in Lesson 3.

The 3 main scalar types belong to these categories:

1. Enumeration — defined type that lists all specified values; can be numbers,
characters, statements, etc. Some common ones are listed below along with all of
the values associated with the particular type.

e CHARACTER - pre-defined type that uses the 191 characters of the ISO 8-
bit coded character set (ASCII + some more). These characters are typically
written as between single quotes.

e BIT - pre-defined type that can take on either a ‘0’ or ‘1’ value

e BOOLEAN - pre-defined type that can take on a FALSE or TRUE value

e STD_LOGIC - popular type that is pre-defined in the IEEE-1164 package.
This type can hold the following values ‘U’, ‘X’, ‘0°, ‘1°, ‘Z’, ‘W’, ‘L’, ‘H’,
‘-*. See the text for explanations for each of these values.

2. Integer — defined type that specifies a set of integer values. These values at least
include the range —(2731-1) to (2*31-1) and sometimes more in different software
packages. Scientific notation can also be used such as: 6E2 can be used to
represent 600. Common subtypes of integers that the user must be define include
natural (positive integers plus zero) and positive (positive integers).

e INTEGER - pre-defined type that includes the integers from —(2°31-1) to
(2731-1).

3. Float — defined type that specifies a set of real numbers. This means that
fractional numbers can be used in decimal notation. Numbers of different bases,
such as binary, can also be represented using this notation: (base#value#).

e REAL - pre-defined type that includes real numbers from —(10"38) to
(10738) and 6 digits of precision.

108

A.3 - Lesson 3: Arrays and Operators

Arrays:

What is an array? An array is one of the two categories of composite data types (the
other being a record type). As opposed to the scalar data types discussed in the previous
lesson, arrays are a set of values (instead of an individual value) of the same data type. A
record type can include values of different data types but will not be discussed since it is
not as commonly used. Arrays are most commonly 1-dimensional, which can be thought
of as a list or a single column of values. They can also be 2 or more dimensional as well.
A 2-dimensional array can be visualized as a table or a set of values with columns as well

as rows.

Just as with scalar types, arrays are created once they are declared. Some common
ways to declare arrays are shown in Figure 1 below.

type name is array (start-value to end-value) of element-data-type;
type name is array (start-value downto end-value) of element-data-type;

Figure 1 — Typical syntax used for 1-dimensional array declarations.

As can be seen in Figure 1, there are 3 parts to an array declaration:

1. Array Name — Creates name for the array using a valid identifier.

2. Number of Items in List — Uses a range of numbers to create the number of
items present in the list. This order is created as specified in the declaration
statement from start value to end value. These individual numbers of the array
are often referred to as the index.

3. Data Type of Elements — Since in an array, the values must be of the same type,
this data type is specified within the declaration statement here.

Some examples of array declarations are provided in Figure 2.

type fall classes is array (0 to 4) of INTEGER,;
type angle radians is array (7 downto 0) of REAL;

Figure 2 — Examples of 1-dimensional array declarations.

109

There are 2 predefined 1-dimensional array types as well as 1 in the IEEE 1164
package:
e STRING - This predefined array is an array of characters.
e BIT_VECTOR - As previously used in lesson 1, this predefined array is one of
bits.
e STD LOGIC_VECTOR - This array is defined within the IEEE 1164 package
and is an array consisting of all the valid STD_LOGIC values (as discussed in

Lesson 2).

Once an array has been created by the declaration statement, the next step is to
input values into each element. This can be done using literals. Literals are used to
assign values to the entire array. There are two main types of literals: string literals and
bit literals. String literals are sequences of characters while bit literals are sequences of
bits. The values for each literal are assigned by putting them within double quotation
marks. Bit literals can be assigned using octal and hex notation as well. This is done by
putting an ‘O’ or an ‘X’, respectively, before the first quotation mark.

Examples of the assignment of pre-defined array data types to data objects for both
string and bit literals are given below in Figure 3.

variable My Name: STRING(1 to 4);
My Name := “Luke”;

variable FORTY: BIT VECTOR(7 downto 0);
FORTY :=“00101000";

Figure 3 — Examples of assigning array data types to data objects.

Individual elements or partial groups of elements can be accessed or assigned values
as well. This is done by typing the name of the array followed by the index number(s) in
parenthesis. Figure 4 shows how element number 3 of the variable My Name from
Figure 3 would be accessed as well as elements 3 to 6 of variable FORTY.

My Name(3)
FORTY(6 downto 3)

Figure 4 — Example of accessing individual or partial groups of elements in arrays.

110

Lastly, values can then be assigned to these individual or groups of elements as well.
This can be done as shown in Figure 5.

My _Name(3) = “k”;
FORTY(6 downto 3) :=(4=> ‘1", 6 => ‘1’, others => ‘0’),

Figure 5 — The assignment of values to individual or groups of elements in arrays.

The assignment to the elements of FORTY in Figure 5 should look somewhat new to
the beginning VHDL student. This statement is just a different way to assign values to
arrays. It is showing that element 4 is being assigned a value of ‘1’ as is element number
6. The keyword others is used by VHDL to assign the specified value (in this case ‘0’)
to all the other elements (in this case, it would be elements 3 and 5).

Operators:

Operators in this discussion are broken into 4 categories:

1. Logical .
2. Comparative
3. Shift

4, Mathematical

Logical operators are those that are commonly used in discrete mathematics as well
as in digital design. These operators are defined as types BIT and BOOLEAN. A list of
all the logical operators can be found in Figure 6.

and - logical and function

nand - logical nand function

or - logical or function

nor - logical nor function

xor - logical xor function

xnor - logical xnor function

not - logical not function (inverter)

Figure 6 — The logical operators available in VHDL

111

Comparative operators are used to compare two elements (or arrays) against one
another. The resulting data type is always BOOLEAN. A list of the comparative
operators is given as Figure 7.

< less than >= greater than or equal
<= less than or equal = equal to
> greater than /= not equal to

Figure 7 — The comparative operators available in VHDL

Shift operators are used to either shift or rotate arrays in the direction specified
within the operator. The array is used on the left side of the operand while an integer is
taken on the right side. The integer determines how many spaces to shift or rotate the
array. Shift logical operators fill vacated spaces with ‘0°, while shift arithmetic operators
fill vacated bits with the rightmost bit of the left operand (for sla) or the leftmost bit of
the left operand (for sra). Lastly, rotate operands fill the vacated bits as if they were in a
ring. For instance, in an eight element array being rotated right three spaces, the seventh
element from the left would become the second element. A list of the shift operators is
given as Figure 8.

sll - shift left logical sra - shift right arithmetic
sla - shift left arithmetic rol - rotate left
srl - shift right logical ror - rotate right

Figure 8 — The shift operators available in VHDL

Mathematical operators are used to perform typical mathematical functions. For
addition, subtraction, multiplication and division functions, the operands must be of the
same data type. The concatenation operator can be used to combine elements as well as
arrays from left to right as specified. Also important to note is that the exponentiation
operator must have an integer as the right operand. The mathematical operators are given
as Figure 9. It is important to note that not all operators will be available in all software
packages. For example, in the Altera software, the mod and div functions are not valid
operators.

+ addition mod modulus

- subtraction rem remainder

* multiplication abs absolute value
/ division & concatenation
*k exponent

Figure 9 — The mathematical operators available in VHDL

112

A.4 - Lesson 4: Structural Modeling

Now that many of the nuts and bolts of the VHDL programming language have been
discussed, it is time to actually represent a total design. As discussed in Lesson 2, there
are three basics styles of modeling used in VHDL and will be discussed further in the
next three lessons. These styles are: Structural, Dataflow, and Behavioral.

What characterizes the structural style? The structural style involves using
components to define the interconnection of signals declared in the entity. A structural
design corresponds exactly to a schematic, since it lists all components (or gates) and all
of the inputs and outputs to these components, and is perhaps the easiest style (but not
usually the most efficient) to use for the programming beginner. It is important to know
that all VHDL statements (except process statements) are executed concurrently, which
means they are executing at the same time (in parallel). An example of an entire
structural style model is given below in Figure 1.

L ZOUT

entity FIRST_VHDL is
port (A, B, C: in BIT; ZOUT: out BIT);
end FIRST VHDL,

architecture FIRST VHDL ARCH of FIRST VHDL is
component AND2
port (F, G: in BIT; H: out BIT);
end component;
component OR2
port (1, J: in BIT; K: out BIT);
end component;
component INV
port (L: in BIT; M: out BIT);
end component;
signal D, E: BIT;
begin
Al: AND2 port map (A, B, D);
A2:INV port map (C, E);
B1: OR2 port map (D, E, ZOUT);
end FIRST_VHDL_ARCH;

Figure 1 — An example of a schematic and its corresponding structural style code.

113

As with any modeling style (and as seen in Figure 1), the structural architecture can
be broken up into two sections:
1. Component Declarations — takes place before the begin keyword; components
are declared here.
2. Component Statements — takes place after the begin keyword; associates the
ports within the entity with signals within the architecture and performs the
appropriate functions to describe the design.

