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ABSTRACT

Current Distribution at Varying Frequencies in Hybrid Configuration of Solid Copper Bus and
Braided Litz

Daniel Allan Smith
Master of Science, Electrical Engineering

Youngstown State University, 1999

In this research, the effects of frequency on current distribution in bus bar configurations of solid copper
bus and braided Litz wire is studied.

When a conductor carries an alternating current, the current tends to forsake the interior of the conductor
and concentrate at the surface. The higher the frequency the more the current will concentrate at the
surface. As a result of this skin-like concentration of current energy will be lost due to the cross sectional
area of the conductor being underutilized by the current.

Litz wire is a special wire that is able to counter this so called “Skin Effect” and has an AC resistance
very near its DC resistance over a large range of frequencies. A coupled circuit method is used to solve for
the current distribution in several hybrid arrangements of normal copper conductors and Litz wire. Using
Litz wire in the right application can reduce the resistance significantly and make power distribution more
efficient. Also, with the presented model, electrical quantities like impedance and current distribution can
be readily calculated and used to aid in a design.
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CHAPTER1

SKIN EFFECT

Skin Effect is the tendency of current density to be greatest at the surface of a conductor
when it carries an alternating current. Frequency, cross-sectional area, conductivity and
relative permeability all influence the extent of this concentration. To illustrate this, a
long cylindrical copper conductor is analyzed under sinusoidal variation of current.

Conductor of Radius ry with J and H Shown with I=Icos(wt)

Figure 1.1

Figure 1.1 depicts an infinitely long conductor of radius ry under sinusoidal excitation.
The current density is directed normal to and out of the page at a particular reference
instant of time.



Starting with the pertinent Maxwell equations for a conductor where there is no free

charge yields

Vxﬁ=j+ja)5

VxE=-— ja)E

Where
o 1s the radian frequency
Using

B=uH

E=2

o
D=¢E

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)



The Following Maxwell’s equations are obtained.

VeD=0 (1.10)
VxH =(c+ jwe)E (1.11)
VxE=—jouH (1.12)

Substitution of equation 1.8 into equation 1.12 yields

VxJ=—joucH (1.13)

Taking equation 1.13 and solving for H yields

ij

H=— (1.14)
- jouoc
Substitution of equation 1.14 into equation 1.11 gives
vx—T o+ jor)E (1.15)
- jouo

Simplifying and using again the relation of equation 1.8 as well as assuming that p and ¢
are isotropic or put another way do not vary with direction gives

VxVxJ =(—jouc +w’eu)J (1.16)
From equation 1.16 it can be seen that if o is much greater than wg then the term -jopc
dominates as the multiple of J. For the purposes of this research it is assumed that
o>>we. This is a very important assumption and only results from this derivation that
adhere to this constraint are valid. This assumption removes the high frequency

phenomena known as displacement current from consideration. Equation 1.16 now
becomes

VxVxJ=—-joucJ (1.17)
Expanding equation 1.17 gives [2]

V(Ve)-V2] =—joucJ (1.18)



The first term on the left hand side of equation 1.18 is zero. This is because J can be
related to E by the conductivity constant and subsequently E can be related to D by the
permittivity constant. Since the Divergence of D is zero, the Divergence of J is zero
provided that the conductivity and permittivity are isotropic which is a good assumption
for copper. Equation 1.18 now becomes

V2J - joucJ =0 (1.19)
For simplification let
7y’ =—jouc (1.20)
Equation 1.19 becomes
Vi +y2J =0 (1.21)

Expanding equation 1.21 into cylindrical coordinates recognizing that spatially the
magnitude of J is only a function of the radial distance and that its direction is along the
Z-axis gives

oJ o,
+—4+y-J=0 1.22
& ra (122)

Multiplying equation 1.22 by #* gives

2

r? J+r%+r272J=0 (1.23)

2
Multiplying terms of equation 1.23 by appropriate unity factors gives

V00T v

r +ri—+r’y*J=0 1.24
et et (1.24)
For simplicity let
Now equation 1.24 becomes
2
525 J+§é]—+§2J=O (1.26)

x: "



Equation 1.26 is now in the familiar form of Bessel’s equation [5]. Solving for J gives
J(&)=C, 4y (5) +C,Yo(8) (1.27)

Equation 1.27 is a linear combination of a zero order Bessel function of the first kind and
a zero order Bessel function of the second kind. C; and C, are constants. The bold face J
should not be confused with the current density. Since it is common to write the Bessel
function of the first kind as J it is kept here but made in bold face type for consistency
with other literature. To solve for these constants, boundary conditions must be
employed. There are two important boundary conditions and these are

J(R,) =J, (1.28)
) _
=0 (1.29)

Equation 1.28 is the prescription of the current density on the surface while equation 1.29
1s a mathematical statement of symmetry. These types of boundary conditions are known
as Dirichlet and Neuman Boundary conditions respectively. The first term of 1.27 is well
behaved with a finite value with an argument of zero but the second term has a
logarithmic singularity at an argument of zero. Because a finite value is expected for J at
an argument of zero, Y, should be discarded or C; is zero. [5]

Substituting 1.28 into 1.27 using the identity in 1.25 as well as C, = 0 gives

. Jo (1.30)
Jo (R,)
Substituting 1.30 into 1.27 using the identity in 1.25 gives
Jo
J(r)= Jo(7) (1.31)

Jo(1R,)

Equation 1.31 is the solution of the current density in a cylindrical conductor as a
function of y and r. It can be seen that the Boundary condition 1.29 is also satisfied by
equation 1.31 because the derivative of a zero order Bessel function of the first kind is a
first order Bessel function which has a zero at an argument of zero.

To fully appreciate the relationship of the parameters including frequency, radius,
conductivity and permeability to skin effect, equation 1.31 is normalized with the surface
current density. This is shown in equation 1.32

Jnormalized = JO(W) (132)
Jo(OR,y)



The magnitudes of equation 1.32 versus parameters are plotted in Figures 1.2-1.8. Table
1.1 represents the variables utilized in Figures 1.2-1.8.

Table 1.1

Summary of Figures 1.2 through 1.8

Figure Radius | Conductivity Relative N
Meters | mhos/meter Permeability
Figure 1.2 | .0005 5.7e7 1
Figure 1.3 | .0050 5.7e7 1
Figure 1.4 | .0500 5.7e7 1
Figure 1.5 | .0050 5.7e6 1
Figure 1.6 | .0050 5.7e8 1
Figure 1.7 | .0050 5.7e7 300
Figure 1.8 | .0050 5.7e7 3000
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The phase angles for equation 1.32 are plotted versus parameters in Figures 1.9-1.15.
Table 1.2 is a summary of the variables in Figures 1.2 through 1.8.

Table 1.2

Summary of Figures 1.9 through 1.15

Figure Radius Conductivity Relative -
meters mhos/meter Permeability
Figure 1.9 | .0005 5.7e7 1
Figure 1.10 | .0050 5.7e7 1
Figure 1.11 | .0500 5.7e7 1
Figure 1.12 | .0050 5.7e6 1
Figure 1.13 | .0050 5.7e8 1
Figure 1.14 | .0050 5.7e7 300
Figure 1.15 | .0050 5.7e7 3000
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By examining Figures 1.2 through 1.15, certain relationships are evident. The magnitude
of the current density has decayed exponentially. In most cases the decay is from the
surface. Also, the phase angle is retarded. In most cases the phase angle retards linearly
from the surface. Also at the very center of the conductor the phase flattens out. This
means that the current density in the center lags the current density on the surface. In
some cases it lags so much that it is 360 degrees out of phase which makes it appear to be
in phase with the surface current density. These concepts are simple but sometimes hard
to visualize. Figures 1.16 through 1.26 show snapshots of the 20000 Hz condition of
Figure 1.3 at different points in time while Figure 1.27 shows a combined plot of Figures
1.16 to 1.26. The symbol T in Figures 1.16 to 1.26 is the period. So .1T means one tenth
of a period into the cycle.
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Instantaneous Current Density vs Radial Distance at 0T

Figure 1.16
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Figure 1.17
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It is apparent that under the right circumstances the phase angle of the current density can
be the same at several radial points in the conductor. This means that at a given instant in
time, the surface current is moving in one direction while the current somewhere deeper
is moving in the completely opposite direction. Also, somewhere deeper still, the current
1s in the same direction as the current on the surface. These statements are general and
there is a more standard way to describe the degree of skin effect as well as the effect of
various physical parameters on it. The degree of skin effect is sometimes referred to as
the Skin Depth and is defined as the distance into the conductor at which the current
density falls to 1/e of its value on the surface. A good approximation for the Skin Depth

1s shown in equation 1.33 [1].

s=—1 (1.33)

N fruo
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Where

u is the permeability of the medium in henrys per meter
o is the conductivity of the conductor in mhos per meter
fis the frequency in Hz

d is the Skin Depth in meters

Equation 1.33 is nothing more than the reciprocal of the real part of y. Figure 1.28 shows
the Skin Depth of the conductor from Figure 1.3 as a function of frequency.
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Figure 1.28

In Figure 1.28 it can be seen that the current has concentrated on the surface as a function
of frequency. Because of this concentration, the resistance is higher than the DC case. A
good approximation of the resistance of a conductor in the DC case is shown in equation
1.34 [6].

R=— (1.34)
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Where

R is the resistance

L is the length of the conductor

o is the conductivity of the conductor

A is the cross sectional area of the conductor

In the AC case, however, the approximation for the resistance is shown in equation 1.35.

[

Where

R is the resistance

d is the Skin Depth

o is the conductivity

r is the radius of the conductor

In this chapter the phenomena of Skin Effect was developed from Maxwell’s equations.
Several important results were revealed. Namely, the frequency, conductivity,
permeability, and radius all play a major role in the current distribution throughout a
conductor. In turn, the current distribution determines the AC resistance of the conductor

and subsequently the real power loss in the conductor. In the next chapter, a special type
of conductor known as Litz that counteracts Skin Effect is introduced.



CHAPTER I
LITZ WIRE

Litz wire is a type of conductor that is made up of small diameter wires that are
insulated from one another. These wires are twisted, stranded or braided in a
consistent pattern along the length of the wire. The word, Litz, is derived from
the German word, "Litzendraht", meaning many stranded [1]. Because of this
construction, any component strand of the Litz wire is forced to travel throughout
the cross section of the whole Litz wire over a certain distance. Stated another
way, there is no opportunity for the current to concentrate on the surface
conductors of the Litz wire because the wires on the surface at one location might
be in the center at another location along the length.

Because of this construction the Litz wire has an AC resistance equal to its DC
resistance. It may be unclear as to why the wires are braided. If they are
insulated from one another, then it may seem reasonable to conclude that they
would have the same current. After all, they are all in parallel and physically
identical. The reason that they need to be braided is to overcome the phenomena
known as proximity effect.

The proximity effect is the tendency of the current to concentrate on the outer
wires when parallel wires are in close proximity to one another. If the conductors
in a Litz wire were straight and not braided, then the current would concentrate on
the outer conductors. Being braided, there are no wires that can be considered
either exclusively outer or inner. They zigzag throughout the wire and occupy the
entire cross-section over a certain length. In this way no conductor is favored by
position and as a consequence, each conductor in a Litz wire carries essentially
the same current.

It was stated in closing in Chapter I that Litz wire could overcome skin effect but
nothing was said about proximity effect. This is because they are one in the same.
If the conductor analyzed in Chapter I was broken up conceptually into many
conductors in parallel with each other then the skin effect could be explained
precisely by proximity effect. Proximity effect and skin effect can be effectively
explained by the mutual coupling of current carrying conductors whether real like
in proximity effect or conceptual like in skin effect. For now, skin effect is used
when referring to a single conductor and proximity effect is used when referring
to multiple conductors.

23
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Even if the proximity effect of all the insulated conductors can be overcome, this
does not mean that the current distribution in a single insulated wire is constant.
This may not be the case. Certain considerations must be kept in mind when
designing a power distribution system with Litz wire. The individual strand size,
for example, can cause the AC resistance to be greater than the DC resistance.
This is because of what was found in Chapter I. Each component conductor of a
Litz wire is just a normal conductor and subject to skin effect with the right
combination of frequency, conductivity, and size.

Another design consideration is the insulation between each strand. For Litz wire
to be effective, each component strand must be insulated from every other
component strand. This insulation is usually a nylon shellac or film, which is
good to a temperature of about 300 °F. If the application is in high temperature
due to sufficient I squared R heating or due to the environment, then the result can
be catastrophic if the insulation breaks down. That is why in high current
applications, it is sometimes necessary to provide cooling for the Litz wire.

The insulation, component size, and construction of the Litz wire counteracts the
skin/proximity effect but it also contributes to the resistance in a more
fundamental way. Because of the insulation, there is less copper in the cross
section than there would be if it were a normal conductor. That is, the whole cross
section of the Litz wire is not all copper. Typical percent copper numbers or
“packing” range from 55-70% copper. In addition to this, because of the twisting,
braiding and stranding, the component strands are longer than the Litz wire. This
adds to the resistance as well. These factors and their influence on the strand and
total resistance can be seen in equation 2.1.

_PLL;

strand
Ad,

R 2.1

Where

Rstrand 18 the Resistance of a strand of the Litz wire

L is the length of the Litz wire

L¢is the Length factor

A is the cross sectional area of a strand of Litz Wire including insulation

A¢ is the packing factor



Taken by themselves the current in a single normal conductor or a Litz conductor
can be easily calculated. For the case of multiple conductors and especially if
some are Litz and some are not, then the problem becomes complex. Even the
simple case of two cylindrical conductors carrying an alternating current has no

closed form solution and the only practical method is to utilize a computer model.

In the next chapter, a model is developed to calculate the current distribution in
bus bar configurations where both normal and Litz wires are present.
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CHAPTER III
MODEL

The purpose of the model is to solve for the current distribution in conductor
configurations that are made up of both Litz and regular conductors at different
frequencies. The model presented in this research is a modification of the coupled
circuit method that uses resistance and self and mutual inductances. The model
equations that are derived below are for the specific configuration that has both
Litz and regular conductors as well as symmetry. In this way, the core
components of the general model can be derived from this specific case. The
general model is then shown utilizing pseudo code.

Figure 3.1 shows eight conductors labeled A, B, Ax, Bx, Ay, By, Axy, Bxy. Each
conductor is arbitrarily broken up conceptually into four smaller segments or
elements. These are square segments and all are of identical dimensions. The x, y
and xy notation denotes the type of symmetry. Ax is the same type of conductor
as A and is symmetrical with A about the x-axis. Bxy is the same type of
conductor as B and is symmetrical with B about the origin. In this specific case,
A denotes a Litz type wire and B denotes a normal conductor.

The numbers in Figure 3.1 are the segment numbers and utilize the same
nomenclature for symmetry as the conductors did. The configuration shown in
Figure 3.1 has both Litz wire and regular conductors with all type of symmetry.
The reason for this is to derive not only the model for the coupling of Litz and
regular conductors but to derive the utilization of symmetry as well. The
symmetry utilization drastically reduces the computation time and in addition
allows more efficient memory usage.

The method that is used here is a coupled circuit method. Familiar circuit theory
quantities such as voltage, current, resistance, self and mutual inductance are used

[4].
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By Ay A B
8y 7y 4y 3y 3 4 7 8
6y S5y 2y 1y 1 2 5 6
6xy | b5xy 2xy | 1xy 1x 2x 5x 6x
8xy | 7xy 4xy | 3xy 3x 4x 7x 8x
Bxy Axy Ax Bx

General Arrangement of Conductors with Symmetry for Model Derivation

Figure 3.1

For this specific example, the conductors of Figure 3.1 are constrained to have a
sinusoidal voltage of magnitude V, across them with the passive sign convention
such that the front of the conductors are the positive polarity. Now circuit
equations can be written for any segment of any conductor. Writing Ohm’s Law
for segment 1 gives equation 3.1 [3].

V=21, +Z,1,+Z,1,+2Z,1,

+Z2 I+ Z I+ 7,1, + 7,1,

+Zy, 0, + 2,0, +2,,1,,+2,, 1,
+Zis 15, +Z Ig, + 2,1, +Z I,

LA Z T RN /A P A N AP P
+Zisodsy, + Zig Loy + 21701
+Z01,+Z2, 1, +Z2,1,, +2,1,,
+ ZleISx + Zlﬁx16x + Zl7xl7x +Zle18x

(3.1)

11xy

15xy~ Sxy 16xy ™ 6xy Txy +Zley18xy
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Where

V is the voltage across the segment

I 1s the Current through the segment

Z 1s the impedance either self or mutual

28

The two digit subscripts on the impedance should be read as the impedance at
conductor “1st digit” due to the conductor at “2" digit”. Conductor A segment 1
has 3 symmetrical counterparts. In this case the x and y symmetry are both
positive because all the conductors have the same voltage across them. This
means that the sign of the current in A is the same as all its symmetrical
counterparts. Symmetry about an axis is either positive (+1) or negative (1) and
is determined by the user of the model for each specific case. Table 3.1 shows the
relationships of the different symmetries on current and voltage. In the 2™
quadrant, for example, the value of the current solved for in quadrant 1 must be
multiplied by the sign of the Y symmetry to get the solution in quadrant 2.

Table 3.1

Symmetry Relationship

Quadrant

Current

Voltage

1St

I

A%

21‘10

(D(Ysym)

(V)(Ysym)

31‘0

(D(Xsym)(Ysym)

(V)(Xsym)(Ysym)

4[[‘1

(D(Xsym)

(V)(Ysym)

Utilizing symmetry equation 3.1 can be rewritten as

V1 = (Zn +ley +lexy
+(Zy+2Z,y,+ 2y, +Z, )],
+(Zy+ 2y, + 25, + 25,15
(2 + 2y + Zy4y + 21401,
+(Zs+ 25, +Zys,, + 215, )]s
(2 + 2, + Zigy + Z 16 ) 6
+(Z,+2,+ 2,5, + 2, ),
+(Zg+ 2y, + 2y, +Zi5 )]

12xy

13xy

14xy

15xy

16xy

17xy

18xy

+lex)ll

(3.2)




Similar equations can also be written at Segments 2-8.

V,=(Z,+2,,+2
+(Z,, +222y +Zy, Y2 ),
t(Zy+Zyy + 2y, + 201,
+(Z24 +ZZ4y +ZZ4xy +Zz4x)14
+(Zzs +ZZSy +ZZSxy +Z25x)15
(2o +Zosy + 25, + Zos, )
+(Zy+2Zy, + 2y, +Z, )1,
H(Zyy+ 2y, +Zyg,, + 255 )

21xy +Zle)Il (33)

22xy

28xy

Vi=(Zy+ 2y, + 2y, + 23,01, (3.4)
+(Z5, +Zy, +Zszxy +Zy ),

+(Z; +Zy, +Z33xy +Zy, )1,

+(Zs4 +Z34y +Z +Z34x)14

+(Zys + 25, + Zas,, +Z35,)]

(2o +Zyg, + Zsg,y + 2o, )

+(Zyy + 24y, + 2y, + 233 ),

+(Zyg + 2y, + Zog,, + Zog )

34xy
35xy

36xy

38xy

V,=(Z, +Zy, + 24y Y 2401, 3.5)
Y (Zy+Zy, ¥ 20y +Z ),
Y (Zy+ 2y, + 25, + 2 ),
+(Z,, +Z44y +Z44xy +Zyu ),
F(Zys + Zys, + Z sy + Z 45,1
H(Zis + Zssy + Zagry + Z s )
+(Z, + 2yt 2y + 2],

+(Z48 +Z48y +Z48xy +Z48x)‘[8



Vs =(Zy, +Zy, +2Z
+t(Zy+Z,,+2
+(Zy+Zg, + 2, +Z ),
+(Z,, +Zsy, + 2y, + 254 ),
+(Zss + ZSSy +ZSSxy + ZSSx)IS
+(Zss + Zsg, + Zsey, + Zs6 )
+(Zy+Z5,+2,+Z)],
+(Zy + 2, + Zsg,, + Zog )

Slxy
+ ZSZx )12

52xy

53xy

56xy
57xy

58xy

Ve =(Zg+Zg, +Zg,,
+(Zg+Zg, + Zg,, +Z5 ),
+(Zas +Z63y +ZG3xy +ZG3x)I3
t(Zoy+Zgy, + Zgyy + Zey ),
+(Zgs + Zgs, + Zgsyy + Zgs )
+(Zgs + Zgsy + Zggry + Zes M
t(Zg+Zg, + Zg + Zo ),
+(Zog +Zgs, + Zgg,, + Zgs, )

62xy

65xy
66xy
67xy

68xy

V,=(Z,+2,,+2Z,,
+(Zp+Zy, +Zgy, +Zp ),
A+ (Zp+Zy, + 25, +Z, )1,
H(Zy+ 2oy + 2y + Z o ),
+(Z75 +Z75y +Z +Z75x)‘[5
+(Zsg + Zogy + Zyg, + Zog ) ¢
+(Z77 +Z77y +Z +Z77x)17
H(Zyg+Zy, +Zsg,, + 235, ),

75xy

76xy

77 xy

78xy

+Zg.)1,

+Z61x)11

+ 23,

(3.6)

(3.7)

(3.8)

30



Vs =(Zy +Zgy, +Z
+(Zsz +Zszy +Zszxy
+(Zgy +Zg, +2Z
+(Zyy+ 2y, +2Z
+(Zys +Zys, +Z
+(Zys +Zg, +Z
+(Zgy+2Zg, +2Z
+(Zgg + 2, +Z

sy + Za ), (3.9)
+ ZSZx)IZ
+Zg ),
+ ZS4x)I4
+ ZSSx)IS
+ ZS6x)16
+ ZS7x )17
+ Zgg, )

83xy
84xy
85xy
86xy
87 xy

88xy

Now there are 8 equations and 8 unknowns. The unknowns are the currents while
the voltages are known and replaced with Vo. Vo is the constrained voltage of all
segments because they are in parallel. Now the impedance can be calculated and
here lies the actual modeling. It can be seen from equations 3.2 through 3.9 that
each multiple of each current consists of four terms. The first term is the 1%
quadrant impedance. The remaining three terms are the 2", 3, and 4™ quadrant
components due to symmetry. It can also be seen that the diagonal impedances
consist of a self impedance of the segment in the 1* quadrant and in addition three
mutual impedances with its symmetrical counterparts. The off diagonal terms are
all mutual impedances.

For simplification let

Z,=Z,+Z,+Z, +Z, (3.10)

ijxy

In equation 3.10 the boldface Z is the sum of all the impedance terms that multiply
the segment current denoted by the j subscript. The subscript i is the segment at
which the equation is being written. The x, y and xy subscripts denote the
different symmetry terms.
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Substituting Vo into equations 3.2 through 3.9 and using equation 3.10 yields

V,=&,1,+Z,1,+Z,, +Z,1,+Z I, +Z ], +Z., 1, +2Z,I,
V,=Z,1,+Z,1,+Z,1,+Z,1, +Z I, +Z ], +2Z,1,+Z,]I,
V,=2,1, +Z,1, +Z, 1, +Z, I, +Z, ], +Z I, +Z. ] +Z,I,
V,=Z,1,+2,1,+2,1,+2,1,+Z,, ], +2Z,1, +2Z.,1,+2Z,],
V,=&I, +Z,1, +Z,I, +Z, I, +Z, ], +Z I, +Z, I, +Z,],
V,=2,1, +Z,1, +Z,I, +Z, 1, +Z I, +Z I, +Z. 1, +2Z,],
V,=2Z,1,+Z,1,+Z,,+Z,1,+Z,,+Z I, +Z, 1, +Z,I,

Vo =Z8111 +Z&2]2 +4313 +Z&4[4 +ZBSIS +ZSGI6 +ZS7I7 +Z&818

These are simultaneous equations relating the current in each 1* quadrant segment

(3.11)
(3.12)
(3.13)
(3.14)
(3.15)
(3.16)
(3.17)

(3.18)

to the voltage across them. The 2", 3™ and 4™ quadrant currents are calculated
using symmetry after the 1* quadrant currents are found. Rewriting these in

matrix form gives

-Vo ] —le ZIZ ZIS Zl4 Zl4 ZlG ZI7 ZIS ] _Il |
Va ZZl ZZ2 223 ZZ4 ZZS 226 ZZ7 ZZS 12
v\ |z, 2, Z, Z, Z, Z, Z, Z,|1,
Vo _ Z41 Z42 Z43 z44 Z45 Z46 Z47 248 I 4
v, |2 2, Z, Z, Z, Z, Z, Z,|],
Vol 2o 2o Z, Zu Zy Zg Zy Zy| ],
v, Z, 2, 2, 2, Z, Z, Z, Z,|[,
vl 2 Z, Z, 2, 2, Z, Z, Z,|1,]

(3.19)
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Conductor A is a Litz wire. For this specific example the conductor has been
broken up into 4 segments. In the computer model it can be broken up into the
exact number of wires composing the Litz. The model further constrains the
segment currents of the Litz wire to be identical. After all it was stated in Chapter
II that the conductors comprising the Litz wire have identical currents provided
that the Litz wire is designed and utilized properly. Let

I =I,=1,=I, (3.20)

Substitution of equation 3.20 into equation 3.19 yields

— -

V, —Zn Z, 2, Z, Z, Z, Z, Z, ] “A
v, |2, 2, Z, Z. Z, Z, Z, Z,|1,
v,| |2, 2, 2, 2, Z, Z, Z, Z,|1,
v, _ Z, 2, 2, Z, 2, Z, Z, Z;|I, (3.21)
v, Z, Z, Z, Z, Z, Z, Z, Z; |
V| 2o Zo Zy Zy Zy Zg Zy Z |1,
v, Z, %2, 2, Z, Z, Z, Z, Z,|[,
Vol & & &y Ly L Z, Z; I AL 1s

Where

I, is the segment current in any of the Litz segments
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Equation 3.21 is no longer a set of independent equations. The problem is that
there are 8 equations and 5 unknowns. Selecting one of the equations in I for
use is not very wise due to the fact that whichever one is selected, a particular
segment of the Litz wire is favored and would give a different result if used. The
solution to this problem is to use the average of all equations in I,. This is
accomplished by summing the equations in I, and generating the following single
equation.

1
V, =Z(Z|1 +Z2,+Z2,+4,+ 2, + 2, + 2, +Z,,
+Zy+ 2, + 2+ 2, + 2, +Z, + 2, +Z,)],

+%(ZLS +ZZS +235 +Z45)15

+ B+ 2+ 2+ 2,
+ %(217 + ZZ7 + ZA7 + Z47 )17

b @+ 2+ 2y 12,

(3.22)

It is intended that the averaging of the Litz equations reflects that each Litz
segment eventually occupies each part of the cross section. It should be noted
that the 4 in equation 3.22 is nothing more than the number of segments the Litz
wire is broken into in this specific case.

Again for Simplicity let

1
S, =Z(Zu +Z2,+2,+2,+Z,,+Z,,+ 2, +Z, (3.23)
+Z,+Z,+Z,+Z,, +Z, +Z, +Z,, +Z,))],

MAj =%(le+zlj+23j+z4j) (3.24)

M, =2,+Z,+Z,+Z, (3.25)
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Substitution of equations 3.23 and 3.24 and 3.25 into 3.21 yield

Vo I SA MAS MA6 MA7 MA8 IA
Vo MSA ZSS 256 47 ZSS 15
Vol=\Mey Zs &y Zg Zy |1 (3.26)
Vo M7A Z75 Z76 Z77 Z78 I7
_Vo _ _MSA ZBS ZB7 ZB7 Z&B _ _18 _
Solving equation 3.26 for the current vector yields
T=2'V (3.27)

Where

T is the column matrix representing the current

Z" is the inverse of the impedance matrix

V is the column matrix representing the voltage

Before the above solution will work, however, all the impedances must be calculated.
There are only three types of calculations that need to be performed. These are
resistance, self inductance and mutual inductance. Capacitance is omitted in this model.
Because displacement current gives rise to capacitance in wires, the capacitance can be
ignored provided that the inequality 6>>we of Chapter I holds true. Z;; in equation 3.1 is
made up of the resistance and self reactance of segment 1. To calculate the resistance of
segment 1, equation 1.34 can be used. It should be noted that the use of equation 1.34
assumes constant current density within the segment. If however the conductors are
broken up into many segments, then the current density can be assumed to be constant
over each segment. This should be a good assumption provided that the size of each
segment is smaller than the skin depth defined in Chapter I. To calculate the self
reactance, the self inductance must be calculated. The self inductance of a segment is
calculated using the following equation with input units in cm and output units of micro
henries [7].

L=.0021 ln( 2 )+i-1< (3.29)
B+C) 2



Where

1 is the depth of the conductor

B and C are the length and width of the conductor cross section, respectively

K is given by the following expression

=[u{zic) ]

r 1s the Self Geometric Mean Distance of the segment and is given by

Where

r=exp(TI+T2+T3+T4+T5+7T6)
Where

T1=0.5In(B*+C?)

2
-? ln(l +%)
12 g*

2
-len(l +gj
B

12¢?

2=

3=

2C arctan(é)
__\C)

T4 =
3B

2B arctan[%)
I5=————~<

B 3C

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)



From the self inductance the self reactance can be calculated by simply
multiplying by the self inductance by the radian frequency and making the result
imaginary.

In equation 3.1, the 2™ impedance term is Z;5. Another way of writing this term
is

Z,=joM, (3.38)
Where
M;; is the mutual inductance between segment 1 with 2.

The mutual inductance is calculated from the following equation with input units
in cm and output units of micro henries [7].

2 2
M=.002m L+ |1+ | [1+4 44 (3.39)
d d’ ol

1 is the depth of the segment

Where

d is the distance between two segments
It should be noted that the preceding inductance equations are based on Neuman's

inductance formula which is shown below and integrating it over the cross section
of the conductor/conductors [7].

Mzi”dsoa's'

3.40
4 d ( )

Where
M is the mutual inductance of element ds from element ds',
ds and ds' are differential current carrying circuit elements, and

d is the distance between the elements.
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The program shown in Appendix B is developed to model and solve equation
3.27. It reads in the input data with the subroutine LITZIO. Next the voltage
vector is made with VMAKE. The construction of the voltage vector is trivial
because it is simply input into the model by the user. The Z matrix, however, is
very complicated and it is at the heart of the model. What follows is a detailed
description of how the subroutine ZMAKE constructs the impedance matrix.