Some points to consider about the component declarations:

e Components can either be pre-defined or user created. If they happen to be user
created, they must use configuration statements to bind them.

e This statement is used to define the components that are used within the statement
section of the architecture body.

e The port names, as seen in Figure 1, can be different that those used within the
entity declaration.

e A component declaration declares the name, type, and mode of the component in
a comparable fashion to entity declarations. The generic syntax of a component
declaration can be seen in Figure 2.

component name
port(signal-names : signal-mode signal-type;
signal-names . signal-mode signal-type);
end component;

Figure 2 — Generic syntax for a component declaration in a structural architecture.

Some points to consider about the component statements:

e Uses the port map keyword to link the ports declared in the entity with signals
present within the current architecture.

e These statements, also called component instantiation statements, can use the
keyword open for any component part that is left unconnected.

o The generic syntax of a component statement can be seen in Figure 3. The label
can be any valid identifier and should be an appropriate one to best describe the
statement (for easy reading of the code). Also, the component name must be one
that was previously declared in the declaration section of the architecture. The
signals are then linked in the same order, type, and mode as was previously
declared in the declaration statement for that component. It is important to make
sure that the size of the signals used in the instantiation statements correspond
exactly to that of those in the component declaration statements.

label: component-name port map (signal-names);,

Figure 3 — Generic syntax of a component statement in a structural architecture.

114

There is also a shortcut for using more than one copy of a particular component
within an architecture. This structure is called a generate statement and acts as a “for
loop” on a single component instantiation statement. The generic syntax for a for-
generate loop is given as Figure 4. Once again, as in the single line component
statements, a label is given that can be any valid identifier. Another identifier is also used
to name the range values. The generate loop statement is then executed once and the
index number incremented until the end-value is reached. An example of using a for-
generate statement is given below the general syntax in Figure 4. This example shows
how a two-input “AND” gate can be repeated four times where the inputs are the vectors
A(1)-A(4) & B(1)-B(4) and the outputs are the vectors D(1)-D(4). Please note that the
vectors must be declared as this size in the component declaration statement as well or
else an error will occur.

label: for identifier in start-value to end-value generate
component-instantiation-statements,
end generate;

genl: fort in 1 to 4 generate
insidel: AND2 portmap (A(t), B(t), D(t));
end generate;

Figure 4 — Generic syntax and example of a for-generate loop.

115

A.S - Lesson 5: Dataflow Modeling

How does the dataflow style compare to the previously discussed structural style?
Like the structural style, dataflow models the circuit through use of concurrent
statements. However, the flow of data is expressed as opposed to individual components.
Instead of being able to see within the code just exactly how the circuit is interconnected,
the functionality is instead expressed. For example, compare Figure 1 from Lesson 4 to
that of the dataflow style used in Figure 1 of this lesson. The intermediate signals D and
E are not needed in the example but are shown for the ease of the reader. Without these
signals, there would be one single statement after the keyword begin, which would be:
[ZOUT <= (A and B) or (not C);]

entity FIRST VHDL is
port (A, B, Crin BIT; ZOUT: out BIT);
end FIRST VHDL;

architecture FIRST VHDL_ARCH of FIRST VHDL is
signal D, E: BIT;
begin
D <= A and B;
E <=not C;
ZOUT <=DorE;
end FIRST_VHDL_ARCH;

Figure 1 — An example of a schematic and its corresponding dataflow style code.

Once again, there is a declarations and statements section in the architecture body.
e In the declarations section of a dataflow model, signals, variables, or other data
objects not declared in the entity but needed for the architecture are declared here;
not components. These declaration statements can be made using the methods
learned in Lesson 2. Thus, the declaration section of dataflow modeling requires
little further discussion.

116

e The concurrent statements in the architecture body, however, require more
discussion since the only concurrent statements examined thus far were the
component instantiation statements from Lesson 4. The most common statement
used in dataflow modeling can be seen in Figure 1 and is called a signal
assignment statement. The generic syntax of this statement can be found as
Figure 2 on the following page.

target-signal-name <= expression after time-period,

Figure 2 — The generic syntax for a signal assignment statement.

How does the signal assignment work? The statement assigns a value to the data object
on the left side (which is called the target signal) of the ‘<=" symbol. The signal
assignment statements are then executed whenever any value to the right of the ‘<=’
symbol changes and this is otherwise known as an event. Also, as seen in Figure 2,
delays can be accounted for by specifying a delay time (usually in nanoseconds (ns))
following the after keyword. The statement would then execute once an even to occurs
as mentioned before and assign the value of the target signal after (time-period) delay. If
no delay is specified, the delay is called a “delta delay”. This after statement can be used
to create a clock within the architecture in the manner shown in Figure 3.

CLOCK <=not CLOCK after time-period,

Figure 3 — The implementation of a clock using signal assignment statements.

There are two additional signal assignment statements: conditional and selected.

A conditional signal assignment statement is similar to an if statement since it selects
values for the target signal based upon certain conditions. The generic syntax of the
conditional signal assighment statement as well as an example of how it is used can be
found in Figure 4. A boolean comparison after the when keyword is used to determine
whether the expression to the left of the when keyword will be assigned to the target
signal.

target-signal-name <= expression when boolean-comparison else
expression;

Go_Signal <= ‘1’ when Cross_Signal="0" and Sensor="1" else ‘0’;

Figure 4 - Generic syntax and example for a conditional signal assignment statement

117

A selected signal assignment statement is similar to a case statement since it selects a
value from a given expression that matches one of the choices and then assigns the
expression to the target signal. The selected signal assignment is executed whenever an
event occurs on either the select expression or on one of these signals present within the
statement. The generic syntax of the selected signal assignment statement as well as an
example of how it is used can be found in Figure 5 on the following page. The example
in Figure 5 assumes that the type ALU has been declared with the following values:
ADD, SUB, INCR, DECR, F_AND, F_OR, A NOT, and F_XOR.

with select-expression select
target-signal-name <= expression when choices,
expression when choices,

expression when choices;

with ALU select
F <= A+B when ADD,
F <= A-B when SUB,
F <= A+1 when INCR,
F <= A-1 when DECR,
F<=A and Bwhen F_AND,
F <= A or Bwhen F OR
F <= not A when A NOT
F<= A xor B when F_XOR;

Figure 5 - Generic syntax and example for a selected signal assignment statement.

The last expression to discuss with the dataflow modeling is the unaffected keyword.
This keyword is analogous to the sequential null keyword that is used within the
behavioral modeling style. The unaffected keyword is used with concurrent signal
assignment statements so as to cause no change to the target signal. This statement is
often used within selected and conditional signal statements combined with the other
keyword to keep the target signal status quo unless some specified condition occurs. It is
important with the dataflow modeling especially to look at some examples within the text
to learn the in’s and out’s of this style more in depth. There are many small variations
that are impossible to list that are best learned by example.

118

A.6 - Lesson 6: Behavioral Modeling

How does the behavioral style compare to the previously discussed styles? This style
is significantly different from the previously discussed styles in that it uses sequential
statements instead of concurrent ones. This is similar to the way that a language like C++
operates. The way that these sequential statements are used is within what is called a
process statement. Just as with the dataflow style, this structure does not describe the
structure of an entity but instead its behavior or functionality. This style allows almost no
simulated time during execution and provides an outlet for users used to high-level
programming languages. The same circuit used in Lessons 4 and 5 is provided below as
well as the corresponding behavioral styled VHDL coding.

entity FIRST VHDL is
port (A, B, C: in BIT; ZOUT: out BIT);
end FIRST VHDL,;

architecture FIRST_VHDL_ARCH of FIRST _VHDL is
begin
process (A,B,C)
variable D, E: BIT;
begin
D <= A and B;
E <=not C;
ZOUT <=Dor E;
end FIRST VHDL ARCH;

Figure 1 — An example of a schematic and its corresponding behavioral style code.

Once again, there is a declaration and statement section of the architecture body.
The declaration section would be used in the same manner as in the dataflow style. The
difference between these styles though is that the declarations take place within the
process statement in the behavioral style as can be seen in Figure 1 above.

119

How is the process statement used with the behavioral style of modeling? The
process statement is used to contain the sequential statements used in this style. It is
contained within the architecture body after the begin keyword where the statements of
an architecture are normally written. This begin keyword should not be confused with
the begin keyword inside the process statement. This new structure is similar to the
previously discussed styles of architecture bodies since it has a declarations and
statements section of its own. The generic syntax of a process statement can be seen in
Figure 2.

process (sensitivity-list)

process declaration statements
begin

sequential statements

report statements

null statements

if statements

case statements

loop statements
end process;

Figure 2 — The generic syntax of a process statement.

What are the parts of a process statement?

The first section of the process statement is the process line, which contains the
keyword process. The list of signals after process is called a sensitivity list.
This list contains a set of signals that causes the statements within the process to
execute whenever an event appears on one of them. The statements then execute
sequentially until the last one has completed and then the process suspends
(unless another signal in the sensitivity list had its value change, which would
cause the process to execute again). As is the case with other languages, infinite
loops can occur because of the properties stated and one must be careful to avoid
this dilemma.