The impedance matrix in equation 3.26 is made up of rows and columns. The
row number can be thought of as the segment at which the equation is being
written. Even though the Litz wire can be broken up into many segments, there is
always only one current to solve for in a Litz wire because all the Litz wire
segment currents are equal. Consequently, Litz wires have only one
corresponding segment. ZMAKE starts at row 1 and loops though all columns
and then proceeds to row 2 and loops through all columns and so on until it
traverses all rows making the impedance matrix. The following page contains the
pseudo code for ZMAKE.
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LOOP THROUGH ALL ROWS
LOOP THROUGH ALL COLUMNS
IF ROW = COLUMN THEN DIAGONAL OF IMPEDANCE MATRIX
IF ROW =LITZ THEN
CALCULATE S, FROM EQUATION 3.26 BY CALLING
LITZRESI TO CALCULATE RESISTANCE
LITZSELF TO CALCULATE SELF IMPEDANCE
LITZSYMM TO CALCULATE SYMMETRICAL MUTUAL TERMS
ELSE
CALCULATE Zyn FROM EQUATION 3.26 BY CALLING
RESIST TO CALCULATE RESISTANCE
SELFL TO CALCULATE SELF IMPEDANCE
MUTSYMSL TO CALCULATE SYMMETRICAL MUTUAL TERMS
ENDIF
ELSE NON DIAGONAL OF IMPEDANCE MATRIX
IF ROW=LITZ AND COLUMN=LITZ THEN
MUTUAL IMPEDANCE BETWEEN TWO LITZWIRES CALL
LSYMMZ TO CALCULATE MUTAL IMPEDANCE BETWEEN TWO
LITZ
CONDUCTORS AS WELL AS SYMMETRICAL TERMS
ENDIF
IF ROW=LITZ AND COLUMN=NON LITZ THEN
CALCULATE Man FROM EQUATION 3.26 BY CALLING
LITZREG TO CALCULATE MUTUAL IMPEDANCE BETWEEN A
LITZ WIRE AND A REGULAR SEGMENT
ENDIF
IF ROW=NON LITZ AND COLUMN=LITZ THEN
CALCULATE Mna FROM EQUATION 3.26 BY CALLING
REGLITZ TO CALCULATE THE MUTUAL INDUCTANCE
BETWEEN A REGULAR SEGMENT AND A LITZWIRE AND
SYMMETRICAL TERMS
ENDIF
IF ROW=NON LITZ AND COLUMN=NON LITZ THEN
CALCULATE Z;; FROM EQUATION 3.26 BY CALLING
CALL MUTSYM
ENDIF
END LOOP THROUGH ALL COLUMNS
END LOOP THROUGH ALL ROWS



In the next chapter the program in Appendix B will be utilized to solve for the
current distribution in a number of interesting conductor configurations.
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CHAPTER 1V
RESULTS

In Chapter I, some cylindrical conductors were analyzed with differing properties to find
the current distribution. Like in Chapter I this chapter starts out with a single conductor
situation and then proceeds to more complex configurations. Figure 4.1 shows a
configuration consisting of a regular copper conductor with the properties shown in Table
4.1.

825

1* Quadrant of Single Rectangular Normal Conductor

Figure 4.1
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Table 4.1

Properties of Partial Regular Conductor in Figure 4.1

Voltage Cos(wt) volts
X Symmetry 1
Y Symmetry 1
X Divisions 25
Y divisions 25
Total segments 625
Height 0.005 meters
Width 0.005 meters
Length 3.048 meters
Conductivity 5.7¢7 mhos/meter
Relative Permeability 1

The partial conductor in Figure 4.1 is broken up into 625 segments by dividing it up in 25
divisions in the x direction and 25 divisions in the y direction. Some of the segments are
numbered for clarity. In addition to this, there is positive x and y symmetry. This means
that the entire conductor is 4 times the size of the portion shown in Figure 4.1. The whole
conductor is comprised of 2500 segments but because of symmetry only 625 of them
need to be solved for. After these are solved, then symmetry can be used to find the
remaining ones. Figures 4.2, 4.4 and 4.6 shows the normalized current distribution for
the partial conductor in Figure 4.1. Figures 4.3, 4.5 and 4.7 show the phase of the current
in the partial conductor in Figure 4.1. It should be noted that in Chapter I, the phase of
the current density was always referenced to the surface current density. That is, the
surface current density had a phase angle of zero. This in no way implied that it was in
phase with the voltage. The current density had a phase of zero on the surface because it
was prescribed that way. The voltage magnitude or voltage phase was in fact never
calculated in Chapter I. Now, in this model the voltage magnitude and phase are
prescribed and the resulting currents are calculated and have a phase angle referenced
from the voltage. Tables 4.2, 4.3, and 4.4 shows the circuit parameters used and
calculated by the model for three frequencies.
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Figure 4.3
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Table 4.2

Model Output of Configuration Shown in Figure 4.1

Voltage Cos(2m60t) volts
Frequency 60 Hz
Resistance 0.002149352894009 ohms
Reactance 0.005716875085973  ohms
Current Magnitude | 163.731308 amps
Current Phase 159.3954163 degrees
Real Power 28.809863811933050 watts
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8.00E-01-0.00E-01
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Normalized Current Magnitude

Y Division

Normalized Current Distribution

Figure 4.4
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Phase Angle in Degrees
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X Division

o Y Division
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Figure 4.5
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| E90.00E+00-5 00E+01 |
- @ 1

Table 4.3

Model Output of Configuration Shown in Figure 4.1

Voltage Cos(27t1000t) volts
Frequency 1000 Hz
Resistance 0.003562962234577 ohms
Reactance 0.094045896606623 ohms
Current Magnitude | 10.6254835 amps
Current Phase 177.8303680 degrees
Real Power 0.201130820453723  watts
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Figure 4.6
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Table 4.4

Model Output of Configuration Shown in Figure 4.1

Voltage Cos(2n10000t) volts
Frequency 10000 Hz
Resistance 0.010185283828687  ohms
Reactance 0.920374836929470  ohms
Current Magnitude | 1.0864474 amps
Current Phase 179.3659668 degrees
Real Power 0.006011190399594  watts

Figure 4.8 shows a configuration consisting of one copper Litz conductor with the
properties shown in Table 4.5.
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1* Quadrant of Single Rectangular Litz Conductor

Figure 4.8
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Table 4.5

Properties of Partial Litz Conductor in Figure 4.8

Voltage Cos(wt) volts
X Symmetry +1
Y Symmetry +1
X Divisions 25
Y divisions 25
Total segments 625
Height .005 meters
Width .005 meters
Length 3.048 meters
Space Factor .65
Length Factor 1.1
Conductivity 5.7¢7 mhos/meter
Relative Permeability 1

The partial conductor in Figure 4.8 is broken up into 625 segments like in Figure 4.1 with
the same numbering and symmetry as well. The lines are drawn thicker in an attempt to
portray the insulation. Tables 4.6, 4.7 and 4.8 shows the circuit parameters used and
calculated by the model for three frequencies. Because the model calculates a constant
current distribution and constant phase for the Litz wire, these are not plotted.

Table 4.6

Model Output of Configuration Shown in Figure 4.8

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.003621327590942 ohms
Reactance 0.005717332458496  ohms
Current Magnitude | 147.7604523 amps
Current Phase 147.6500397 degrees
Real Power 39.532497621998580 watts




Table 4.7

Model Output of Configuration Shown in Figure 4.8

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.003621327590942  ohms
Reactance 0.095288873291016  ohms
Current Magnitude | 10.4868345 amps
Current Phase 177.8235931 degrees
Real Power 0.199125377220933  watts

Table 4.8

Model Output of Configuration Shown in Figure 4.8

Voltage Cos(2m10000t) volts
Frequency 10000 Hz
Resistance 0.003621327590942  ohms
Reactance 0.952888769531250  ohms
Current Magnitude | 1.0494329 amps
Current Phase 179.7822571 degrees
Real Power 0.001994100745528  watts
Table 4.9

Summary of Results for Single Conductor

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(ohms) (ohms) (ohms) (ohms)
60 0.0021 0.0036 0.0057 0.0057
1000 0.0036 0.0036 0.0940 0.0953
10000 0.0102 0.0036 0.9204 0.9528
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Figure 4.9 shows the 1* quadrant of a transmission line. There are two rectangular
conductors implied in Figure 4.9 because of the Y Offset. The properties of this
conductor configuration are shown in Table 4.10.

625

7%
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1% Quadrant of a Configuration of 2 Regular Conductors

Figure 4.9




Table 4.10

Properties of Configuration Shown in Figure 4.8

Voltage Cos(wt) volts
X Symmetry +1
Y Symmetry -1
X Divisions 25
Y divisions 25
Total segments 625
Height .005 meters
Width .005 meters
Length 3.048 meters
X Offset 0
Y Offset .00005 meters
Conductivity 5.7¢7 mhos/meter
Relative Permeability 1

Figures 4.10, 4.12 and 4.14 show the current distribution in the part of the conductor
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shown in Figure 4.9 for three frequencies. Figures 4.11, 4.13 and 4.15 show the phase of
the part of the conductor shown in Figure 4.9 for three frequencies. Tables 4.10, 4.11 and
4.12 show the circuit parameters used and calculated by the model for three frequencies.
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Table 4.11

Model Output of Configuration Shown in Figure 4.9

Voltage Cos(2m60t) volts
Frequency 60 Hz
Resistance 0.002145486613672  ohms
Reactance 0.000270454969892 ohms

Current Magnitude 462.4350281 amps
Current Phase 97.1846695 degrees
Real Power 229.402044726375600  watts
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Table 4.12

Model Output of Configuration Shown in Figure 4.9

Voltage Cos(2mn1000t) volts
Frequency 1000 Hz
Resistance 0.003264728493435  ohms
Reactance 0.003857746004026  ohms

Current Magnitude | 197.8718262 amps
Current Phase 139.7594604 degrees
Real Power 63.912384405171280 watts
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Table 4.13

Model Output of Configuration Shown in Figure 4.9

Voltage Cos(2n10000t) volts
Frequency 10000 Hz
Resistance 0.012162784630579  ohms
Reactance 0.016570878842499  ohms
Current Magnitude | 48.6488495 amps
Current Phase 143.7218628 degrees
Real Power 14.392896077985050 watts
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Figure 4.16 shows the 1* quadrant of a transmission line. There are two rectangular Litz

conductors implied in Figure 4.16 because of the Y Offset. The properties of this
conductor configuration are shown in Table 4.14.
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1* Quadrant of a Configuration of 2 Litz Conductors

Figure 4.16




Table 4.14

Properties of Configuration Shown in Figure 4.16

Voltage Cos(wt) volts
X Symmetry +1
Y Symmetry -1
X Divisions 25
Y divisions 25
Total segments 625
Height .005 meters
Width .005 meters
Length 3.048 meters
X Offset 0
Y Offset .00005 meters
Space Factor .65
Length Factor 1.1
Conductivity 5.7¢7 mhos/meter
Relative Permeability 1
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Tables 4.15, 4.16 and 4.17 show the circuit parameters used and calculated by the model

for three frequencies.

Model Output of Configuration Shown in Figure 4.16

Table 4.15

Voltage Cos(2m60t) volts
Frequency 60 Hz
Resistance 0.003621327590942 ohms
Reactance 0.000270637273788 ohms
Current Magnitude | 275.3738708 amps
Current Phase 94.2740097 degrees
Real Power 137.304028776925600 watts




Table 4.16

Model Output of Configuration Shown in Figure 4.16

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.003621327590942  ohms
Reactance 0.004510621261597  ohms
Current Magnitude | 172.8776550 amps
Current Phase 141.2409515 degrees
Real Power 54.114732121237560 watts

Table 4.17

Model Output of Configuration Shown in Figure 4.16

Voltage Cos(2m10000t) volts
Frequency 10000 Hz
Resistance 0.003621327590942  ohms
Reactance 0.045106213378906  ohms
Current Magnitude | 22.0987892 amps
Current Phase 175.4098816 degrees
Real Power 0.884249336470242  watts
Table 4.18

Summary of Results for 2 Conductor Configuration

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(ohms) (ohms) (ohms) (ohms)
60 0.0021 0.0036 0.0003 0.0003
1000 0.0033 0.0036 0.0039 0.0045
10000 0.0122 0.0036 0.0166 0.0451
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Figure 4.17 shows the 1* quadrant of a transmission line. There are four rectangular
conductors implied in Figure 4.17 because of the Y Offset and X Offset. The properties
of this conductor configuration are shown in Table 4.19.

1* Quadrant of a Configuration of 4 Regular Conductors

Figure 4.17




Table 4.19

Properties of Configuration Shown in Figure 4.17

Voltage Cos(wt) volts
X Symmetry +1
Y Symmetry -1
X Divisions 25
Y divisions 25
Total segments 625
Height .005 meters
Width .005 meters
Length 3.048 meters
X Offset .00005 meters
Y Offset .00005 meters
Conductivity 5.7¢7 mhos/meter
Relative Permeability 1
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Figures 4.18, 4.20 and 4.22 show the current distribution in the part of the conductor
shown in Figure 4.17 for three frequencies. Figures 4.19, 4.21 and 4.23 show the phase
of the part of the conductor shown in Figure 4.17 for three frequencies. Tables 4.20, 4.21
and 4.22 show the circuit parameters used and calculated by the model for three

frequencies.

o
N~
-]
T e
X Division e

Normalized Current Magnitude

Normalized Current Distribution

Figure 4.18

| 9.98E-01-1.00E+00
[19.96E-01-9.98E-01 |
W9.94E-01-9.96E-01
[9.92E-01-9.94E-01 |
M9.90E-01-9.92E01
£39.88E-01-9.90E-01
[19.86E-01-9.88E-01
9.B4E-01-0 86E-01
£39.82E-01-9.84E-01




61

25

1.02E+02

1.00E+02

9.80E+01

9.60E+01

9.40E+01
Phase Angle in Degrees

Y Division

1.00E+02-1.02E+02 |

[39.80E+01-1.00E+02
1 9.60E+01-9 80E+01
[ 9.40E+01-9.60E+01
W 9.20E+01-9.40E+01
[39.00E+01-9.20E+01
[18.80E+01-9.00E+01

W 8.60E+01-8.80E+01 |

Phase Angle

Figure 4.19

E18.40E+01-8.60E+01

Table 4.20

Model Output of Configuration Shown in Figure 4.17

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.002145380051700  ohms
Reactance 0.000268244087508  ohms
Current Magnitude | 462.5165710 amps
Current Phase 97.1268997 degrees
Real Power 229.471532748759300 watts
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Table 4.21

Model Output of Configuration Shown in Figure 4.17

Voltage Cos(2m1000t) volts
Frequency 1000 Hz
Resistance 0.003250211815405 ohms
Reactance 0.003836134021354 ohms
Current Magnitude | 198.8901062 amps
Current Phase 139.726654 degrees
Real Power 64.284758566264670 watts
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Table 4.22

Model Output of Configuration Shown in Figure 4.17

Voltage Cos(2110000t) volts
Frequency 10000 Hz
Resistance 0.012114961282335 ohms
Reactance 0.016490557980533 ohms
Current Magnitude | 48.8700676 amps
Current Phase 143.6967468 degrees
Real Power 14.466980069498500 watts
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Figure 4.24 shows the 1* quadrant of a transmission line. There are four rectangular Litz
conductors implied in Figure 4.24 because of the Y Offset and X Offset. The properties
of this conductor configuration are shown in Table 4.23.

1* Quadrant of a Configuration of 4 Litz Conductors

Figure 4.24




Table 4.23

Properties of Configuration Shown in Figure 4.24

Voltage Cos(wt) volts
X Symmetry +1
Y Symmetry -1
X Divisions 25
Y divisions 25
Total segments 625
Height .005 meters
Width .005 meters
Length 3.048 meters
X Offset .00005 meters
Y Offset .00005 meters
Space Factor .65
Length Factor 1.1
Conductivity 5.7¢7 mhos/meter
Relative Permeability 1
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Tables 4.24, 4.25 and 4.26 show the circuit parameters used and calculated by the model

for three frequencies.