The second section of the process statement contains the declaration statements.
Data objects that are declared within here can only be used within the process
statement and are thus called local variables. A discussion of object declarations
can be found in Lesson 2.

The third section of the process statement is where all of the sequential statements
are contained. As can be seen from Figure 2, there are quite a few different
sequential statements that can be used and these will be the topic of the rest of this
lesson. The three main groupings of these sequential statement structures are: if
statements, case statements, and loop statements.

120

What is an ‘IF’ statement? An ‘IF’ statement is a conditional statement that is used to
execute a series of sequential statements within it if it is true. Also, zero or more elsif
statements can be used within an established ‘IF’ statement to specify alternative
conditions. In the same manner, an else statement can optionally be used to cover the
entire set of alternative possibilities for when the previous conditions in the ‘IF’
statement are false. Lastly, two or more ‘IF’ statements can be nested within each other
as in most high level programming languages. Figure 3 provides the generic syntax for a
single ‘IF’ statement.

If conditional statement then
sequential statement(s)
elsif conditional statement then
sequential statement(s)
else
sequential statement(s)
endif;

Figure 3 — The generic syntax for an ‘IF’ statement in VHDL.

What is a ‘CASE’ statement? A case statement uses an established expression in it’s
open declaration and selects a branch from the series of sequential statements to be
executed depending on the value of this expression. A when others statement can be
used within a ‘CASE’ statement in the same fashion as ‘ELSE’ was used in an ‘IF’
statements. “WHEN OTHERS” allows all other conditions to be covered that were not
previously in the set of branches. This is important because a ‘CASE’ statement in
VHDL requires that all possible values that the expression can take on must be defined.
More than one value can be added to a single branch through use of the ‘|” operator. The
generic syntax of a ‘CASE’ statement can be viewed in Figure 4 below.

case case expression is
when branch value => sequential statement(s)
when branch value => sequential statement(s)
when branch value => sequential statement(s)
when others => sequential statement(s)

end case;

Figure 4 — The generic syntax of a ‘CASE’ statement in VHDL.

121

What is a ‘LOOP’ statement? A ‘LOOP’ statement is used to execute a series of
sequential statements repeatedly unless otherwise specified. There are three main types
of ‘LOOP’ statements: ‘FOR’, “‘WHILE’, and just a plain ‘LOOP’. The ‘FOR’ loop
executes the set of statements each time the identifier is within the range specified. The
‘WHILE’ loop executes continuously as long as the conditional statement remains true.
Lastly, the plain ‘LOOP’ statement executes repeatedly until a condition specified within
the loop causes it to cease (such as an exit or return command). Please note that the
MAX+PLUS II software does not allow ‘FOR’ loops. The generic syntax for each of
these three types of loops is displayed below in Figure 5.

for identifier in specified range loop
sequential statement(s)
end loop;

while conditional statement
sequential statement(s)
end loop;

loop

sequential statement(s)
exit when conditional statement
end loop;

Figure S — The generic syntax for ‘FOR’, ‘WHILE’ and ‘LOOP’ statements.

Coll Mo,

APPENDIX B

EXCEL SLOT MACHINE DESIGN CODING

Condbonsl Fomanng

AY-E3

Nows
Wargn Cobs, MEIOTI% [, WANNERT]
Font Coioe - Rind, Font Type - Arist
Font Size 44 Bacs grouna Cekor x Back

ZR8QBR

FRBEURQEEPROCEXOCOE

¥ Y = 4, Thee Backgrsnd Color » Red
F°GY » 7. Then Bach greund Color » Res
¥ MY 3 2. Then Backgreund Colr » Redt

FY =3, Then Backyraund Solor » White
F 'GY = 3 Thes Back ground Cokr & Waiks
KT 2 SORE Then Backpround Cokx « YWhile

FFY 2 $ OR 12, Thes Buck reund Color s Bl
F G =35, Thee Background Colt « filae
F 24X 5 4 Ther. Sackground Coir « Bioe

FEY 5 7 Thea Background Coe « ke
¥ G « 3 Then Backgeoond Calor = ¥its
FHT 2 B OR Y, Then Gack groons Caky s Whiia

FFY » $OR S OR 1) Than Background Sulor » Green
¥ GY» 20R 6, Then Bacsground Cokor » Green
¥ MT 2 16 Than Background Coior = Green

¥ ¥X 3 10 Then Backpround Color s Wik
G = 12, Ther Sackgrauna Cokr o Wiite
¥Y 2 120R 14 Then Background Cuior « White

F FX = 2OR S OR 11, Then Rackground Color » Orange
FGY w1 ORGSR 13, Than ackproung Caier « Crange
FHY =13 Than Background Colod = Orsnge

#FY s 1 Tren Background Colde » While
FGY 2 15 Then Background Cokor = Wre
W WY s 15 Teen Background Color » While

¥ EY « § OR 15, Than Bachground Colee » Pusgie
F Y = 4 OR 4 OR 11 OR 14, Then Backgrourd Colnr « Farpis
FHY® I ORB0RTOR 1T Then Rees jround Cotar 5 Purple

Butkground Color = Brown, Grsen
Backproand Coior = Beown. Geemey
Hackground Color » Brivwn. Qeeen
Bacxpround Coror = Back
Background Cokor » Blach
Bagkground Color = Brown, Wike
Color = Setrwr, Wity

£ Hiaden)
FIGTTE SO0 (G359, 100,1F{G141, 50K G131, 25 K01 701 13,5110 1401, 3. IF(G2061, 2001101 - (RODEN]

Backgroues Solor o Black
Backgroand Zuor 3 Back
Backround Cotor « Black
Rod Bonuk {Higden)
#0180 20 F G181 5,00 - (HOUEN)
Bacuground Color = Black
Bacxoround Calor & Elack

123

Noes
Background Covar & BRACK
By Gackground Color » Bisck, Font Color s Yehow, Paynuat:
<y CiseCls
o Background Color » Black
€7 Background Cobir » Black
Atd Backgrount Color = Blatx
B1s Backgrounsl Color = Back
(<1} Backpround Cokor « Black
o Background Color = Black
€13 Background Color » Back
AlS Backaround Color » Black
Big Gackground Color « Black
[l Backgrond Coor « Back
o1 Barkyround Cetor & Black
EB Background Cotwr « Black
A2 BAINNNG Coer w EHICK
L] Backyround Cobor » Black
o0 Background Calor » Black
o Background Cobor » Black
&2 Background Celer » Black
AR Backjround Color + Back
8|2 Rackground Coler » Biack
on Backroung Cotor = ack
2’4 Background Celor » Eack
>3] Background Ceior » Black
A2 Backayround -
Bu.on Matpe Cobx, Bacinourd Color = Biack, Font Solor « Red, Click on Handie to Soin Reels
Background Cokor = Sack
AR Sackpround Cuer = Plack
B Background Celor = Black
fer] Background Celor » Brack
on Backgraund Celor « Black
&n Backgrouny Cokor = Black
A24 Backgeound Colar » Black
B2% Background Color Biack
€24 Backorouns Cotor s Biack
D24 Rackproung Calor » Biack
& Backprount Toor » BNack
F3 IHTIRANDII 3104
F12 Aed Borws (AN 3)
FQ1 Boe Bonas (A8 3)
Fi4 Groon Bosus
F15 Orange Bouwss
Ew Red Bonos (¥st)
Fy7 Bue Bonus {13t 2)
F1s Rod Bwsss (st 1)
Fi$ Purple Bonus
F2e Whils Sonus
k] AINTIRANDI Y5501
G2 FARDIFIs4, Q08T W32}, 1,0)
Gn WANDIOR(F Su4, FIn121, 8305, HIug). 1.0}
G4 WANDIOR(FIG,FIug, FIut 3, OR{G 302, G3aGL HIS10L1.0)
Qs FANDIOR(FInQ,FIn, FI5111,0R{GI% GInD,GIn1 3 RI=13)1.0)
s SFANDHF 34, D30T, M3 >2),1.0]
o EANINOR(F I F3912),0085 WY1 1.0¢
613 IEAND(FInd, G 7).1.9)
619 # 3 FInes), G3e8 GIut4, G014), DR HIS HinT HIa11}1,1,0)
&0 . FIARDIORIF IS FIu] £3010 F301 41 ORIGI#3,G399,G391 2, GI#15),0RTHINI Hink 13wl HISEHINTLHINIL R N0
fer4] BUNG2:020;

) ONTIRANDI 15114

LOGIC CHIP SYMBOLS AND TRUTH TABLES

APPENDIX C

C.1 — The 74x85 4-Bit Magnitude Comparator

JE QU G

4NN T

o=

A2
81
Al
BO
AD

B3 . .
A3 . .
B .

A=B_IN
A=BTIN
A=BIN

A<B
A=B
A=B

el T

B3-BO A3-A0 A>B IN A=B IN A<B_IN A>B A=B A<B
EQUAL EQUAL 0 0 0 0 1 0
EQUAL EQUAL 0 0 1 0 0 1
EQUAL EQUAL 0 1 0 0 1 0
EQUAL EQUAL 1 0 0 1 0 0

124

125

C.2 — The 74x86 2-Input XOR Gate

L.\oox
-~ O 2 Ol
_ = OIN

126

C.3 — The 74x154 4-Line to 16-Line Decoder/Multiplexer

SRR Ui b)

e MM R N O PO M
B B e b T S S
. . L I e
@ 1o < m O O
ot oft P .

1
1
1

1
1

1
1
1

1

G1G2D C B A|Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

1

0 0000
0 00 01
0 0010

1
1
1
1
1
1

1
0 0100

0 001

0 0101
0 011
0 011

00O

0 01

1010

0

1

1
1

0
0

1

100

1

127

C.4 — The 74x163 Synchronous 4-Bit Counter

74163

QA RCO |QD* QC* QB* QA*

QB

QC

CLR L LOAD L ENP ENT| QD

- <88
cad§
© 033

[ala]
Pt 1 o

O~

C.5 — The 74x194 4-Bit Bidirectional Universal Shift Register

Ut

128

10

9120 qal 15

A

- Zsr.asl 1t

AT

- Hlg qclt3

C5le 0

Elp ap|12.

.15;:1__5_ -

o LeR |

C TS 74144
CLRL S1 S0 QA* QB* Qc* QD*
0 0 0 0 0
1 0 0 QA QB Qc QD
1 0 1 SR QA QB Qc
1 1 0 QB Qc Qb SL
1 1 1 A B c D

129

APPENDIX D

SSI/MSI DESIGN TIMING INFORMATION

D.1 — The Clock(s) Setup for the PSpice Simulation

DSTMI1 PariName; 5TIM1
Name
|TIMESTEP

.

Change Display

COMMAND1=0s 1
COMMAND2=300ns 0
COMMAND3=
COMMAND 4=
COMMANDS=
COMMANDS= ~]

Dedate

I Include System-defined Attributes Cancel

I™ Include Ngn-changeable Attributes K '

DSTM12 PariName: STIM1
Mame Value
|TIMESTEP =

COMMAND1=0s 0 Change Display l

COMMAND2=30us 1 B
COMMAND3=210us 0 eidte
COMMAND 4=280us 1

COMMANDS=

COMMANDG= ~]

™ include Non-changeable Attributes gK]
Cancel

™ include System-defined Attributes

ROWE Parthame: DigClock
Narne Value

DELAY = |100ns
DELAY =100
ONTIME = 5uS
OFFTIME = 5uS
STARTVAL=0
OPPVAL=1
I0_MODEL=I0_STM
I0_LEVEL=D

™ Include Non-changeable Attributes
™ include System-defined Attributes

Save Attr
Change Display

3

i bl

COUNT PartName: DigClock

ONTIME =10us
OFFTIME=10us
STARTVAL=0
OPPVAL=1
10_MODEL=I0_STM
10_LEVEL=0

™" Include Non-changeable Attibutes
™ Include Systemedefined Attributes

Save Atlr

g

i bk

e Display

Delete

| (=
ol

Cancel

130

** Note: For these displays, only the actual data that was changed in the dialogue
boxes is shown. All of the other variables that are not displayed were left to default

values.

Da;q/iépe run 19/24/102 16:24:04

CIR13

CIR14
CIELS
CiRle
BEGIN

SHIFTL) e

COUNTL 0 1+

L R R T i R T R R e NS R v e

o B Temperature: 7.0
{AY How.dat

231456 78 5ABIC DIEF 01+2:312:5/6-7i8 9:A" B

ao1dgd ur usisa [SIA/ISS W) JO sasAjeuy Surai] oy L - 7'd

100us 200us 100us $00us 530us 600us To0us

Date October 24,

2002 Page 1 Time: 16:28:20

I€1

132

e o
b
<

£
6:28:28

&1
W
i i

ratna
Time

xde -
4y 3%
" P
for]
o e}
1) £
fral
©4
A o
- W o
" o E
5 ° : : A e
b wed wd e
o ' -
o 4
5 o
W m
il P o
=4

" ot
5 A .o
— o

W
"
f o ¢
it =y ™
- o
. P (=3
* X3 ~

o o
i %
“ EAn
»s

lJate October 24

g PO o g e
PR RS G S TR VO Sl I PR I R SHEELE R < S R S
P .
FE SR« S+ U U AR SR SR S T b ol
Cot ot o e oy e
pei g b an ae pd eew eee wedosed X0 U0 TN O0 $e e DD riw«im
NP A L T AL LD L wed e e s ek e e 55 Lo U0
LN LS LS ke L LR D e T
PRS2
. il
o ¥ 5
H S
¥

Bepiect fnformation

APPENDIX E

THE DESIGN REPORT FILE

€3 hmpgaorE wrsd] s ske Forpt

NAXeplys £ Coxpiler Maport Flie

Varsion 3.3 ODb/l2r2cdl

Cowoiled: /D008 37:37:28

{apyeight (47 LHA=LH0L Altera Corpieatine
Any megafunchion design. eng rejsted net LIS {wncrypled or SRCPYEENS] .
suppars infocustion, idevice prograsniag or simaistion file, ard any cther
A5SOCIATRE gorumentation o lafersation provised by AlLera or 8 paAriner
urter Altera’s Pegeflunction Partoweship Prigrem wmey be used 0nly ta

progras PLd cdevicps Dt rot sasken FLD aevizes) fros Alters:

oy oTher

Sk G617 such mpgsfanrstion guesign- met 1ist. supgort infgesation device
prograaging o simubebion 11l€ oF ary Bbher rolated documeniétion or
irtareaticn iy prohinized far any ather DUPEOSe:, inciuding. byt net
timiged no wodifTicatiuny reverse eaglaweriag. deecomoilings Or ose Witk
anvy ather siliven devicas. wnliéss such uae 1y oxplivitly llcensed wder

B ASDArALE AQrcament @itk Alkwry gr 3 SEgafurchicn Fartrer

Titie to

ehe intedlectus! propertyve iacludisg pateni¥. copyrighis, treaduesarks.
Ledde yecrebs . Or Masienrids. wsbhodied fn 2y suck segefunction dgesign.

ngt 118t asuppsry inforsstion: Guvice prograsming or simadation rils. oe
wity Dthar related dodussmbatiur ar intoeestion peovided by Altera gr g
ROGATURCLitr partner. cemsing with Altérd. thwe megafunciion partaers or
thair rexpechive Llicansors. Mo ather [icenses. including any 1idenies
nuaded under army tmirg peckyts INS1lRCEURl praperby . are frevided haceln.

rreey Brafect COspilation was BLICEIStud

LUEE S

es JEVICE SUMNARY as

inips
Lot IeH#ice
L d EPMTLELSLIAN-7?

Lxmr Pinx:

Inpat Jutput gigir Lrardeiable
Ping Finx Fink Lix Expsmdurs
5 &7] 4 I
5 a7 1]

X Utilized
3%

133

Project Inforsation

w3 AUTE GL3BAL SILKALS s

INFE: Tigral (LK cheser for auto ¢labal {ladi
NF2t Nsgral TCLEET chasen tar auta glabal {lack

CcOmaxdscroywhd i Nlukp3arpt

134

Prgiuct Infarsation cismanduprk\wadl i luked. ret

xx FILE HIERAR{HY 3

ilps_aod sud:)

Fipa_aod s Teil stddcory Satdier|
i1ps_add_sun!dndlsddcore tadder laddcore sandert)
t1pa_ade_sud:ThIiaishiftzrasult_nat_latwicy 114l
Plpm_ace sutihJialsshifticarry sxt Jatency Y1zl
tips a3 _subivedlaioshifcof bow_ext_latency 1z
1pa_ada_sun: IFA51

i1p=_add ! 1394 sddcarecadsert

t1ps_ade_sud: 33951 adacare s ader b altcare sadider
1lps_atd_msa: 105 raltani Tt irenull wxt Lstency frst
t1ipa_add sup ISt slesnifticarry_aat latency Trs)
Plpm_ade_suti 15 aleaniftiof Jow nxt latangy ((x]
ilpa agd xudyt SRs111

11pa_add s 38271 adacores aader |

S1pi_ Ay sk SAP Y adde pred adder L adde are s adder
1lpm add sun! 5827 balsshiftiresult_eut letency fst
ilpa_ade %o 3837 ralzsnitticarry_axt_ latency TV%|
F1pe_ade sus b Tralzeni ot Jow mxt latency $fxl

135

Pevice-ipecific Ivfarmation:

Juked

erver Logic for dewice 'Iuked’ Compiled withoubt srrgey.