Model Output of Configuration Shown in Figure 4.24

Table 4.24

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.003621327590942  ohms
Reactance 0.000268607068061  ohms
Current Magnitude | 275.3853149 amps
Current Phase 94.2420654 degrees
Real Power 137.315428399605600 watts




Table 4.25

Model Output of Configuration Shown in Figure 4.24

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.003621327590942  ohms
Reactance 0.004476784515381 ohms
Current Magnitude | 173.6686707 amps
Current Phase 141.0301666 degrees
Real Power 54.611074541387450 watts
Table 4.26

Model Output of Configuration Shown in Figure 4.24

Voltage Cos(210000t) volts
Frequency 10000 Hz
Resistance 0.003621327590942  ohms
Reactance 0.044767846679688 ohms
Current Magnitude | 22.2647362 amps
Current Phase 175.3753357 degrees
Real Power 0.897579387257878 watts
Table 4.27

Summary of Results for 4 Conductor Configuration

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(ohms) (ohms) (ohms) (ohms)
60 0.0021 0.0036 0.0003 0.0003
1000 0.0033 0.0036 0.0038 0.0045
10000 0.0121 0.0036 0.0165 0.0448
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Figure 4.25 shows the 1* quadrant of a transmission line. There are four rectangular
conductors implied in Figure 4.25 because of the Y Offset and X Offset. The properties
of this conductor configuration are shown in Table 4.28. Notice the symmetry. This has
the effect of transposing the conductors so that polarity alternates from quadrant to
quadrant.

X

1* Quadrant of a Configuration of 4 Transposed Regular Conductors

Figure 4.25




Table 4.28

Properties of Configuration Shown in Figure 4.25

Voltage Cos(wt) volts
X Symmetry -1
Y Symmetry -1
X Divisions 25
Y divisions 25
Total segments 625
Height .005 meters
Width .005 meters
Length 3.048 meters
X Offset .00005 meters
Y Offset .00005 meters
Conductivity 5.7¢7 mhos/meter
Relative Permeability 1

Figures 4.26, 4.28 and 4.30 show the current distribution in the part of the conductor
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shown in Figure 4.25 for three frequencies. Figures 4.27, 4.29 and 4.31 show the phase
of the part of the conductor shown in Figure 4.17 for three frequencies. Tables 4.29, 4.30
and 4.31 show the circuit parameters used and calculated by the model for three

frequencies.
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Table 4.29

Model Output of Configuration Shown in Figure 4.25

Voltage Cos(2m60t) volts
Frequency 60 Hz
Resistance 0.002141247256829  ohms
Reactance 0.000113196258062 ohms
Current Magnitude | 466.3663025 amps
Current Phase 93.0261002 degrees
Real Power 232.858002746250000 watts
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Table 4.30

Model Output of Configuration Shown in Figure 4.25

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.002475271704481 ohms
Reactance 0.001770857633251 ohms
Current Magnitude | 328.5688171 amps
Current Phase 125.5806656 degrees
Real Power 133.612038203796300  watts
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Table 4.31

Model Output of Configuration Shown in Figure 4.25

Voltage Cos(2m10000t) volts
Frequency 10000 Hz
Resistance 0.007010928019247 ohms
Reactance 0.008446258467791 ohms
Current Magnitude | 91.1003799 amps
Current Phase 140.3051758 degrees
Real Power 29.092824047526710 watts
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Figure 4.32 shows the 1* quadrant of a transmission line. There are four rectangular Litz
conductors implied in Figure 4.24 because of the Y Offset and X Offset. The properties
of this conductor configuration are shown in Table 4.23. Notice the symmetry. This has
the effect of transposing the conductors so that polarity alternates from quadrant to
quadrant.

1* Quadrant of a Configuration of 4 Litz Conductors

Figure 4.32




Table 4.32

Properties of Configuration Shown in Figure 4.32

Voltage Cos(wt) volts
X Symmetry -1
Y Symmetry -1
X Divisions 25
Y divisions 25
Total segments 625
Height .005 meters
Width .005 meters
Length 3.048 meters
X Offset .00005 meters
Y Offset .00005 meters
Space Factor .65
Length Factor 1.1
Conductivity 5.7¢7 mhos/meter
Relative Permeability 1
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Tables 4.33, 4.34 and 4.35 show the circuit parameters used and calculated by the model

for three frequencies.

Table 4.33

Model Output of Configuration Shown in Figure 4.32

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.003621327590942  ohms
Reactance 0.000113061892986  ohms
Current Magnitude | 276.0073242 amps
Current Phase 91.7882538 degrees

Real Power

137.936446087453700 watts




Table 4.34

Model Output of Configuration Shown in Figure 4.32

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.003621327590942  ohms
Reactance 0.001884364891052  ohms
Current Magnitude | 244.9623718 amps
Current Phase 117.4903030 degrees
Real Power 108.651698043246100 watts

Table 4.35

Model Output of Configuration Shown in Figure 4.32

Voltage Cos(2n10000t) volts
Frequency 10000 Hz
Resistance 0.003621327590942  ohms
Reactance 0.018843649291992  ohms
Current Magnitude | 52.1146469 amps
Current Phase 169.1216583 degrees
Real Power 4.917647372297274  watts
Table 4.36

Summary of Results for 4 Conductor Configuration

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(ohms) (ohms) (ohms) (ohms)
60 0.0021 0.0036 0.0001 0.0001
1000 0.0028 0.0036 0.0018 0.0019
10000 0.0070 0.0036 0.0084 0.0188
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Figure 4.33 shows the 1% quadrant of a transmission line. There are four rectangular
conductors implied in Figure 4.33 because of the Y Offset. The properties of this
conductor configuration are shown in Table 4.37.

Y

Conductor 2

Conductor 1

Figure 4.33

1* Quadrant of a Configuration of 4 Regular Conductors




Table 4.37

Properties of Configuration Shown in Figure 4.33
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Conductor 1 and 2 Voltage Cos(wt) volts
X Symmetry +1
Y Symmetry -1
Conductor 1 and 2 X Divisions 25
Conductor 1 and 2 Y Divisions 25
Total segments 1250
Conductor 1 Height .005 meters
Conductor 2 Width .005 meters
Conductor 1 and 2 Length 3.048 meters
Conductor 1 X Offset 0 meters
Conductor 1 Y Offset .00005 meters
Conductor 2 X Offset 0 meters
Conductor 2 Y Offset .00515 Meters
Conductor 1 and 2 Conductivity 5.7e7 mhos/meter
Conductor 1 and 2 Relative Permeability 1

Figures 4.34, 4.35, 4.38, 4.39, 4.42 and 4.43 show the current distribution in the part of
the conductors shown in Figure 4.33 for three frequencies. Figures 4.36, 4.37, 4.40, 4.41,
4.44 and 4.45 show the phase of the part of the conductors shown in Figure 4.33 for three
frequencies. Tables 4.38, 4.39, 4.40, 4.41, 4.42, 4.43, 4.44, 4,45 and 4.46 show the circuit
parameters used and calculated by the model for three frequencies.
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Table 4.38

Model Output for Conductor 1 of Configuration Shown in Figure 4.33

Voltage Cos(2m60t) volts
Frequency 60 Hz
Resistance 0.002204362308852  ohms
Reactance 0.000521602185662 ohms
Current Magnitude | 441.4556274 amps
Current Phase 103.3126221 degrees
Real Power 211.451331098216000 watts
Table 4.39

Model Output for Conductor 2 of Configuration Shown in Figure 4.33

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.002107301083709 ohms
Reactance 0.000973769931087 ohms
Current Magnitude | 430.7726135 amps
Current Phase 114.8013458 degrees
Real Power 198.865835760934100 watts
Table 4.40

Model Output for Both Conductors Shown in Figure 4.33

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.001089585815740  ohms
Reactance 0.000374885094188  ohms
Current Magnitude | 867.848907149822800 amps
Current Phase 108.986391321046300 degrees
Real Power 410.317166859150100 watts
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Table 4.44

Model Output for Conductor 1 of Configuration Shown in Figure 4.33

Voltage Cos(2r10000t) volts
Frequency 10000 Hz
Resistance 0.013379163767824 ohms
Reactance 0.016980186513714 ohms
Current Magnitude | 46.2582016 amps
Current Phase 141.7644348 degrees
Real Power 14.261737156585920 watts
Table 4.45

Model Output for Conductor 2 of Configuration Shown in Figure 4.33

Voltage Cos(2110000t) volts
Frequency 10000 Hz
Resistance 0.004399226397529 ohms
Reactance 0.229065424883950 ohms
Current Magnitude | 4.3647599 amps
Current Phase 178.8997650 degrees
Real Power 0.094677363940418 watts
Table 4.46

Model Output for Both Conductors Shown in Figure 4.33

Voltage Cos(2n10000t) volts
Frequency 10000 Hz
Resistance 0.011574038693127 ohms
Reactance 0.016405427516851 ohms
Current Magnitude | 49.807589895617720 amps
Current Phase 144.797004968626400 degrees
Real Power 14.356414520526340 watts
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Figure 4.46 shows the 1* quadrant of a transmission line. There are four rectangular Litz
conductors implied in Figure 4.46 because of the Y Offset. The properties of this
conductor configuration are shown in Table 4.47.

Y

Conductor 2

Conductor 1

Figure 4.46

1* Quadrant of a Configuration of 4 Litz Conductors




Table 4.47

Properties of Configuration Shown in Figure 4.46

Conductor 1 and 2 Voltage Cos(wt) volts
X Symmetry -1

Y Symmetry -1

Conductor 1 and 2 X Divisions 25

Conductor 1 and 2 Y divisions 25

Total segments 1250
Conductor 1 and 2 Height .005 meters
Conductor 1 and 2 Width .005 meters
Conductor 1 and 2 Length 3.048 meters
Conductor 1 X Offset 0.0 meters
Conductor 1 Y Offset 0.00005 meters
Conductor 2 X Offset 0.0 meters
Conductor 2 Y Offset 0.00515 meters
Conductor 1 and 2 Space Factor .65

Conductor 1 and 2 Length Factor 1.1

Conductor 1 and 2 Conductivity

5.7¢7 mhos/meter

Conductor 1 and 2 Relative Permeability

1

Table 4.48
Model Output of Conductor 1 Shown in Figure 4.46
Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.003652801596339  ohms
Reactance 0.000531194283465 ohms
Current Magnitude | 270.9129333 amps
Current Phase 98.2740097 degrees
Real Power 132.891508230706800 watts
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Tables 4.48, 4.49, 4.50, 5.51, 4.52, 4.53, 4.54, 4.55 and 4.56 show the circuit parameters
used and calculated by the model for three frequencies.



Table 4.49

Model Output of Conductor 2 Shown in Figure 4.46

Voltage Cos(2160t) volts
Frequency 60 Hz
Resistance 0.003589378218865  ohms
Reactance 0.000972635892567 ohms
Current Magnitude | 268.9021606 amps
Current Phase 105.1616898 degrees
Real Power 130.926147681288300 watts

Table 4.50
Model Output for Both Conductors Shown in Figure 4.33

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.001817245494517  ohms
Reactance 0.000376499146630  ohms
Current Magnitude | 268.9021606 amps
Current Phase 105.1616898 degrees
Real Power 263.817655911995200 watts

Table 4.51

Model Output of Conductor 1 Shown in Figure 4.46

Voltage Cos(2m1000t) volts
Frequency 1000 Hz
Resistance 0.005337575325308 ohms
Reactance 0.005412581820775  ohms
Current Magnitude | 131.5496216 amps
Current Phase 135.3997498 degrees
Real Power 31.334084731343260 watts
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Table 4.52

Model Output of Conductor 2 Shown in Figure 4.46

Model Output for Both Conductors Shown in Figure 4.33

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance -0.005246304041381 ohms
Reactance 0.016462706952048 ohms
Current Magnitude | 57.8756027 amps
Current Phase -162.3240509 degrees
Real Power 6.064972245491898 watts
Table 4.53

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.002696432761985 ohms
Reactance 0.005364701671767 ohms
Current Magnitude | 166.549259207410300 amps
Current Phase 153.314753345633200 degrees
Real Power 37.399056976835160  watts
Table 4.54

Model Output of Conductorl Shown in Figure 4.46

Voltage Cos(2n10000t) volts
Frequency 10000 Hz
Resistance 0.005743995782858 ohms
Reactance 0.045825870791066  ohms
Current Magnitude | 21.6523075 amps
Current Phase 172.8555756 degrees
Real Power 0.848879667479485 watts




Table 4.55

Model Output of Conductor 2 Shown in Figure 4.46

Voltage Cos(2710000t) volts
Frequency 10000 Hz
Resistance -0.817049926566540 ohms
Reactance 0.396259663825388  ohms
Current Magnitude | 1.1012359 amps
Current Phase -115.8728409 degrees
Real Power 0.002195828958604  watts
Table 4.56
Model Output for Both Conductors Shown in Figure 4.33
Voltage Cos(2110000t) volts
Frequency 10000 Hz
Resistance 0.003506893578731  ohms
Reactance 0.045255748856524  ohms
Current Magnitude | 22.030594688032610 amps
Current Phase 175.568967718291000 degrees
Real Power 0.851075496438089  watts
Table 4.57

Summary of Results for 4 Conductor Configuration

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(ohms) (ohms) (ohms) (ohms)
60 0.0010 0.0018 0.0004 0.0004
1000 0.0029 0.0027 0.0040 0.0053
10000 0.0116 0.0035 0.0164 0.0453
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Figure 4.47 shows the 1 quadrant of a transmission line. There are two Litz conductors
and two regular conductors implied in Figure 4.47. The properties of this conductor
configuration are shown in Table 4.58.

Y

Conductor 2

Conductor 1

Figure 4.47

1* Quadrant of a Configuration of 2 Litz and 2 Regular Conductors




Table 4.58

Properties of Configuration Shown in Figure 4.58

Conductor 1 and 2 Voltage Cos(wt) volts
X Symmetry +1

Y Symmetry -1

Conductor 1 and 2 X Divisions 25

Conductor 1 and 2 Y divisions 25

Total segments 1250

Conductor 1 and 2 Height .005 meters
Conductor 1 and 2 Width .005 meters
Conductor 1 and 2 Length 3.048 meters
Conductor 1 X Offset 0.0 meters
Conductor 1 Y Offset 0.00005 meters
Conductor 2 X Offset 0.0 meters
Conductor 2 Y Offset 0.00515 meters
Conductor 1 Space Factor .65

Conductor 1 Length Factor 1.1

Conductor 1 and 2 Conductivity

5.7¢7 mhos/meter

Conductor 1 and 2 Relative Permeability

1
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Figures 4.48, 4.50 and 4.52 show the current distribution in the regular conductor shown

in Figure 4.47 for three frequencies. Figures 4.49, 4.51 and 4.53 show the phase of the
regular conductor shown in Figure 4.47 for three frequencies. Tables 4.59, 4.60, 4.61,

4.62,4.63, 4.64, 4.65, 4.66 and 4.67 show the circuit parameters used and calculated by

the model for three frequencies.