Favice: EFUTLRASLCEUST

tevico Sptioms:
Turtn 8it
Security Hit

User Code
Multivelt 129

114

vi{la
701
RESTRY[3
RESERVED
PEECRWLY
L1%43 44 %]
[~ &)
RERERLD
RESLRYED
KESCRYDD
*TA3
REALRW D
KETTRVED
Vel To
REIZRVED
BESLRYLD
RETIRYVED
FESERvED
REIERVED
LNb

Ci e duwnrk iwhdl s kuke3. epL

= 4
~ 4FF
Enatde JTAL Support =
s IfFY
= Pre
o LI I [A ¥ L A
£ E £ £ F v 9 @ P8 &
I3 T 5 5 (I N 8 LoLoL
£ £ £ £ £ E 4 9 ¢ gy u
T L% L I T G 4 nan {anmnm
oL v Lo ¥ R T L L6 NN NN K
£ £ C £ % 0 £ © ¥ r % ¥ 1 N8 3 3 3 1 3 3 3
T3 p DR D BT 2 B D KD N B0 B o2 oF
BB MO8 Y & 5 M 3 203 &% A3 AN AL A MH IR Ry
12 T
33 £y
Yy]
) 4
ik 73
by LA
] LA
A b
£l ki
33 bE
g EPN7LDASLCAY-7 b
23 L3
b be!
2& ki
b bl
E7 &9
e 1]
2% 57
au 613
EH) 8%
ER %4
33 3% 33 3L 37 3B 3% Nk N3 42 43w NS ubh w7 w8 w4 5D 53 52 853
¥ e B 2R Y RRERECENVRERCR O L o8 W
£EF E L b ¢ F E L K CEE S KO O D2 0 L
5 3 5 2 53 C 5 X S 0P C S S L oboL1oL1o%C
EEEEE T F €} I £ E 1 U 4 4 £ 1
rx ® KK O FR KR K F R N LI I B B -
ooV oy v oy v T ¢ ¥ N N N R N ¥
t L L § & £ EE EE 1 E S T S T
L b Y E by P P87 5 & 5 % b

K-L. & My {unrmclk. Thix pin has ne internal connection to the device.
VIDIRT = Jedicated pawer plnk, whilch MIST he conmecied o W
YOLTE » Desicalod poswr pin, which MIET e connpcted to VOO 5.0 woltsd.
KD « Dedicated ground pin or snused degiceled ieput. which BUST B conmected tb GND-

RESERVER = Unused 170 pin. which BUST be luft wnconnecied.

&

» Fedicated configurealicon pins
+ = Rexweved conliguration pin. which 1% tri-stated Suriag uswr sode.
« Neserved conTiguwratios pias which drivex sul in wisr sode.

Chill wglhsd.

CELUNNAY
COLUNNI
GNb

STLD
LoLank23
CaLunmd)
CaLunnN2n
L0 LI8K2N
VOIID
CALLNNZS
LoLunKEs
COL etk
L
LOLLMKES
LOLUnKLE
LR3
LOLUANER
{OLLARES
LoLuaNg?
LOLLANLE
LOLLMING 3

136

137

Bfa = Power Toun fir.

3 ¢ Lppial-purpese pif.

€ v JTS Buungary-Sren Tesiing/In-Systes Pragrassing or fonfigeraticn Pla. Tne 4745 foputs
Y and T3 should be Eied t8 W0 snd TUE shoudd B tied Lo <ND whes nat in wse.

o= 4TS 5l pead for 178 hen used s pser 140. JTAS piny musd 50 2opr SRadle bBefors and
during configueatbon. YL 2in stabilitcy provents sccidontael loading of JTAE irgteuctions.

Faviea-Spacific Infarmationd

Luked

e RESOURCE 9ZagE sx

Legle drpay Elice

&% Ly -
Bz LT -
(x LLED -
Fz Ly -
E: 1 (b5 =
bz 108t -

UL
w32
LL4A
LlLy
5,080
O

G L{T? - L{132
Bt LE3RE ~ L0184

Lasggle

TN
EXET8
|2 %4
20 L d
.21 14
275k
1% 11
F T 1Y

{ells

%3
[EX8]
By
63
g
kA
ha%)
TELL

Total degicated input ping wsed:

Tieral 178 pisk wied:

Total iogic cslls poed:
Total shaseable expasters wsne:
Tetak Turds fogic reily wxedi

Total sharsable sxpanders rob svaiiabls fadad:

Awprage fan-ins

Total fan<ini

Tetal nput piny reguired:

Total Yast imput logic celis regelreg:

Taral sutpot ping rFeguired:

Tital Sigkreckional piex requicsd:

Tetal reserved pins fequived
Tetal loagiz <ellx reguireg
Tatal Plipflops raguired:
Tetal sredocl Eeras mpgueired?
Tetal logic cplls lending porailel mipandgrs:

Total shaswable wspanders Lo dutabase:

Zwnthesized logle cails:

14D Piny

34
{4
1
18]
R 7
&
%
T4

BC 37t
8E MR
B 3222
A0 D%
BL b2
5UL00%3
LRSS S
BULDORY

COEaRSG0rR \whd] N Puknd. opt

Lhareabie
Lzpangers

02354
97 b
2/ et
AL VR
37361
Lot o
& el
31k

259
ELT R
/328

afget]
17528

oy
o%3
e
=283
g%}
[eE8
B3
Rl

37 338

Exturanl
Irtgroonnaet

Bkt 8%
0436t 0%
D731 9%
TR LY G 4]
b3bT 363D
AR BT
T 2551
[ix REFLEY

504
$4%3
L
HEE]
Az
i

HES)

138

bputzp<tprcitic Informakisnt

Luked

2 THBETE xa

P

&% - -

2 - -

A thy (4)

iz tET IS Y

3 [ES I ¥
{nde?

L LAH Primiiive

I%PUT
THFT
TReut
INPUT
ThpdT

“ Slow abewsrate ontpict
2T nats push-Tack

Lol

i)

fypthesived pin e legic celd
* Turtn fpqic cgll

= Syechronows T1ipTloep
Ed

A o8 Firtar-inserted Logle cell
5 % Sleval Zowrre. Faneout dextioatiors ecunted keve di ral baclude dastisatiang
Ehat prp R iven wsing 9iobal routing remserces. Rplfer o the luis Glohal Signalxs
Cleck Sigrals. Clesr Tigoals. Syachepsous Load Stgoals. and Typchworous 21edr Slgnals
sections of this ¥eport File for information on which signaly® fan<gubs are uked A%
Clecks [ledrs Praset. Gutpul Emable. 2ol syachraraus Loss signels.

Sharaatle
Eaparagr s
Taral Shared

*
b

£330 £5 0k

Lvi J [v o on

v Daurd ekd I Tuke . ppt

[ec e o ol it e J

Fari~In
nra IRP FEE

Tob RN I ET2 WS

Fan-2u%

SUT FEK Hase

gy

RSV RLVER v o e

Ko woa

%

% 4
Led
fLEd
%
ITART

139

bawice-Spasific
Tuke)

#2 HUTHYTS 1

Ll

TN TN WL NDONXD YR NN B g e B 0y 0 VY S 0y R g TRy U iy SRy

Infreraations

Primitive
ATRIT
et
2UTRAT
2iTRuT
TPt
RUTRET
TPy
JUTRYT
SUTPT
agtegy
FUTPET
SUTPIY
SETRET
PUTPET
Ut
HITRET
SUTPET
PR
DUTPET
BPY
PTPET
GTPNT
alrhyT
GETPLEY
DRI
PUTRIT
BTy

£ode

L i o A B G o B B L o o s S e B s B)

« Lyntharised pir or Spgic opld
*» Tarbo logic call

Fyackeandas flipfles
= Siow slaw-rate suiput
RET gate sush-back

Fin R4
(2] 3
EE] LE]
34 #%
37 a8
3 77
£l 5
L3 73
Ul e
43 3
L8 503
b4 Wy
b3 kF
T8 PRl]
47 L]
X 11
54 Ht
1 Al
Wl Hy
¥4 25
77 %33
h 124]
73 113
kL] s?
B3 s 13
A3 1%
3 k23
k] 135

Codnt
%

k2

Py

:

!“5

Fitter-inserted logic cell

Sharsabls
Expangers
Total Ihared

Ron o Joon o B i o |

[+

£ hmas ik ehd P kel rpt

1453

WROEDRUDEmMSERTRES ORISR

Fare-In

Ike

T P T g

o

B

M MO TR NN T TR TRE i T 9% T TRE Pl U P T T

[3:14

- o

E gl g g 4

R EE A R o

g A e B g A

Far-%u

T

porf o i s I e o o R v I v S o 3 e v e o R oee OO e 0

=2

R e e = O S =)

Z

FliK Maop

Eol i s Rl e R e e e i o R T R Rl o e o o B e R o B w on e 3w Wi

PLURNLD
{oilemsld
oL umNL2
o0 URNLT
Lo unns
{8 URKSS
[R11 1370
5% UmRLY
(3LURKNLE
(AL URRE
CURKES
oL UNRSE
(RIS E
CRLUNKS S
COLAMRES
[IRILLEEN
(RLUNKET?
CoLunHEs
471811k]
COL UK
COLUNRES
LOLUAKES
DL AR
COLUNKES
COLURN
COLLIREY
LA UNKEL

140

Pavice-Iprcific Irnfprmatian:

Tuked

&3 BURIED LBGIL »x

8

Bin L4 e Priaitive o

{933 55 i TEFL LI 4
- L E e o+ 3

[213] W? P FE 0+ 1
- -3 F ¥R o« %
1 G WE o+ 1
- L 1 I WFE ¢ 2
- 143 A TITE E
= 48] i WFE + ¢
- 133 k TERE t
= b2 E IFFE t
- iib [Haz" £
- xR BHEE 2

ades

» Synthesized pln or Ingic snll
 Turby legic el

= tunchrenong flipfiap

= lew slee-rate ouipaet

o 0T fate push-hack

= Fittee-insertad logis feil

de

Irareshle
£ xparsine s
Total Sharsg
3 3]
3 i
bl g
a]
4 @
) 2
] b
]]
] H]
it H]
i il
1]

v vagetanird buled 1 W iuke3. et

Fan~Tn

nia IKP

(o= R o o R R I U]

[PTRVEENE IR EY VR STK TR TELUTY VR, ¥

FaK

B R G G P U IR e TR

Far~fut
FBX Baae

At

X e LB b s L

IR PR e B LS TR W B Wik chi e

FANBED
RARTED
BANTED
FAMIED
RAKESD
FANDED
TAKBEY
FANEEN
¥R ¥]
PARENR
RAKDIL
£ARDI0

£=33}
[riang
(:35)
P33k
[£3 13
(2383
[ES LK
[R3.118)
[#1'7%]
£ikds
[ELES]
fikly

141

Bavice-Saecific Inferyatlian:

1ukpd

w3 BRI TEpy TRYERISHBELTIGNG xx

Lasgic Aneay Alogck 'E7:

e L
£LhE =
bbb -2
5EhT »a
Bin
[B
iy -3
i -
S
Lo8y -»
x Tee
% T

legic cell o pin

i3 ar input to the Jogle rell lee LAB) theough thg Fid.

+ LEFY {2 yNs5E

i+ - LL75 C2LUMKES

I 1 dmsrwarasnes LEFY {80 1HPNGL

12 + LC8% Co0lifnk?

[bogmmmmeoe JOFR OM UMNGE

Pt e b oeemess QLR RINDLE

Pog bbby wsees {0 RENDLE

Va b s 1§ 1 == L&Y FiNDLS

i bs d g}t

[I T I A Shhur LABs Tad by

I T I O O that Foed LA)

Prd s 4181 ABCRET GH I

I I B R Tl B

P NN E N I N

€ 2 3 &% & X2} - 0 e a3 e -}

Forom o o - = f e mm e -

- e B W N B H

EFX TR T ETF S oL os ow &R EEE

€% & & &3 XX F - - - AR I B B

[I T R I B
x login cpil or pdn

[F RO S AL TR S 3 S 14

Legie ze)ls placed o LAB ‘LY

siginals

S
S

£

&
F
.
Ko
L

Logis coliz thet feed LBE BT
RARELI
FAKPLD
L7103 91

CLE
TLE?
£%
STAEY
REMBLE

t% not oae fapsl Do the jonglc wRil inr LaRD.

142

R

Sevice-tpecific Infersation:

lukad

2 LORET CELL INTER{GHRE{TIINE ax

Legic krewp Block 1571

L
LEAY =

Fis

3 I

g -
i -¥
B~
LGS =
LLhly =¥
LIL? -
L0
LEAE =
LLLE3->
[RaTSg

& = Thu
w @ The

3 COIUNNLD
CHLURRL]
3L {iiRLE
COL DR
COLUNNEL
CoLunmE?
p LAl UnRE S
RANDLE

) Other LMy Fed Sy
b thak Fgoed LAD UF7
P P ABLREF LB
*

F w » % % ¥ B & w |

¥
e
¥

FEE R B I
IR
[S S R A
oW oW M E N W
(B N O I A
[T T T T I A

i
(I}
i

143

¢ vaaxibhnrk bwhd Iy Takn orpd

it LAR *FY

signalx

Legic vells ohat faws LAR 7Pz
oo RENBLE

%aw (LA
Lom 1A
s o

<o STAET
Se BEN3LE
t-- RENFIZ
e FANIEE
f=e HINED
- BANYED
e RANEEL
v RANFEN

togic cull or oim i3 @ drpud tu the logic <wll for LABL through the Bis.
tagie cald de pin 18 A0 30 irput §o the lagic zell tor LA31.

144

bavkow-Sperific {nforastions ¢ npasPwernd I i uked . rpL
Iuked

3 L0GI0 CELL INTERCIMNELTIONE #3

Legic krray Biock ‘gt

Logic ulis placed in LAR *6°
e L ERO% (OLLANED
P oRumERS mRmw e e ———— LOEDT {OLuNHEL
H] LE9% {oligmNgs
04 LEIOR (SLuURKZS
$ 1] b dessermemmne—s | LE04 (OLUARSY
11k} descssenewns LAY {OLLIANES
f 0 b3 e O (HLRKES
FU LB 4) sesswsws LUIE0 RANDRE
[T S O A A LI%A SAKRSD
Fyob bbb = LUIES REARIG
P30 b0 oes LOIGED RANDED
[T I T T T O IO
FEL U E by b1 Diker LABE T by xigoals
Py b1 b L3 1 ERAE Tead LAR G0
Lg Fa b E b2 b i F L ERBLDEF R H Legit calls that feed 1AR G
LGB % 2 B 2 8 B & B & 5 & Fomomomow - ¥R - § Lo. HANDFR
LLHH % & B K & = ¥ - B B - 7 7 - % & & w3 K ~ § f-e HANDPER
LEHIF~ % & 0 & B 4 = % &€ B & § = = = = = ® % = } #-- BRYIES
LEMIZ=% ¥ 3 X 2 X 4 -k ® K ¥ F oeox o2 =3 8 = § Lo KRN
Fin
AT =F v m e = m e - Lo m oo om o= = = = | £-= LE
z B e e B om oW o om e om o om | e o= e e & ® x | oawe LLKE
L A R R R TR I I A I ST
13 BN EEEEEEREER" b owomowos ok &%) £ XTAXT
I B £ 5 S TR I B ¥ ¢ | oa-e RANFI3
ELL5RET © v = v o o W= msa | onw ooy s = E | Lee BAKETL
APIZH~D = » = o « c B mom = m] == o= & s & kb ow-- BAREID

= The logic cebl or pha bs an Ipput to the Ingie exll dor LB thepugh the PIA.
« % Tha bogle cell cr pin iz rét &0 is0ut o the logic)l far LAE).

Device-Ipecific {nforaations

HIETE]

L0010 CELL INTERCIMNELTIONS +0

Lagls Srray Niock N0

ol ik LI S~]

wer L 430
4
w

B e e T T

eivaatesrkiebdivlvkel ept

Logic il plaiwd in LAB "W

LE3E DoLumes)
L5323 LoLuss
LOARE {0LufNs2
LE31A LoLimizs
L0337 COLLAN3y
L0400 Lol
LSRN CHLLANT?
10335 ToLAas
L0550 ¥1N333
ELE2D RAN3EZ
CLE3h RIN3EL
LLlsk 2iN23D

Giker Ldls fod by sigmals

Lhal feed LAR W
P ABLEEF G

L el # z}
P wm e L3R
[e I
IR i

{
O LA R
b m= ==z xR}

-
G
£em

o

fogic opllz that Teed LAB rd
ZARETZ
L2342 1
RARENL
RAREM

we LUK

L2
(LE3
(1]
STAZT

I 3 ieput B0 the logic cell loe LAB) theough ik PIE.

F oo o s i 58 e i
i¥

Py]oe

f U044

1t ! 1 l o oy 2 o g0 M Y
F I O O T O QO RO
11118 demmmemmn
0 I T T OO N TN O PRI
FU T L ET] 4mmmmn
L2 N I A B B I O B
EIE I T I B A O I O N 28
E20R T T O T O I O
FEE LA F e
[T I I O O I O O O
3T NN I A O
TEEEEE AR .-
¥ $ €F TR E2 LN~ @
I EEREERERE NN
L2202 BN 2F 25 2 3% 2N B A% 3
OROR R W W W e W % W
------- L3R 3 B
I N E RN
x* t 2R 2 2 3 3 O A S
Iagle call o0 pin

tagic a3l ar pin

ix ot o Input %6 ERe Teedc copll lor 1400,

145

bavice-3pecific Information? £ e funrk el Vv e orpt
fuked

3 DJIATIONG w»x

CLE t IHEYTY
L s INPATS
ey 5 {RPUTS
(2] z INRUTH
ITERT § ITNPHTs

== Rode same s TCSLURNAGS
-- Fauation aake iz 'COLEPNMD - joratioe 1s LODM3. type 1% output:
CAlLuneLa ~ Lofuit _Fodll & 5M33
LEGNBE 5 L0 & BARPLD 3 RaMEA) & RENILE 3 RANBLE g TTaNY
@ H3 L RANDID & THLKEME 3 TRARELD & MEMDLED & STARTy