Table 4.59

Model Output of Conductor 1 Shown in Figure 4.47

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.003709770992471  ohms
Reactance 0.000699558314532  ohms
Current Magnitude | 264.8898926 amps
Current Phase 100.6789703 degrees
Real Power 127.048222925375200 watts
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Table 4.60

Model Output of Conductor 2 Shown in Figure 4.47

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.002110662297273  ohms
Reactance 0.000864014471908  ohms
Current Magnitude | 438.4692993 amps
Current Phase 112.2620850 degrees
Real Power 205.995924398428200 watts

Model Output for Both Conductors Shown in Figure 4.47

Table 4.61

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.001359409919075  ohms
Reactance 0.000439192531182  ohms
Current Magnitude | 699.988152910071400 amps
Current Phase 107.904389445341600 degrees
Real Power 333.044147323803400 watts

Table 4.62

Model Output of Conductor 1 Shown in Figure 4.47

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.005883058630894 ohms
Reactance 0.005220896111572  ohms
Current Magnitude | 127.1353989 amps
Current Phase 131.5873108 degrees
Real Power 29.266498135611580 watts
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Table 4.63

Model Output of Conductor 2 Shown in Figure 4.47

Model Output for Both Conductors Shown in Figure 4.47

Voltage Cos(2m1000t) volts
Frequency 1000 Hz
Resistance -0.005453235985206 ohms
Reactance 0.014504489489429 ohms
Current Magnitude | 64.5338593 amps
Current Phase -159.3952942 degrees
Real Power 6.923317145636013 watts
Table 4.64

Voltage Cos(211000t) volts
Frequency 1000 Hz
Resistance 0.002762173542221 ohms
Reactance 0.005525640245989 ohms
Current Magnitude | 161.876092841472400 amps
Current Phase 153.440308359849300 degrees
Real Power 36.189815281247600  watts

Table 4.65

Model Output of Conductorl Shown in Figure 4.47

Voltage Cos(2110000t) volts
Frequency 10000 Hz
Resistance 0.008800589123809  ohms
Reactance 0.039038157471005  ohms
Current Magnitude | 24.9888496 amps
Current Phase 167.2958679 degrees
Real Power 1.130655600959582  watts
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Model Output of Conductor 2 Shown in Figure 4.47

Table 4.66

Voltage Cos(2n10000t) volts
Frequency 10000 Hz
Resistance -0.365231772661355 ohms
Reactance -0.107694118736626  ohms
Current Magnitude | 2.6261988 amps
Current Phase -73.5710449 degrees
Real Power 0.357588829162316  watts

Model Output for Both Conductors Shown in Figure 4.47

Table 4.67

Voltage Cos(2m10000t) volts
Frequency 10000 Hz
Resistance 0.005245458458735  ohms
Reactance 0.041650719234258  ohms
Current Magnitude | 23.821023556738570 amps
Current Phase 172.822000395356000 degrees
Real Power 1.488244430121898  watts
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Figure 4.54 shows the 1* quadrant of a transmission line. There are two Litz conductors
and two regular conductors implied in Figure 4.54. The properties of this conductor
configuration are shown in Table 4.68.

Y

Conductor 2

Conductor 1

Figure 4.54

1% Quadrant of a Configuration of 2 Litz and 2 Regular Conductors




Table 4.68

Properties of Configuration Shown in Figure 4.54

Conductor 1 and 2 Voltage Cos(wt) volts
X Symmetry +1

Y Symmetry -1

Conductor 1 and 2 X Divisions 25

Conductor 1 and 2 Y Divisions 25

Total segments 1250
Conductor 1 and 2 Height .005 meters
Conductor 1 and 2 Width .005 meters
Conductor 1 and 2 Length 3.048 meters
Conductor 1 X Offset 0.0 meters
Conductor 1 Y Offset 0.00005 meters
Conductor 2 X Offset 0.0 meters
Conductor 2 Y Offset 0.00515 meters
Conductor 2 Space Factor .65

Conductor 2 Length Factor 1.1

Conductor 1 and 2 Conductivity

5.7¢7 mhos/meter

1

Conductor 1 and 2 Relative Permeability

102

Figures 4.55, 4.57 and 4.59 show the current distribution in the regular conductor shown
in Figure 4.54 for three frequencies. Figures 4.56, 4.58 and 4.60 show the phase of the

regular conductor shown in Figure 4.47 for three frequencies. Tables 4.69, 4.70, 4.71,

4.72,4.73,4.74, 4.75, 4.76 and 4.77 show the circuit parameters used and calculated by

the model for three frequencies.



103

1.00E+00

| B19.90E-01-100E+00

| m9.80E-01-9.90E-01
[19.70E-01-9.80E-01
[19.60E-01-9.70E-01
W9.50E-01-9.60E-01
[39.40E-01-9.50E-01

9.70E-01

98.60E-01

Normalized Current Magnitude

25

X Division

Y Division

Normalized Current Distribution for Conductor 2

Figure 4.55

1.00E+02

[@7.00E+02-1 206402 |
Hooaom 00E+02
| 06.00E+01-8.00E+01
[14.00E +01-6.00E+01

1B 2.00E+01-4.00E+01
| {80.00E+00-2.00E+01
|

Phase Angle in Degrees

25

19
0.00E+00
13

X Division

Y Division

Phase Angle for Conductor 2

Figure 4.56




Table 4.69

Model Output of Conductor 1 Shown in Figure 4.54

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.002167987283849  ohms
Reactance 0.0004.23529965831 ohms
Current Magnitude | 452.6997681 amps
Current Phase 101.0538712 degrees
Real Power 221.098872888959500 watts

Table 4.70

Model Output of Conductor 2 Shown in Figure 4.54

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.003591383395245  ohms
Reactance 0.001157231825761  ohms
Current Magnitude | 265.0253296 amps
Current Phase 107.8602142 degrees
Real Power 127.178173496533700 watts

Model Output for Both Conductors Shown in Figure 4.54

Table 4.71

Voltage Cos(2n60t) volts
Frequency 60 Hz
Resistance 0.001356646376749  ohms
Reactance 0.000327360004655  ohms
Current Magnitude | 716.546040343060900 amps
Current Phase 103.566186707212600 degrees
Real Power 348.277046385493200 watts
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Table 4.72

Model Output of Conductor 1 Shown in Figure 4.54

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.004085578460831 ohms
Reactance 0.004189352065560 ohms
Current Magnitude | 170.8899384 amps
Current Phase 135.7184906 degrees
Real Power 55.903201315113960 watts

Table 4.73

Model Output of Conductor 2 Shown in Figure 4.54

Model Output for Both Conductors Shown in Figure 4.54

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance -0.001031965503429  ohms
Reactance 0.024876828224260 ohms
Current Magnitude | 40.1635094 amps
Current Phase -177.6245575 degrees
Real Power 2.920794901215245 watts
Table 4.74

Voltage Cos(2n1000t) volts
Frequency 1000 Hz
Resistance 0.002923783909597 ohms
Reactance 0.004037753533480 ohms
Current Magnitude | 200.594778944805800 amps
Current Phase 144.091265050364700 degrees
Real Power 58.823996216329210 watts
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Phase Angle for Conductor 2

Figure 4.60
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|
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Table 4.75

Model Output of Conductorl Shown in Figure 4.54

Model Output of Conductor 2 Shown in Figure 4.54

Voltage Cos(2110000t) volts
Frequency 10000 Hz
Resistance 0.013511657985639  ohms
Reactance 0.017068886080606  ohms
Current Magnitude | 45.9357948 amps
Current Phase 141.6350098 degrees
Real Power 14.290966954367900  watts
Table 4.76

Model Output for Both Conductors Shown in Figure 4.54

Voltage Cos(2n10000t) volts
Frequency 10000 Hz
Resistance 0.007520830960684  ohms
Reactance 0.234202681522120  ohms
Current Magnitude | 4.2676063 amps
Current Phase 178.1607208 degrees
Real Power 0.032976642786342  watts
Table 4.77

Voltage Cos(2m10000t) volts
Frequency 10000 Hz
Resistance 0.011724720928086  ohms
Reactance 0.016486386015760  ohms
Current Magnitude | 49.430504359016470 amps
Current Phase 144.580474166522600 degrees
Real Power 14.323943597154240 watts
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Table 4.78

Summary of Results for 4 Conductor Hybrid Configuration

Conductor 2 | Conductor 1 | Conductor 2 | Conductor 1
is Regular is Regular is Regular is Regular
and and and and
Conductor 1 | Conductor 2 | Conductor 1 | Conductor 2
is Litz is Litz is Litz is Litz
Frequency | Resistance Resistance Reactance Reactance
(ohms) (ohms) (ohms) (ohms)
60 0.0014 0.0013 0.0004 0.0003
1000 0.0028 0.0029 0.0055 0.0040
10000 0.0052 0.0117 0.0416 0.0165
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CHAPTER V
ANALYSIS OF RESULTS

In Chapter IV, six cases were studied with the aid of the model. Three frequencies were
considered on the regular conductor configuration, the Litz configuration and the hybrid
configuration as well. The highest frequency used was 10 kHz. Taking into account the
size, the conductivity, and the frequency, 25 divisions in the x direction and 25 divisions
in the y direction forced each segment size smaller than the skin depth (equation 1.33).
This was necessary as each segment in the model is assumed to have a constant current
density.

Case 1 is the single conductor in Figures 4.1 and 4.8. These are summarized again in
Table 5.1. At 60 Hz, due to the space factor and the length factor, the Litz wire has a
larger resistance than the regular conductor. At 10 kHz, the Litz conductor has an AC
resistance that is 35% of the regular conductor resistance. The reactance of the Litz
conductor, however, is 104% of the reactance of the regular conductor.

Table 5.1

Summary of Results for Single Conductor

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(Hz) (ohms) (ohms) (ohms) (ohms)
60 0.0021 0.0036 0.0057 0.0057
1000 0.0036 0.0036 0.0940 0.0953
10000 0.0102 0.0036 0.9204 0.9528
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Case 2 is the two-conductor configuration shown in Figures 4.9 and 4.16. These are
summarized again in Table 5.2. It can be seen that in this case, the Litz conductor has an
AC resistance that is 30% of the regular conductor resistance at 10 kHz. The reactance of
the Litz conductor, however, is 272% of the reactance of the regular conductor at 10 kHz.

Table 5.2

Summary of Results for 2 Conductor Configuration

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(Hz) (ohms) (ohms) (ohms) (ohms)
60 0.0021 0.0036 0.0003 0.0003
1000 0.0033 0.0036 0.0039 0.0045
10000 0.0122 0.0036 0.0166 0.0451

Case 3 is the four-conductor configuration shown in Figures 4.17 and 4.24. These are
summarized again in Table 5.3. It can be seen that in this case, the Litz conductor has an
AC resistance that is 30% of the regular conductor resistance at 10 kHz. The reactance of
the Litz conductor, however, is 272% of the reactance of the regular conductor at 10 kHz.
Notice that Case 2 and Case 3 are the same except that the top and bottom conductors are
split into 2. This illustrates the equivalence of proximity effect and skin effect.

Table 5.3

Summary of Results for 4 Conductor Configuration

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(Hz) (ohms) (ohms) (ohms) (ohms)
60 0.0021 0.0036 0.0003 0.0003
1000 0.0033 0.0036 0.0038 0.0045
10000 0.0121 0.0036 0.0165 0.0448
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Case 4 is the four-conductor configuration shown in Figures 4.25 and 4.32. These are
summarized again in Table 5.4. It can be seen that in this case, the Litz conductor has an
AC resistance that is 51% of the regular conductor resistance at 10 kHz. The reactance of
the Litz conductor, however, is 223% of the reactance of the regular conductor at 10 kHz.
It is interesting to compare Case 3 to Case 4. Really they are the same except the
conductors are transposed. This is commonly used and has the net effect of lowering the
reactance which the model predicts very well.

Table 5.4

Summary of Results for 4 Conductor Configuration

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(Hz) (ohms) (ohms) (ohms) (ohms)
60 0.0021 0.0036 0.0001 0.0001
1000 0.0028 0.0036 0.0018 0.0019
10000 0.0070 0.0036 0.0084 0.0188

Case 5 is the four-conductor configuration shown in Figures 4.33 and 4.46. These are
summarized again in Table 5.5. It can be seen that in this case, the all Litz configuration
has an AC resistance that is 30% of the regular conductor resistance at 10 kHz. The
reactance of the Litz conductor, however, is 276% of the reactance of the regular
conductor at 10 kHz.

Table 5.5

Summary of Results for 4 Conductor Configuration

Regular Litz Regular Litz
Frequency | Resistance | Resistance | Reactance | Reactance
(Hz) (ohms) (ohms) (ohms) (ohms)
60 0.0010 0.0018 0.0004 0.0004
1000 0.0029 0.0027 0.0040 0.0053
10000 0.0116 0.0035 0.0164 0.0453
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Case 6 is the four-conductor configuration shown in Figures 4.47 and 4.54. These are
summarized again in Table 5.6. At 10 kHz, it can be seen that when the Litz is on the
inside, the configuration has an AC resistance that is 44% of when it’s on the outside. At
10 kHz, the reactance of the configuration where the Litz is on the inside, however, is

252% of when its on outside.

Table 5.6

Summary of Results for 4 Conductor Hybrid Configuration

Conductor 2 | Conductor 1 | Conductor2 | Conductor 1
is Regular is Regular is Regular is Regular
and and and and
Conductor 1 | Conductor 2 | Conductor 1 | Conductor 2
is Litz is Litz is Litz is Litz
Frequency | Resistance Resistance Reactance Reactance
(Hz) (ohms) (ohms) (ohms) (ohms)
60 0.0014 0.0013 0.0004 0.0003
1000 0.0028 0.0029 0.0055 0.0040
10000 0.0052 0.0117 0.0416 0.0165

In this research, skin effect was introduced and a model specific to regular and Litz
conductors was developed to solve different wire configurations. In general, the Litz wire
saved power by having a much lower resistance. However, there are some practical
problems in utilizing Litz wire. Namely, it has a high reactance. In order to take
advantage of the Litz wire, you must be prepared to take a large voltage drop across the
bus. Therefore, a larger power source will be required. Also, the capacitance necessary
for power factor correction would be more expensive for the Litz configuration.
Therefore, when the primary area of concern is real power loss, a good choice may be the
Litz wire.

For further research on this topic, the model can be extended to the axi-symmetric case.
Therefore, with right modeling of the segments, the current distribution and impedance of
multi-layered coils composed of regular and Litz conductors could be solved. The
segments would be current carrying rings. If a good model for the self inductance of a
ring and the mutual inductance between two rings was developed, the program could be
modified with some effort to handle this case. Another direction of further research
might be to modify the model to solve for cylindrical conductors. All that would be
needed is the right inductance formula for the segments. This would no doubt apply to
the latest developments in using hybrid conductors in speaker wire. Finally, the model
can be adapted to solve for the current distribution and impedance in both rectangular and
cylindrical hollow conductors or coax conductors.