~= MNodg rase by FOOLIZINRLY
= Eguzation raze ix “COLUNNAL' locatioe ix L{OB3 type 3% sulpul.
SOLURHLY « LLELRA _SdCHE & QMR

_Fendg = 40 % (RANDEO & RANDR: B RAWDLZ & MaBBAd 3 STARTS

~= Kpde mawe 1% C.UPNREC
- Eyuation name jx POBLLENLET - Jocebive §35 LOBES« Sype Is oulput.
COLufNEE = LEELLC 400 % LHEIS
EANES 46 ¢ RANPID & RANERL 3 RANDIZ £ RAMBLD @ STERY
* 40 L RARDIG v IRAREM) & EANBIE & 'BANJARY & STaRT
0B ok ARANDIG B RARELL & TRARDLD 2 'RANILA & STIRTS

== Mmde pamd 15 TCOLUMRLRY
-~ Fpasiion reke 1% PCOLUMRYI". Dscatios is LODA&S Lyvpe i3 output.
{OLIAMIZ » LTELLT _FUBON & GNBIS

Jfeuns « 40 3 RANYID 3 RANIA1 3 RADLE & IRMRDLZ % ETANYS

-~ Wade Haee 15 CCPLUBMAYE
~~ Enuation naese b5 VLOLIONEE . locarison Le LOU?T. Lupa 1% output.
CELURNAM = LLZLLE _EQ0RS & SREIS
EOBGS « 68 B FARDAE ® CEAEDLL & WANBLY 2 RANDLEI & ETANY
¥ 6% B JRANDLG B WANPLL & FARDLZ & PRAMNLY & START
¥ 50 og 'EANDLD E JFANDLLS b CRABDIE & RANPRD & BWARTS

-~ Hode nase in *COLUNKLS'
e {Eaation naee is "CSLUPALEY: focatios iy LCE?S bype iy sulgwt.
COLUNES = LEELLT _EdODk & SN3YS

E9n0h » B0 R GRAREID % RANIG) & 1AAMDLE & RANDLE & STARTH

-~ Znde name 1% PLOLLINIE?
v SHuation naag s COOLUMNEL'» locetion ix LIDP3: typm is pubput.
LEURNL o« LIELLE _EQUBY? * ORBIS
HEAT = 68 B JRARDLE x YRANDIL B BANPLE 4 RENDLD x BTART
tOGh & BANDLE & IRANDLE & UEANPLY & IRAKELI 3 STAKIS

== Weddu #oRe 1% *LLURNLT?
wx Pouation sase 13 'TRLUMNLTE. locationm ix 80K, Lyoe iF output.
COLUMNE? = wBei L _FeDDa & ZAM:

ESODA - £0 % RAREID X RAMZZD & RAMILD 2 IRANDIZ B STARTS

-- Npde namsp i3 COOLLGHLAY
s« {quaticn naae ix rLOLUNKLA' « lecation §s L{DV3« type iw cukput.
CR AN = LEELCY _E2087 # GRBIS

JEATEM ¢+ 4h % 'RANYLO K YRANDLE & RANDLY 3 IMAMELY 2 STARTS

-- Hode newe iz FOMANRSD!
== Ezudtion name i% 'CHLUPNZG®, Iocstios ix LOBOS. bype i% output.

COLUNNI « LCEXLT _E4OME & SN¥):

EZU10 » 50 3 RAMERD & WAN3ISL £ RANDED & BANDDY & START
*LH o EANERD & TANBZL 3 RANDED 1 RANDEZ ® ETaRT
4L o dRANER 1 CRARDIL ¢ TANESD ® 'RANDZI g ETaMT
3 G4 B TRARDAL B MEANDEL & CEANDEP 4 HMNRZZ % ETAETY

146

147

we Rode gakd 1% TCOLUPATLY
=- Equation ase 4 'CRLEPHRLT - Locatiss i3 LOBDTy byps iy sulpel-
COLUMRZY « LCELLT _Fddil ¢ LfH2n:

LEPERS ¢ B0 A RANEED & RANDPL 1 RAKIZZ 3 WANBEE & ETARTY

- Hgde nemw b4 PIGLLTWES?
-~ fgustion raae s FOOLURKZR'. Iscavion B3 LODY%. fype iw oubpel.
CHMUMNEE = LOELLY _FOuE2 * d3DY)
_Eamig o+ 6P om RANDED & YHANDRL ¥ WARIED k& FENEE) 3 STARY
OGO OE THANIZO % PANDEER & (RANBEZ % RANDIEI & LTART
€ 40 2 RANIZD ¢ (RMNBEL & IRANDIS ¢ MHARERY 3 FTMT

«= Rade name is 'CULURNDYS
-~ Cuation vese b5 'CLLEANEY < lacatiosn i3 L3019 btype is gutput.
CRLGARES = 1ALt Del3 4 ZNRIS

LEa053 s GO & IZARLZD B OGRANEEL & MARESS & RRMNBRZ & STHATR

== Mpde namE Ly CLDLUMEEEY
-~ fquation reas is TCOLURNPN . Decation iz LOMN. fype i% cotput.
CHLINRY « LONLLY TH0LE & GNRES

LN = £h g IRANSSN 3 RANDEL § YRANDOE b ATARTL

-~ Rodd napg 13 T(SLURNISY
-- Fguation same i 'COLISMNRRY . fucationm 1w LOS4. Lype 13 output-
COLANKZS =« LCELLe ESOLE & GNB)S

EORLS & 6% b RAKRZR & BAKERL 3 DNRMNERS & (RMNDER & ETaET:

wx Hubd name 15 TORLUONGSY
~= Ppaatizn eafe 15 "COLOMADRY . lecation s RLO%. type 35 mutpub.
LHLUMNEL = LUELLY _TdBLL & QNBA

CESUh e £ % PANIIG & (RANDER & RARDYY 1 IRANER3 & STRTS

= Kedu nase ix *LMAURNEYY
-~ {quatian s 13 'CILEANGTE . boration i (008h< Lypx 1 output.
COLUANET » (CFELC _EO1F ¢ GREDS

FEELT 2 B9 & EARB2O 8 CRANEZE 3 PRANDER @ RANDEX & RTMATY

~- Wote nase b PLOLTHERY
wo oesbies nase 55 TCOLURKEAT . lncation e LED99. type i5 oubput.
IHLLMNSE » L{ELLY _TOA03E & GNBIS

LEBUME = L0 & RANDM B RANDEL R RARDPAZ T RAME2Y 3 NUARTS

== Bodu spwe s fOSLUNAIDT
s Cguation nase 15 "CMATMAGY .« Iscatine i3 LUIS5 type i sutdut.
COLUNKED » (CERLT _EQDI™ ¥ SNBSS
_F#0LT o+ 40 & RAKEIN & RANPIL 2 'RENIER & RaMBI3 & XTARY
§ 05 & RANBIN 4 rRAKDRIL & PRANAAP 2 TRANDII & 3TART
53 & FARDID & RANEAE 3 GRANRII & STARTS

~= Moge nome i CLOLLINNEY
= Cawaticn nome 3 ‘COLUBKIL'« Iocasiop is LTI Sepe §% suiput.
CHLURMIE ¢ LOELLY _TEnedn & 4NDIY

CEgORn s &0 3 fRRADEI & MANNRL m ORANDIS & KARBIT 1 ITERTY

~~ Kpde name 13 TCMUMNIEY
~~ Equatiom name is 'COLUDNZE?- fogatiss 15 LORS0y byge i3 sutput.
(oLuNRaE » LOTALE KOl & (DY

FOEL s+ G0 % RANDID & (HANEED & RNIRZ 8 RONED3 5 STARTS

w3 Mpde wame Ls TLOLLANER
-= Pguabisn Rase 53 TCRALUMNIEY. lsration §x LULRA. Type i3 oubput
{UPMIT = LEOELLE _FdlE2 & GRDIY

JEBGEE xSt 3 RENIMD B RANDIG £ MANDY k RANIII & STARTS

= Wedi maee iz FUSLUPNIYY
wa Pouation nane 15 'COLURNIN® «Jecstion is LCBA7. type 13 outgut.
COLUNNTE » LTERLY _EQOPI 4 4R3I

ERUE3 » 60 x MEANEID & SANBEL 3 'HANFIR & RENDEZ £ ITARTS

-~ Node name is 'COLUMN3S’
-- Equation name is 'COLUMN35'. location is LC3D1. type is output.
COLUMNAS = LCELLC _EQO2Y $ GND)>

_Eq024 = 6O & 'RAND30 = 'RAND3L & RAND33 2 STARTH

-~ Node name is '"COLUMN3IL'
-- Equation name is 'COLUMN3bL’. location is LClPb. type is output.
COLUMN3L = LCELLC _EQD25 % GND)S

_E@D25 = GO0 % !'RAND3IO & !RAND3L & RAND3Z2 & !RAND33 & START:

~-- Node name is 'COLUMN37?