APPENDIX A

MATLAB PROGRAMS FOR FIGURES 1.2-1.15

Figure 1.2 and Figure 1.9

Clear

radius=.0005

r(1:26)=0:radius/25:radius
sigma=5.700e+7

mu=4*pi*le-7

freq(1)=0

freq(2)=60

freq(3)=100

freq(4)=200

freq(5)=500

freq(6)=1000

freq(7)=2000

freq(8)=5000

freq(9)=10000

freq(10)=20000

for n=1:10,
gg(n)=-sqrt(-1)*2*pi*freq(n)*mu*sigma,
g(n)=sqrt(gg(n)),

gr(n,:)=r*g(n),
j(n,:y=bessela(0,sqrt(-1)*gr(n,:))/bessela(0,sqrt(-1)*g(n)*radius),
end

jmag=abs(j)'

jphase=angle(j)'

x=r'

results=[x,jmag,jphase]

save c:\thesis\thesis1.2 results -ascii -double —tabs
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Figure 1.3 and Figure 1.10

clear

radius=.005

r(1:26)=0:radius/25:radius
sigma=>5.700e+7

mu=4*pi*le-7

freq(1)=0

freq(2)=60

freq(3)=100

freq(4)=200

freq(5)=500

freq(6)=1000

freq(7)=2000

freq(8)=5000

freq(9)=10000

freq(10)=20000

for n=1:10,
gg(n)=-sqrt(-1)*2*pi*freq(n)*mu*sigma,
g(n)=sqrt(gg(n)),

gr(n,:=r*g(n),
j(n,:)=bessela(0,sqrt(-1)*gr(n,:))/bessela(0,sqrt(-1)*g(n)*radius),
end

jmag=abs(j)'

jphase=angle(j)'

x=T'

results=[x,jmag,jphase]

save c:\thesis\thesis1.3 results -ascii -double —tabs
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Figure 1.4 and Figure 1.11

clear

radius=.05

r(1:26)=0:radius/25:radius
sigma=5.700e+7

mu=4*pi*le-7

freq(1)=0

freq(2)=60

freq(3)=100

freq(4)=200

freq(5)=500

freq(6)=1000

freq(7)=2000

freq(8)=5000

freq(9)=10000

freq(10)=20000

for n=1:10,
gg(n)=-sqrt(-1)*2*pi*freq(n)*mu*sigma,
g(n)=sqrt(gg(n)),

gr(n,:)=r*g(n),
j(n,:)=bessela(0,sqrt(-1)*gr(n,:))/bessela(0,sqrt(-1)*g(n)*radius),
end

jmag=abs(j)'

jphase=angle(j)'

x=r

results=[x,jmag,jphase]

save c:\thesis\thesis1.4 results -ascii -double —tabs
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Figure 1.5 and Figure 1.12

clear

radius=.005

r(1:26)=0:radius/25:radius
sigma=5.700e+6

mu=4*pi*le-7

freq(1)=0

freq(2)=60

freq(3)=100

freq(4)=200

freq(5)=500

freq(6)=1000

freq(7)=2000

freq(8)=5000

freq(9)=10000

freq(10)=20000

for n=1:10,
gg(n)=-sqrt(-1)*2*pi*freq(n)*mu*sigma,
g(n)=sqrt(gg(n)),

gr(n,:)=r*g(n),
j(n,:)=bessela(0,sqrt(-1)*gr(n,:))/bessela(0,sqrt(-1)*g(n)*radius),
end

jmag=abs(j)'

jphase=angle(j)'

x=t'

results=[x,jmag,jphase]

save c:\thesis\thesis1.5 results -ascii -double —tabs



Figure 1.6 and Figure 1.13

clear

radius=.005

r(1:26)=0:radius/25:radius
sigma=5.700e+8

mu=4*pi*le-7

freq(1)=0

freq(2)=60

freq(3)=100

freq(4)=200

freq(5)=500

freq(6)=1000

freq(7)=2000

freq(8)=5000

freq(9)=10000

freq(10)=20000

for n=1:10,
gg(n)=-sqrt(-1)*2*pi*freq(n)*mu*sigma,
g(n)=sqrt(gg(n)),

gr(n,:)=r*g(n),
j(n,:)=bessela(0,sqrt(-1)*gr(n,:))/bessela(0,sqrt(-1)*g(n)*radius),
end

jmag=abs(j)'

jphase=angle(j)’

x=r'

results=[x,jmag,jphase]

save c:\thesis\thesis1.6 results -ascii -double —tabs
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Figure 1.7 and Figure 1.14

clear

radius=.005

r(1:26)=0:radius/25:radius
sigma=5.700e+7

mu=300*4*pi*le-7

freq(1)=0

freq(2)=60

freq(3)=100

freq(4)=200

freq(5)=500

freq(6)=1000

freq(7)=2000

freq(8)=5000

freq(9)=10000

freq(10)=20000

for n=1:10,
gg(n)=-sqrt(-1)*2*pi*freq(n)*mu*sigma,
g(n)=sqrt(gg(n)),

gr(n,:)=r*g(n),
j(n,:)=bessela(0,sqrt(-1)*gr(n,:))/bessela(0,sqrt(-1)*g(n)*radius),
end

jmag=abs(j)'

jphase=angle(j)’

x=r'

results=[x,jmag,jphase]

save c:\thesis\thesis1.7 results -ascii -double —tabs
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Figure 1.8 and Figure 1.15

clear

radius=.005

r(1:26)=0:radius/25:radius
sigma=>5.700e+7

mu=3000*4*pi*le-7

freq(1)=0

freq(2)=60

freq(3)=100

freq(4)=200

freq(5)=500

freq(6)=1000

freq(7)=2000

freq(8)=5000

freq(9)=10000

freq(10)=20000

for n=1:10,
gg(n)=-sqrt(-1)*2*pi*freq(n)*mu*sigma,
g(n)=sqrt(gg(n)),

gr(n,:)=r*g(n),
j(n,:)=bessela(0,sqrt(-1)*gr(n,:))/bessela(0,sqrt(-1)*g(n)*radius),
end

jmag=abs(j)'

jphase=angle(j)'

x=r'

results=[x,jmag,jphase]

save c:\thesis\thesis1.8 results -ascii -double -tabs
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APPENDIX B

COMPUTER MODEL
FILE LITZ.FOR

C*******************************************************************
C*******************************************************************
C*******************************************************************

C*******************************************************************

C**Litz Program for calculating current distribution
C**in a conductor configuration involving both litz wire and regular
C**non-magnetic conductors. At present, conductors must be

C**solid rectangular.
C*******************************************************************

C*******************************************************************
C*******************************************************************
C parms has all the parameter statements
include 'PARMS'
C positions for defining conductor boundaries for all conductors
REAL*8 Xdim (MPOS)
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C X coordinates of all physical conductors
C There are four x coordinates per conductor
C starting from the lower left and proceeding to each corner
C counter clockwise
C
REAL*8 Ydim (MPOS)
C Y coordinates of all physical conductors
C There are four y coordinates per conductor
C starting from the lower left and proceeding to each corner
C counter clockwise
C
Complex*16 Volt (MAXCOND)
C The voltages across each conductor
C
C DIMENSION depth (MAXCOND) Not currently implemented.
C Depth of penetration for conductors. In future a sanity check for
determining
C if the coductors element are fine enough.
C The elements of the conductors should have dimensions of about
C 1/2 or less than the depth of penetration if they are located
C within the first three depths of the conductor.
C
REAL*8 Rho (MAXCOND)
C Resistivity of conductors
C
real len
C Length of all conductors (could be changed to an array)
C
C
real freq
C frequency in hz
C

real phase,cmag,delx,dely,area
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C

integer ixdiv(MAXCOND)
Divisions in X direction of conductors

integer iydiv(MAXCOND)
Divisions in y direction of conductors

integer ttype (MAXCOND)
ttype is type of conductor
O=solid-rectangular-nonlitz
l=hollow-rectangular-nonlitz
2=solid-rectangular-litz

Complex*16 V(MAXELE), cur (MAXCOND) , pow (MAXCOND) , amp, watt
V is voltage vector the modified to the current vector after

return of slnpd

C

C
C

@]

C***x%x**CONVERT INPUT DATA TO PROPER DIMENSTIONS™******%
Clength in inductance formulas must be in cm to give micro H

C DEFAULT SPACE FACTOR AND LENGTH FACTOR FOR ALL LITZ

C Convert coordinates from inches to centimeters

Complex*16 7ZZ(MAXELE,MAXELE),DD
ZZ is the impedance matrix

integer cnum, num,idim,icond,ibeg,iend,i,iflag, imult,ic

integer iltzx,iltzy,ix

real pi,sf,lf,xsym, ysym

DEFINE CONSTANTS

num=0
pi=3.14159265358979323

READ in the input data

CALL LITZIO(cnum, xsym, ysym, ttype,len,ixdiv,iydiv,Xdim, Ydim
+,Rho, freq,Volt,sf, 1£f)

cnum i1s number of conductors

write(20,*) 'Number of conductors=',cnum

write (20, *
write (20, *
write (20, *

'X SYMMETRY FACTOR=', xsym
'Y SYMMETRY FACTOR=',ysym
'Length of conductors=', len

write (20, *) 'Frequency=',freq
write (40, *) 'X SYMMETRY FACTOR=',6 xsym

'Y SYMMETRY FACTOR=', ysym
'Length of conductors="',len
'Frequency="', freqg

write (40, *
write (40, *
write (40, *

if (cnum.gt .MAXCOND) then

write(6,*) 'Too Many conductors'
goto 8000
endif

len=len*2.54

if (sf.eq.0.0) sf=.65
if (1f.eq.0.0) 1f=1.1

do 500 idim=1, cnum*4
Xdim (idim)=2.54*Xdim(idim)

( )
( )
( )
( )
write (40, *) 'Number of conductors=',cnum
( )
( )
( )
( )
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Ydim(idim)=2.54*Ydim(idim)

500 CONTINUE

C

C compute the number of simultaneous equations
do 99 icond=1, cnum

RHO (icond)=2.54*RHO (icond) /1000000
if (ttype(icond) .ne.2) then
num=num+ixdiv(icond)*iydiv (icond)

else
num=num+1
endif
99 continue
C
C MAKE THE VOLTAGE VECTOR
C
write(6,*) 'Making the Voltage Vector'
CALL VMAKE (cnum, num,V,Volt,ixdiv,iydiv,ttype)
C
C Make the Impedance Matrix
C
write(6,*) 'Making the Impedance Matrix'
C
CALL ZMAKE (cnum, ttype, num, freq, len, xsym, ysym
+,¥Xdim, Ydim, Rho, ixdiv, iydiv,2Z,sf,1f)
C
C solve for current vector. Vector V changes to current
C
write(6,*) 'Solve for the current vector'
C
write(6,*) 'num,maxele',num,MAXELE
CALL SLNPD(ZZ,V,DD,num, MAXELE)
C
C
C OUTPUT RESULTS (BE VERY CAREFUL INTERPRETING WHEN THERE IS SYMMETRY)
C
C
C

7100 FORMAT (3A24)
7120 FORMAT(I12,4F15.9)
3333 FORMAT (E15.6,A1,$)
watt=0.0
amp=0.0
ibeg=0
iend=0
DO 7777 i=1, cnum
cur (i)=dcmplx (0.00,0.00)
if(i.eq.1l) then
C IF FIRST CONDUCTOR THEN FIRST ELEMENT OF FIRST CONDUCTOR IS 1
ibeg=1
else
C Check previous conductor type if litz then previous conductor only
has one element
if(ttype(i-1).eq.2) then
ibeg=ibeg+l
else
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C If previous conductor is regular then calculate the begin element of
next conductor
ibeg=ibeg+ixdiv(i—l)*iydiv(i—l)
endif
endif
C if conductor is litz get the end element
if (ttype(i).eq.2) then
iend=iend+1l
else
C conductor is regular get end element
iend=iend+ixdiv (i) *iydiv (i)

endif

write (20, *) 'Conductor # ',1
write (40,*) 'Conductor # ',1
iflag=1

imult=1

write (20,3333) imult*1.0,','
write(40,3333) imult*1.0,

do 7766 ic=iend, ibeg, -1

if(ttype(i).eq.2) then
cur(i)=v(ic)*ixdiv(i)*iydiv(i)
delx=(Xdim((i—l)*4+2)—Xdim((i—l)*4+l))/ixdiv(i)
dely=(Ydim((i-l)*4+3)—Ydim((i—l)*4+2))/iydiv(i)
area=delx*dely*sf
pow(i)=ixdiv(i)*iydiv(i)*Rho(i)*len*lf

+* (abs (v(ic))/2**.5)**2/area

write (20,3333) abs(v(ic)), ',
write(20,%*)
write(40,3333) atan2(dreal(v(ic)),dimag(v(ic)))*180/pi,‘,'
write (40, *)

else
ix=iend-imult*ixdiv(i)+iflag
write (20,3333) abs(v(ix)),','
write (40,3333) atan2(dreal(v(ix)),dimag(v(ix)))*180/pi,','

if(iflag.eq.ixdiv(i)) then
iflag=0

imult=imult+l

write (20, *)

write(20,3333) imult*1.0,',"'
write (40, %)

write(40,3333) imult*1.0,',°'

endif
iflag=iflag+l
cur (i)=cur (i})+v(ic)
delx=(Xdim((i—l)*4+2)—Xdim((i—l)*4+l))/ixdiv(i)
dely=(Ydim((i—l)*4+3)—Ydim((i—l)*4+2))/iydiv(i)
area=delx*dely
pow(i)=pow(i)+Rho(i)*len*(abs(v(ic))/sqrt(2.0))**2/area
endif
7766 CONTINUE

watt=watt+pow (i)

amp=amp+cur (i)

phase=atan2(dreal(cur(i)),dimag(cur(i)))*l80.0/pi

cmag = abs(cur(i))
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write (40, *)
write (40, *)

write (40, *)

STOP
END

'ZTotal =
'Power Loss

'Effective Resistance=

',watt

,2.0*watt

R + JWL =',dcmplx(1,0)/amp

write(6,*) 'Conductor Current (real,imag) =',cur (i)
write(6,*) 'Conductor Current (mag phase) =',cmag, phase
write(6,*) 'Z=R + JWL =',Volt(i)/cur(i)
write (6, *) 'Power Loss = ,pow( i)
write(6,*) 'Effective Resistance= ',2.0*pow(i)/cmag**2.0
write (20, *) 'Conductor Current (real imag) = ,cur(l)
write (20, *) 'Conductor Current (mag,phase) =',cmag,phase
write(20,*) 'Z=R + JWL =',Volt (i) /cur (i)
write(20,*) 'Power Loss = ',pow(i}
write (20, *) 'Effective Resistance= ',2.0*pow(i)/cmag**2.0
write (40, *) 'Conductor Current (real,imag) =',cur(i)
write (40, *) 'Conductor Current (mag phase) ="', cmag, phase
write (40,*) 'Z=R + JWL =',Volt(i)/cur(i)
write (40, *) 'Power Loss = ,pow( i)
write(40,*) 'Effective Resistance= ' ,2.0*pow(i)/cmag**2.0
7777 CONTINUE
8000 CONTINUE
write(6,*) 'TOTAL Current (real, imag) =',amp
write(6,*) 'TOTAL
I',abs(amp),atan2(dreal (amp),dimag(amp))*180/pi
write(6,*) 'ZTotal = R + JWL =',dcmplx(1,0)/amp
write (6 ) 'Power Loss = ',watt
write (6 'Effective Resistance= ' ,2.0*watt/abs{amp)**2.0
write(ZO *) 'TOTAL Current (real, imag) =',amp
write (20, *)
"I(M,P)",abs (amp),atan2 (dreal (amp),dimag (amp))*180/pi
write(20,*) 'ZTotal = R + JWL =',dcmplx{(1l,0)/amp
write (20, *) 'Power Loss ', watt
write(20,*) 'Effective Resistance= ' ,2.0*watt/abs(amp)**2.0
write (40,*) 'TOTAL Current (real,imag) =', amp
write (40, *)
'"I(M,P)',abs (amp), atan2 (dreal (amp),dimag(amp)) *180/pi
(
(
(

/abs (amp) **2.0
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FILE PARMS.FOR

C positions for defining conductor boundaries for all conductors

C IMPLICIT NONE

C number of conductors*4
PARAMETER (MPOS=32)

C maximum number of conductors
PARAMETER (MAXCOND=4)

C maximum number of elements number of conductors*numelemx*numelemy
PARAMETER (MAXELE=4000)
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FILE LITZIO.FOR

C*******************************************************************
C*******************************************************************
C*******************************************************************
c***********-k*******************************************************
SUBROUTINE LITZIO(cnum,xsym,ysym,ttype,len,ixdiv,iydiv,Xdim

+,Ydim, Rho, freq,Volt, sf, 1£f)
C parms has all the parameter statements

include 'PARMS'
C positions for defining conductor boundaries for all conductors

REAL*8 Xdim {(MPOS)

C X coordinates of all physical conductors
C
REAL*8 Ydim (MPOS)
C Y coordinates of all physical conductors
C
COMPLEX*16 Volt (MAXCOND)
C The voltages across each conductor
C
REAL*8 Rho (MAXCOND)
C Resistivity of conductors
C
real len
C Length of conductors
C
real freq
C frequency in hz
C
integer ixdiv (MAXCOND)
C Divisions in x direction of conductors
cC

integer iydiv(MAXCOND)
Divisions in y direction of conductors

QO

integer ttype (MAXCOND)
ttype is type of conductor
O=solid-rectangular-nonlitz
l=hollow-rectangular-nonlitz
2=solid-rectangular-litz

QOO0

integer cnum, lur, INDEXX, INDEXY,II,JJ
character filename*17
character*48 atitle
real rl,img,xsym,ysym,sf,1lf
C********************* Input Data Feook %k ok ok ko ke ke ko ko ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok &
filename='litz.dat"'
lur=21
write(6,*) 'Reading DATA from ', filename
OPEN (lur, FILE=FILENAME)
9100 FORMAT (A8)
9101 FORMAT (I4)
9102 FORMAT (F11.5)
9103 FORMAT (2F11.5)
indexx=1



indexy=1
C READ IN TITLE
read(lur,9100) atitle
C READ IN NUMBER OF CONDUCTORS
read (lur, 9101) cnum
C READ IN X SYMMETRY INFORMATION
read(lur,9102) xsym
C READ IN Y SYMMETRY INFORMATION
read(lur, 9102) ysym
C READ IN CONDUCTOR TYPES
DO 200 ii=1,cnum
read(lur,9101) ttype(ii)
200 CONTINUE
C READ IN CONDUCTOR LENGTH
read(lur, 9102) len
C READ IN X divisions of conductors
DO 201 ii=1, cnum
read(lur, 9101) ixdiv(ii)
201 CONTINUE
C READ IN Y divisions of conductors
DO 202 ii=1, cnum
read(lur, 9101) iydiv(ii)
202 CONTINUE
C READ IN X COORDINATES
C every 4 places is one conductor
DO 203 1ii=1, cnum
DO 303 jj=1,4
read (lur,9102) Xdim(indexx)
indexx=indexx+1
303 CONTINUE
203 CONTINUE
C READ IN Y COORDINATES
C every 4 places is one conductor
DO 204 ii=1, cnum
DO 304 jj=1,4
read(lur, 9102) Ydim(indexy)
indexy=indexy+1
304 CONTINUE
204 CONTINUE
C READ IN RESISTIVITIES
DO 205 ii=1, cnum
read(lur, 9102) Rho(ii)
205 CONTINUE
C READ IN THE FREQUENCY
read (lur, 3102) freqg
C READ IN THE LITZ SPACE FACTOR
read(lur, 9102) sf
C READ IN THE LITZ LENGTH FACTOR
read(lur, 9102) 1f
C READ IN CONDUCTOR VOLTAGES
DO 206 ii=1l,cnum
read(lur, 9103) rl,img
Volt (ii)=dcmplx(rl, img)
206 CONTINUE
RETURN
end

128
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FILE VMAKE.FOR

C

SUBROUTINE VMAKE (cnum, num,V,Volt, ixdiv,iydiv, ttype)
parms has all the parameter statements in it
include'PARMS'

C positions for defining conductor boundaries for all conductors
C number of conductors*4

100

complex*16 Volt (MAXCOND)
complex*16 V(MAXELE)
logical 1litz
integer ixdiv (MAXCOND)
integer iydiv (MAXCOND)
integer ttype (MAXCOND)
integer range,cnum,num, inum
integer iicond,ielem
litz=.false.
iicond=0
range=0
inum=0
do 100 inum=1,num
call ltest(inum,litz,cnum,iicond, ttype,ixdiv,iydiv)
if(litz) then
V{inum)=dreal (Volt (iicond))
else
call ctest(ielem, inum, cnum, iicond, ixdiv, iydiv, ttype)
V{(inum)=dreal (Volt (iicond))
endif
continue
RETURN
END
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FILE ZMAKE.FOR

SUBROUTINE ZMAKE (cnum, ttype, num, freqg, len, xsym, ysym
+ ,Xdim, Ydim, Rho,ixdiv,iydiv, 2Z,sf,1f)

C parms has all the parameter statements in it

include 'PARMS'
C positions for defining conductor boundaries for all conductors
C number of conductors*4

Complex*16 ZZ (MAXELE,MAXELE)

REAL*8 Xdim (MPOS)

REAL*8 Ydim (MPOS)

REAL*8 Rho (MAXCOND)

integer ixdiv (MAXCOND)

integer iydiv (MAXCOND)

integer ttype (MAXCOND)

logical litz,litzrow,litzcol

integer cnum,num,row,col,iicond2,iicondl,iicond, ielem

integer ieleml,ielem2,ircondl,ircond2

real freq

real resis,react,l,len,M,pi,xsym,ysym,sf,1f

litz=.false.

ielem=0

ieleml=0

ielem2=0

ircondl=0

ircond2=0

iicond1l=0

iicond2=0

iicond=0

M=0.000

pi=3.1415926536
C row can be thought of as the element number at which the equation is
C being written

do 200 row=1l,num

do 300 col=1,num

if(row.eqg.col) then
C*******************************************************************

C*******************************************************************
c***************DIAGONAL OF SYSTEM MATRIX***************************

dhkhkhkhkhhkhkrhkhkhhkhkhhhkhdrhkkhkhkrhhkkhkhkhkhkkrkhkhkrkhdkhkhdrhkhkhkhkkrhkkhkdddhhkhkkhkhkkdhkrk
C

C*******************************************************************

C find out if the element is a litz conductor

C if it is, then iicond is the conductor number
call ltest(row,litz,cnum, iicond, ttype,ixdiv,iydiv)
if(litz) then

e de koK ok ok ok ok ok ok ke ks ok sk sk ok ok ok ok ok kK ok sk ok ok sk Rk ke ok ke ke ok sk ke ke kR ok ok ok ok ok ok ok ok ok

*FOR LITZ WIRE DIAGONAL TERMS OF THE SYSTEM MATRIX:*

ok ok ok ok okkdkkhkhkkkkkkkkkok ok ok ok okokkkkokok ok ok ok ok ok ok kk ok ok ok ok ok k ok ok ok ok ok
The impedance entry for the litz wire should be the sum of all the
litz elemental self and mutual impedances divided by the total number
of elements comprising the litzwire. This is done due to all litz
elemental currents assumed as being equal and when writing equations
for each litz element, introducing many extra equations. This takes
all the extra equations and averages them hopefully in the same
manner in which each individual wire in a litz conductor is

QOO0
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averaged or transposed throughout the cross section.
For the case of symmetry, one or three additional terms must be
added.
If there is x symmetry( symmetry about the y-axis)
then the mutual impedance of the litzwire with its counterpart
on the other side of the x-axis must be added not forgeting the
sign of the symmetry.{this is also divided by the number or elems)
If there is y symmetry(symmentry about the x-axis)
then the mutual impedance of the litzwire with its counterpart
on the other side of the x-axis must be added not forgetting the
sign of the symmetry. (this is also divided by the number or elems)
If there is both x and y symmetry, then the previous two terms
plus the mutual impedance of the litzwire with its counterpart
in the 3rd quadrant must be added. The sign of the 3rd quadrant
is the product of the x symmetry sign and the y symmetry sign.
(this is also divided by the number or elems)

calculate the resistance of a litz element

CALL LITZRESI (iicond,Xdim, Ydim,Rho,len,sf,1f,resis,

+ ixdiv, iydiv)

Calculate the mean self L of a litzwire element

CALL LITZSELF(iicond, ixdiv,iydiv,Xdim, Ydim, len,sf,1)

Calculate the symmetrical mutual terms if any

if(xsym.ne.0.0.0r.ysym.ne.0.0) then
CALL LITZSYMM (row,iicond, ixdiv, iydiv,Xdim, Ydim,
+ len, M, xsym, ysym)
endif
else

Khkkkkhkkkkhkkhkhkhhkhkhkhkdkkhkkkhkkhkhkkhhhkkhkkhhkkhkhkkkhkkhdkkdkokhdkkk

*FOR NON-LITZ WIRE DIAGONAL TERMS OF THE SYSTEM MATRIX:*
B R R N e e e R R R R E R R e R R e R R R R R E R R R R R R R R RS R ERE R R R RS RS
find out which conductor it is and which element

call ctest(ielem, row, cnum,iicond, ixdiv,iydiv, ttype)
calculate the elemental resistance
CALL RESIST(iicond,Xdim, Ydim,Rho, ixdiv,iydiv,len, resis)
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Calculate the elemental self inductance using Grover's Self

inductance formula for a rectangle
CALL SELFL(iicond,ixdiv, iydiv,Xdim, Ydim, len, 1)
Calculate the symmetrical mutual terms
CALL MUTSYMSL(ielem,iicond, ixdiv,iydiv,Xdim, Ydim,
+ len,M, xsym, ysym)
endif
diagonal of system matrix is resistance + reactance
system matrix entry
react=freg*2.0*pi* (1+M)

M=0.00

1=0.00

ZZ (row,col)=dcmplx (resis, react)
else

c*******************************************************************

C*******************************************************************

C***************NON_DIAGONAL OF SYSTEM MATRIX***********************

C*******************************************************************

c*******************************************************************

call ltest(row,litzrow,cnum,iicondl, ttype,ixdiv,iydiv)
call ltest(col,litzcol,cnum,iicond2,ttype,ixdiv,iydiv)
if(litzrow.and.litzcol) then
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C Calculate the mutual inductance between two litzwires
C and the symmetrical terms of the second litzwire
CALL LSYMMZ (iicondl,iicond2,ixdiv,iydiv,Xdim, Ydim,len
+ , Xsym, ysym, M)
endif
if(litzrow.and. (.not.litzcol)) then
C find out which normal conductor it is and which element
call ctest(ielem, col, cnum,iicond, ixdiv, iydiv, ttype)
C Calculate the mutual inductance between a litzwire and
C a normal conductor element (M is divided by elems)
C and the symmetrical terms of the conductor element
CALL LITZREG(iicondl,iicond,ielem, ixdiv,iydiv,Xdim,
+ Ydim, len, M, xsym, ysym)
endif
if((.not.litzrow).and.litzcol) then
C find out which normal conductor it is and which element
call ctest{(ielem, row,cnum,iicond,ixdiv,iydiv,ttype)
C Calculate the mutual inductance between a normal conductor
C element and a litzwire (M is not divided by elems)
C and the symmetrical terms of the litzwire
CALL REGLITZ (iicond, iicond2,ielem, ixdiv,iydiv,Xdim,
+ Ydim, len, M, xsym, ysym)
endif
if((.not.litzrow).and. (.not.litzcol)) then
C find out which conductors they are and which elements

call ctest(ieleml, row, cnum, ircondl, ixdiv,iydiv, ttype)
call ctest(ielem2, col, cnum, ircond2,ixdiv,iydiv, ttype)

C calculate the mutual reactance between elements
C and the symmetrical terms
CALL MUTSYM(ieleml,ielem2, ircondl,ircond?2, ixdiv,iydiv
+ ,Xdim, Ydim, len, M, xsym, ysym)
endif
react=M*freq*2.0*pi
M=0.00

resis=0.00
77 (row,col)=dcmplx (resis, react)
endif

300 CONTINUE
200 CONTINUE

RETURN
END
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FILE LITZRESIL.FOR

OO0

@

SUBROUTINE LITZRESI (iicond,Xdim, Ydim, Rho,len,sf,1f, resis,

+ixdiv,iydiv)
The purpose of this subroutine is to calculate the resistance of
a litz conductor by assuming is is just one element with a
constant current distribution. The area is multiplied by the
space factor of the litz wire while the length is multiplied
by the length factor. Then its R is broken up into an elemental R
by dividing the area by the total elements
to portray only one element

parms has all the parameter statements in it

include 'PARMS'
positions for defining conductor boundaries for all conductors

REAL*8 Xdim (MPOS)

REAL*8 Ydim (MPOS)

REAL*8 Rho (MAXCOND)

integer ixdiv (MAXCOND)

integer iydiv (MAXCOND)

integer iicond

real delx, dely,resis,area

real sf,1f,len

physical width of litz
delx=Xdim((iicond-1)*4+42)-Xdim( (iicond-1)*4+1)
physical height of litz
dely=Ydim((iicond-1)*4+3)-Ydim( (iicond-1) *4+2)
calculate the actual litz copper area
area=delx*dely*sf/(ixdiv{iicond) *iydiv(iicond))
calculate the resistance
resis=(Rho{iicond)*len*1f)/area

RETURN

end
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FILE LITZSELF.FOR

SUBROUTINE LITZSELF(iicond, ixdiv,iydiv,Xdim,Ydim,len,sf, 1)
The purpose of this subroutine is to calculate the
average self inductance of a litz conductor element by breaking the
Litz wire up and looping over the litz cross-section
and summing all the inductances in much the same way as
you would loop over a conductor cross-section to get
its self geometric mean distance. The result of this will
be entered into the diagonal of the impedance matrix
along with the resistance from LITZRESIS and any
symmetrical terms.
parms has all the parameter statements in it
include 'PARMS'
positions for defining conductor boundaries for all conductors

QOO0
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REAL*8 Xdim (MPOS)
REAL*8 Ydim (MPOS)
integer ixdiv (MAXCOND),iydiv (MAXCOND)
integer rowl,coll, row2,col2,iicond, isweepl, isweep?2
real xcl,xc2,ycl,yc?2
real divx, divy
real 11x1,11x2,urxl,urx?2
real 11yl,1lly2,uryl,ury2
real delx, dely,sf
real len,ltot,l,d
ltot=0.0
divx = ixdiv(iicond)
divy = iydiv(iicond)
do 500 isweepl=l,ixdiv(iicond)*iydiv(iicond)
do 400 isweep2=1,ixdiv(iicond)*iydiv(iicond)
if (isweepl.eq.isweep2) then
C calculate x dimension of element including sf
delx=sf**.5* (Xdim( (iicond-1)*4+2)-Xdim((iicond-1)*4+1))/divx
C calculate y dimension of element including sf
dely=sf**.5% (Ydim((iicond-1)*4+3)-Ydim( (iicond-1)*4+2))/divy
call self( delx, dely, len, 1)
else
C calculate x dimension of conductor
delx=Xdim({(iicond-1)*4+2)-Xdim( (iicond-1)*4+1)
C calculate y dimension of conductor
dely=Ydim{ (iicond-1)*4+3)-Ydim((iicond-1)*4+2)
C Center coordinates for litz elements
CALL GETRC (row2,col2, isweep2,divx)
11x2=(col2-1)*delx/divx+Xdim( (iicond-1)*4+1)
lly2=(row2-1)*dely/divy+Ydim( (iicond-1)*4+1)
urx2=col2*delx/divx+Xdim( (iicond-1) *4+1)
ury2=row2*dely/divy+Ydim( (iicond-1)*4+1)
xc2=(urx2+11x2)/2.00
yc2=(ury2+11y2)/2.00
CALL GETRC(rowl,coll, isweepl,divx)
11x1l=(coll-1) *delx/divx+Xdim( (iicond-1) *4+1)
llyl=(rowl-1) *dely/divy+Y¥dim((iicond-1) *4+1)
urxl=coll*delx/divx+Xdim( (iicond-1)*4+1)
uryl=rowl*dely/divy+Ydim((iicond-1)*4+1)
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xcl=(urxl+1lxl)/2.00
ycl=(uryl+llyl)/2.00
C calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT(d, len, 1)
endif
ltot=ltot+l
400 CONTINUE
500 CONTINUE
l1=1ltot/ (divx*divy)
RETURN
end
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FILE LITZSYMM.FOR

QO

QO

SUBROUTINE LITZSYMM(row, iicond, ixdiv,iydiv,Xdim, Ydim,
+len, MTOT, xsym, ysym)

The purpose of this subroutine is to calculate the mutual impedance
between the base litz wire with its symmetrical counterparts

parms has all the parameter statements in it
include 'PARMS'

positions for defining conductor boundaries for all conductors
number of conductors*4