-~ £quation name is 'COLUMN3?’, location is L(328. type is output-
COLUMN3? = LCELLC _EQD2b % GND)S
_EQD2L = GO % RAND3D & RAND3L & !'RAND32 & !RAND33 8 ITART

GO & 'RAND3D & RAND3L & RAND3Z & !RAND3I3 & START

G0 &8 RAND3D g !'RAND3L & 'RAND32 8 RAND33 & STARTS

~- Node name is 'COLUNMN3S’
-- Equation name is "COLUMN3A', location is LC1L5. type is output.
COLUMN33 = LCELL(_EQO2? $ GND)S

_EQD2? = GO & 'RAND3D 8 RAND31 2 !RAND32 & !RAND33 8 STARTS

~- Node name is ':3L' = 'RAND1O’
~- Equation name is 'RAND1O’'. location is L{08l. type is buried.
RAND1D = DFFE(_EQD28 % G6ND. GLOBALC CLK)» VG, VOG- VOS5
_EQO28 = GO & RANDLD & RANDJID 8 RAND1Z & RAND13 & !START
GO &% !RANDLO 8 !START
!'60 8 RAND1D & !START
RAND1OD & STARTS

-~ Node name is ’:35' = 'RAND1L'

-~ Equation name is 'RAND1L'. location is LCDL?. type is buried.

RANDLL = TFFEC _EQD29-» GLOBAL((LK)» VCC» VCC, VOIS
_EQD23 = 60 8 RANDLO & !STARTS

~-- Node name is ':34' = 'RAND1Z'

-~ Equation name is 'RANDL2'. location is LCObk. type is buried.

RANDLZ2 = TFFE(_EQD3D~» GLOBAL(CLK)» VCC. WG, VOS5
_E@O30 = GO & RANDLO & RANDLL & !STARTS

-- Node name is ':33' = 'RAND13’

-- Equation name is 'RAND13'. location is LCDLS5. type is buried.

RANDL3 = TFFE(_EQBIL~ GLOBALC CLK)» VCC, VCC, VCQ)3
_E@D31 = 60 & RANDLO &8 RANDLL & RAND1IZ 2 !START:

~- Node name is ':u40' = 'RAND2D'

-- Equation name is 'RAND20’- location is L{L02. type is buried.
RAND20 = DFFE(_E@D32 % GND+ GLOBALC CLK2). VCC. VCO(, VOO
_EQD32 = 60 & RAND2D & RAND2) & RAND22 & RAND23 & !START
G0 & 'RAND2D & !START
4 !'6G0 & RAND2D & !START

RAND2O 2 STARTS

as

-- Node name is ':39' = 'RAND2}’

-- Equation name is 'RAND2}’. location is LC103. type is buried.

RAND2) = TFFEC(_ERB33+ GLOBAL(C(LK2)+ VCCr VCC, VOO
_EQ033 = 60 2 RAND2OD & !STARTS

-- Node name is ':38' = 'RAND22'

-- Equation name is 'RAND22'» location is LCD98, type is buried.
RAND22 = TFFE(_EQD3Y. GLOBALC CLK2)+ VCC» VCC. VOO
_E@D3y = GO0 & RAND2D & RAND2L & !STARTS

-~ Node name is ':37' = 'RAND23’

-- Equation name is 'RAND23'. location is LCl00. type is buried.
RAND23 = TFFE(_EQD35+» GLOBAL{ CLK2)s VCCy VCC, VCOrs
_EQ035 = 60 & RAND2O & RANDZ) & RANDZ2 & !STARTS

-~ Node name is ':uy' = 'RAND30*
-- Equation name is 'RAND3D', location is L(114. type is buried.

148

149

RaMBIR
LE803

FFFEC _EQD3L 8 ZMBy (LK. W0 ¥4, WO

0 % PONES ¥ EAMDIL E RANDIZ 1 TAKEID 3 13TART
Gd 8 'RANDIC ¥ 1ETART

e 3 EAN)I g IETART

FINF3D 1 ETART:

- om o A e

- Wade mame 15 Ti43 o~ RANRELY
«= Fauationr naee 1s TRENIZLG locatlon by LU3lks dype iy beried.
FaK3P33 = TFREY _EQUEP. {LE3. WD, ¥{0e WLOHE

JEeD3T ¢ 4R % RANIID 1 1ETART:

- Wodd sasp i3 ' ERRY - HARBRYY
e Laustion seme Is TRARBIET. loretior is LILAZ. type is buried-
BAKRIZ ¢ TPREY MOUN. CLED. WL, WOOs WIS

LE2038 = 50 & RAKFID 4 MAREIL 3 UETARE:

- Node nass Lz TiHELY = TRANBOEY
@ Lnustics pase 3% *RAKEIZY . locatiom Js LULEDs type is buried.
YAREIT = TREEL L. QUK3. WL WO WO

JEREET ¢ 62 % BANPIL & RANBIL b HANEIDZ 1 PITARTS

we iharpasle expanters that are duplicated in meltigie Liiss
s irong)

Froject Inforwatios
v CSARTE ATEON SETTINGE § TIMEY e

Procexwing fedu (oamands

Jesign Pochar
Logic Synibhesis:
Syoebasls Tyepe Uxed

Pefauit Iyniheaiz Siyle

[ART FRECHTLSUT S VREEY: TF PR

® gff

4 feamdard

* MORMLL

Logic nptise settings in *NORMALY style for *HAYTICOS' family

IELOAPIEE_CATES

MIFLLCATT LORTE_EATRALTION
ATRIATIATIN

ALTL_LEVIL FALTSRIRG
HOT_GATE PUSK BAE
PARALLEL_FAPAYDERS

PERUCE L350
BEFALTORITATION
PERTLIER_SPTINTZATION
RESYNTHESIIL WO TWORE

s10M SLEW _BATE

TOPY _BUFFLE_INSERTION
TUBFACTYR EATRALTION
Tufdao 817

ERR_SYNTHESTS
TGNORE_SOFT_BUFFLRS
U5E_LPN Fo¥_asbL_SPERRIDRS

Sther logic syslhazis setlingss

butibmetic Ginbal (lagk
iutomatis Gliekal Clesr
dutosdtic Glotial Peaset
dutoratic Slobsl Dutsut Esnable
dutomatic Fast 142

dutowatic ¥egisier Facking
Aubamatic Open-Rrainm Pims
dutamatic Te@lesent in IaB
Grsw-tear Teats Pachioe Doceding
dptinize

Jefauit Tiaing Specificetisns: Nore

Ouk ALE Bidir Teedhack Tikiag Pashs
b &31 {lear E Preset Tining Paths

Sgnaca Tielrg Asnsigneents
Funcbinpnal SNF {xtractar

Limked $NF Lxteactar
Timiig SNT Extrachor
gptinize Timlng NP
Gepurate BHAL THE Fila
Fittes Satrings

Saart Secowpile

Total Rpcospile

Inbertaces Saa Cossarvds

EIEF Retliss Sriter

ary
28
full
=t
&h
aif
il
urs
nn
312
wkf
&5
3241
fant
fahi
afl
ot

PR TG I B T T T I SO I]

]
[r:4q]
=]
B34}
aft
off
it
oft
iy

O A k¥ O OR8N oW

& #if

£l

aff

atf

4]
wff
ot
NORMAL
aff
aff

I B I)

150

Feeilag Netlist @eiter
SHAL Netiist Writer

Lioepilation Tises

P T T T T TP L P

Lagptlne Matlist Estractor
Fatabmse Huilder

Logtc Tynthesizer
Partikismar

Fister

Timing NP Extractor
ixsrabler

Total Tiaw

fAwmary &llocaied

Peat mprory allocated durirg compliation

= gff
aff

gy
P0:E0: 03
[Hy i 4]
ankde kEiis
00:50: 00
(0
AR G

R e

= bidkRt

151

152

APPENDIX F

THE DESIGN DELAY MATRIX

14 54 e <84
z Vg g R - S8 L
T
g g v“..w{v 75 € .] $HLTE %4576
TTNROICD BIMRGIED! SRR TR £ TN W TEARATGT GIAN0

xLiieW Aegiag

ol

153

w95 ¢ gy iy g sugny 5 sugs gy y. Lxvis
i Foray Sug e 8457 Shg" / Sugd 5 sy T T
B «MMMANM XTI
w T TR s s G e
H H a Bl o T s e o - - PRE
TERRN TN FINWATIY £ TNRITIGY & ZhR O 3NN LINRITICS F@4 TenTewy
LRIV IR

XLJIBW AB|3Q

vashiue

154

syt 2 v suigg S5l : s g sugt e
sust g Sugt g sugy sug g sugc)

3 B4t 0521 LTk 4
%S 7T w577 sus 50527 i

LEARTO

FERHTIID

NHC Y FENNTTIOT

MADI3TAIRG

XitJaew Aeiag

	VHDL-Based_Digital_Slot_Machine_Implementation_Complex_Programmable_Logic_Device001
	VHDL-Based_Digital_Slot_Machine_Implementation_Complex_Programmable_Logic_Device002