REAL*8 Xdim (MPOS)
REAL*8 Ydim {(MPOS)
integer ixdiv (MAXCOND),iydiv (MAXCOND)
integer rowl,coll,row2,col2,iicond, isweepl, isweep?2
real xsym,ysym
real xcl,xc2,ycl,yc2
real divx,divy
real 11x1,11x2,urxl,urx?2
real 11yl,1ly2,uryl,ury2
real delx, dely
real len,MTOT,M,MX,MY, MXY,d
calculate x dimension of conductor iicond
delx=Xdim( (iicond-1)*4+2)-Xdim( (iicond-1)*4+1)
calculate y dimension of conductor iicond
dely=Ydim((iicond-1)*4+3)-Ydim( (iicond-1)*4+2)
MTOT=0.0
M=0.0
MX=0.0
MY=0.0
MXY=0.0
divx = ixdiv (iicond)
divy = iydiv(iicond)
do 500 isweepl=l,ixdiv(iicond)*iydiv(iicond)
calculate center coordinates of 1lst guadrant element
CALL GETRC (rowl,coll, isweepl,divx)
11xl=(coll-1)*delx/divx+Xdim( (iicond-1)*4+1)
llyl=(rowl-1)*dely/divy+Ydim( (iicond-1)*4+1)
urxl=coll*delx/divx+Xdim( (iicond-1)*4+1)
uryl=rowl*dely/divy+Ydim( (iicond-1)*4+1)
xcl=(urxl+11x1)/2.00
ycl=(uryl+llyl)/2.00

C**************************X SYMMETRY*******************************

C

do 400 isweep2=1,ixdiv(iicond)*iydiv(iicond)
calculate center coordinates of 2nd quadrant element
CALL GETRC (row2,col2,isweep?2,divx)
11x2=(col2-1)*delx/divx+Xdim{(iicond-1)*4+1)
1ly2=(row2-1)*dely/divy+Y¥dim((iicond-1)*4+1)
urx2=col2*delx/divx+Xdim{ (iicond-1)*4+1)
ury2=row2*dely/divy+Y¥dim((iicond-1)*4+1)

c**************************X SYMMETRY*******************************

if(xsym.ne.0.0) then
xc2=-(urx2+11x2)/2.00
yc2=(ury2+11y2)/2.00
calculate distance between elements
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d=((xcl-xc2)**2,.0+ (ycl-yc2)**2,.0)**.5
CALL MUT (d, len, M)
MX=MX+M
endif
C**************************Y SYMMETRY*********************Jr*********
if(ysym.ne.0.0) then
xc2=(urx2+11x2)/2.00
yc2=-(ury2+11y2)/2.00
C calculate distance between elements
d=((xcl-xc2)**2.0+(ycl-yc2)**2.0)**.5
CALL MUT({(d, len,M)
MY=MY+M
endif
C**************************XY SYMMETRY******************************
if (xsym*ysym.ne.0.0) then
xc2=-(urx2+11x2)/2.00
yc2=-(ury2+11y2)/2.00
C calculate distance between elements
d=((xcl-xc2)**2.0+(ycl-yc2)**2.0)**.5
CALL MUT(d, len,M)
MXY=MXY+M
endif
400 CONTINUE
500 CONTINUE
MTOT= (MX*xsym+MY*ysym+MXY*xsym*ysym) / (divx*divy)
RETURN
end
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FILE RESIST.FOR

. SUBROUTINE RESIST(iicond,Xdim, Ydim, Rho, ixdiv,iydiv
+,len,resis)
C The purpose of this subroutine is to calculate the elemental
C resistance of a conductor.
C parms has all the parameter statements in it
C positions for defining conductor boundaries for all conductors
include 'PARMS'
REAL*8 Xdim (MPOS)
REAL*8 Ydim (MPQOS)
REAL*8 Rho (MAXCOND)
integer iicond
real delx, dely,resis
real len
real divx, divy,area
integer iydiv (MAXCOND),ixdiv (MAXCOND)
divx = ixdiv(iicond)
divy = iydiv(iicond)
delx=(Xdim((iicond-1)*4+2)-Xdim( (iicond-1)*4+1)) /divx
dely=(Ydim((iicond—l)*4+3)—Ydim((iicond—l)*4+2))/divy
area=delx*dely
resis=Rho(iicond)*len/area
RETURN
end
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FILE SELFL.FOR

SUBROUTINE SELFL(iicond, ixdiv,iydiv,Xdim,¥Ydim,len,1)
C The purpose of this subroutine is to calculate the
C self inductance of an element of a particular conductor
C parms has all the parameter statements in it
include 'PARMS'
C positions for defining conductor boundaries for all conductors

REAL*8 Xdim (MPOS)

REAL*8 Ydim (MPOS)

integer ixdiv(MAXCOND),iydiv (MAXCOND)
integer iicond

real divx, divy

real delx, dely

real len,l

divx = ixdiv(iicond)
divy = iydiv(iicond)
C calculate x dimension of element
delx=(Xdim((iicond-1)*4+2)-Xdim((iicond~-1)*4+1))/divx
C calculate y dimension of element

dely=(Ydim((iicond-l)*4+3)—Ydim((iicond—l)*4+2))/divy
call self( delx, dely, len, 1)

RETURN

end
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SUBROUTINE MUTSYMSL (ielem, iicond, ixdiv, iydiv,Xdim, Ydim,
+len,MTOT, xsym, ysym)
C The purpose of this subroutine is to calculate the mutual impedance
C between the base element its symmetrical counterparts
C parms has all the parameter statements in it
include 'PARMS'
C positions for defining conductor boundaries for all conductors

REAL*8 Xdim (MPOS)
REAL*8 Ydim (MPOS)
integer ixdiv (MAXCOND),iydiv (MAXCOND)
integer ielem,rowl,coll,iicond
real xsym,ysym
real xcl,xc2,ycl,yc?2
real divx,divy
real 11x1,urxl
real 1llyl,uryl
real delx, dely
real len,Mtot,M,MX,MY,MXY,d
Mtot=0.0
M=0.0
MX=0.0
MY=0.0
MXY=0.0
divx = ixdiv(iicond)
divy = iydiv{(iicond)
delx=(Xdim((iicond-1)*4+2)-Xdim( (iicond~-1)*4+1}))
dely=(Ydim( (iicond-1)*4+3)-Ydim((iicond-1)*4+2))
C calculate center coordinates of base element
CALL GETRC (rowl,coll,ielem, divx)
11x1l=(coll-1)*delx/divx+Xdim( (iicond-1)*4+1)
llyl=(rowl-1)*dely/divy+Y¥dim((iicond-1)*4+1)
urxl=coll*delx/divx+Xdim( (iicond-1)*4+1)
uryl=rowl*dely/divy+Y¥dim( (iicond-1)*4+1)
xcl=(urxl+11x1)/2.00
ycl=(uryl+llyl)/2.00
C**************************X SYMMETRY*******************************
if(xsym.ne.0.0) then
Xc2=-xCcl
yc2=ycl
C calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT(d, len, M)
MX=M
endif
C**************************Y SYMMETRY*******************************
if(ysym.ne.0.0) then
xc2=xcl
ycz=-ycl
C calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT(d, len,M)
MY=M

140
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endif
C**************************XY SYMMETRY******************************

if (xsym*ysym.ne.0.0) then

xc2=-xcl
yc2=-ycl
C calculate distance between elements

d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT (d, len,M)

MXY=M

endif
MTOT=MX*xsym+MY*ysym+MXY*xsym*ysym
RETURN

end
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FILE LSYMMZ.FOR

SUBROUTINE LSYMMZ (iicondl,iicond2, ixdiv,iydiv,Xdim,Ydim, len,
+xsym, ysym, M)
The purpecse of this subroutine is to calculate the
the symmetrical mutual inductances between two litzwires remembering
to divide the result by the number of elements in iicondl
parms has all the parameter statements in it
include 'PARMS'
positions for defining conductor boundaries for all conductors

OHONON®]
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REAL*8 Xdim (MPOS)

REAL*8 Ydim (MPOS)

integer ixdiv (MAXCOND),iydiv (MAXCOND)
integer rowl,coll, row2,col2,iicondl, iicond2, isweepl, isweep2
real xsym,ysym

real xcl,xc2,ycl,yc2,M,MX,MY,MXY, MM
real MXTOT,MYTOT,MXYTOT, MMTOT

real divxl,divx2,divyl,divy2

real 11x1,11x2,urxl,urx2

real 1lyl,1lly2,uryl,ury?2

real delxl,delx2,delyl, dely2

real len,d

MMTOT=0.0

MXTOT=0.0

MYTOT=0.0

MXYTOT=0.0

MM=0.0

MX=0.0

MY=0.0

MXY=0.0

M=0.0

divxl = ixdiv(iicondl)

divx2 = ixdiv(iicond2)

divyl = iydiv(iicondl)

divy2 = iydiv(iicond2)

C calculate x dimension of base conductor iicondl

delxl=Xdim((iicondl-1)*4+2)-Xdim((iicondl-1)*4+1)

C calculate y dimension of base conductor iicondl

delyl=Ydim((iicondl-1)*4+3)-Ydim( (iicondl-1)*4+2)

C calculate x dimension of conductor iicond2

delx2=Xdim((iicond2-1)*4+2)-Xdim((iicond2-1)*4+1)

C calculate y dimension of conductor iicond2

dely2=Ydim((iicond2-1)*4+3)-Ydim( (iicond2-1)*4+2)

Mutual inductance between iicondl and iicond2 in

first quadrant

do 500 isweepl=1l,ixdiv(iicondl)*iydiv(iicondl)

C calculate center coordinates of base element
CALL GETRC (rowl,coll, isweepl,divxl)
l1lxl=(coll-1)*delxl/divxl+Xdim((iicondl-1)*4+1)
llyl=(rowl-1)*delyl/divyl+Ydim((iicondl-1)*4+1)
urxl=coll*delxl/divx1+Xdim{ (iicondl-1)*4+1)
uryl=rowl*delyl/divyl+Ydim((iicondl-1})*4+1)
xcl=(urxl+llxl)/2.00
ycl=(uryl+llyl)/2.00

[ON@!
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400
500

do 400 isweep2=1,ixdiv{iicond2)*iydiv(iicond2)
calculate center coordinates of element
CALL GETRC (row2,col2,isweep?2,divx?2)
11x2=(col2-1)*delx2/divx2+Xdim{ (iicond2-1)*4+1)
lly2=(row2-1)*dely2/divy2+Ydim({iicond2-1)*4+1)
urx2=col2*delx2/divx2+Xdim( (iicond2-1)*4+1)
ury2=row2*dely2/divy2+¥dim( (iicond2-1) *4+1)
xc2=(urx2+11x2)/2.00
yc2=(ury2+11y2)/2.00
calculate distance between elements
d=( (xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT(d, len, MM)
MMTOT=MMTOT+MM

Mutual inductance between iicondl and iicond2 in
second quadrant

if(xsym.ne.0.0) then
xc2=-(urx2+11x2)/2.00
yc2=(ury2+11ly2)/2.00
calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT (d, len, MX)
MXTOT=MXTOT+MX

endif

Mutual inductance between iicondl and iicond2 in
third quadrant

if(ysym.ne.0.0.and.xsym.ne.0.0) then
xc2=-(urx2+11x2)/2.00
yc2=-(ury2+11y2)/2.00
calculate distance between elements
d=((xcl-xc2)**2.0+{ycl-yc2)**2.0)**.5
CALL MUT (d, len, MXY)
MXYTOT=MXYTOT+MXY

endif

Mutual inductance between iicondl and iicond2 in
fourth quadrant

if (ysym.ne.0.0) then
xc2=(urx2+11x2)/2.00
yc2=-(ury2+11y2) /2.00
calculate distance between elements
d=((xcl-xc2)**2.04+ (ycl-yc2)**2.0)**.5
CALL MUT (d, len, MY)
MYTOT=MYTOT+MY

endif

CONTINUE

CONTINUE

M= (MMTOT+MXTOT *xsym+MXYTOT*xsym*ysym+MYTOT*ysym) / (divxl*divyl)

RETURN

end
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FILE LITZREG.FOR

SUBROQUTINE LITZREG(iicondl,iicond2,ielem, ixdiv, iydiv,Xdim,
+Y¥dim, len, M, xsym, ysym)
The purpose of this subroutine is to calculate the
the mutual inductance between a litzwire and a regular
conductor remembering to divide the result by the number of
elements in iicondl
parms has all the parameter statements in it
include 'PARMS'
positions for defining conductor boundaries for all conductors

OO0 o0an

@]

REAL*8 Xdim (MPOS)
REAL*8 Ydim (MPOS)
integer ixdiv (MAXCOND),iydiv (MAXCOND)
integer rowl,coll,row2,col2
real xsym,ysym
integer ielem,iicondl,iicond2,isweepl
real xcl,xc2,ycl,yc2,M,MX,MY, MXY, MM
real divxl,divx2,divyl,divy2
real 11x1,11x2,urxl,urx2
real 1lyl,lly2,uryl,ury?2
real delxl,delx2,delyl, dely2
real len,d
MM=0.0
MX=0.0
MY=0.0
MXY=0.0
M=0.0
divxl = ixdiv(iicondl)
divx2 = ixdiv(iicond?2)
divyl iydiv(iicondl)
divy2 = iydiv(iicond2)
C calculate x dimension of base conductor iicondl
delxl=Xdim((iicondl-1)*4+2)-Xdim((iicondl-1)*4+1)
C calculate y dimension of base conductor iicondl
delyl=Ydim((iicondl-1)*4+3)-Ydim( (iicondl-1)*4+2)
C calculate x dimension of conductor iicond2
delx2=Xdim( (iicond2-1)*4+2)-Xdim( (iicond2-1)*4+1)
C calculate y dimension of conductor iicond?
dely2=Ydim({(iicond2-1)*4+3)-Ydim({(iicond2-1)*4+2)
Mutual inductance between iicondl and iicond2 in
first quadrant
C calculate center coordinates of regular element
CALL GETRC (row2,col2,ielem,divx2)
11x2={(col2-1)*delx2/divx2+Xdim( (iicond2-1)*4+1)
1ly2=(row2-1)*dely2/divy2+Ydim( (iicond2-1)*4+1)
urx2=col2*delx2/divx2+Xdim( (iicond2-1)*4+1)
ury2=row2*dely2/divy2+Ydim( (iicond2-1)*4+1)
xc2=(urx2+11x2)/2.00
yc2=(ury2+11ly2)/2.00
do 500 isweepl=1l,ixdiv(iicondl)*iydiv(iicondl)
C calculate center coordinates of base element
CALL GETRC(rowl,coll, isweepl,divxl)
llxl=(coll-1)*delxl/divxl+Xdim((iicondl-1)*4+1)

a0



llyl=(rowl—l)*delyl/divy1+Ydim((iicondl—l)*4+l)
urxl=coll*delxl/divx1l+Xdim{ (iicondl=-1)*4+1)
uryl=rowl*delyl/divyl+Yydim( (iicondl-1)*4+1)
xcl=(urxl+1llxl)/2.00

ycl=(uryl+llyl)/2.00

C calculate distance between elements
d={((xcl-xc2)**2.0+(ycl-yc2)**2.0)**.5
CALL MUT(d, len, MM)

M=M+MM

500 CONTINUE

C Mutual inductance between iicondl and iicond2 in

C second guadrant

if (xsym.ne.0.0) then

xcl2=-{urx2+11x2)/2.00

yc2=(ury2+11y2)/2.00

do 501 isweepl=1,ixdiv(iicondl)*iydiv(iicondl)

C calculate center coordinates of base element
CALL GETRC (rowl,coll, isweepl,divxl)
11xl=(coll-1)*delxl/divxl+Xdim((iicondl-1)*4+1)
llyl=(rowl=-1)*delyl/divyl+Ydim((iicondl-1) *4+1)
urxl=coll*delxl/divxl+Xdim( (iicondl-1)*4+1)
uryl=rowl*delyl/divyl+Ydim( (iicondl-1)*4+1)
xcl=(urxl+l1lxl)/2.00
ycl=(uryl+1llyl)/2.00

C calculate distance between elements
d=((xcl-xc2)**2.0+(ycl-yc2)**2.0)**.5
CALL MUT(d, len, MX)

M=M+MX*xsym
501 CONTINUE
endif
C Mutual inductance between iicondl and iicond2 in
C third quadrant
if(ysym.ne.0.0.and.xsym.ne.0.0) then
xc2=-(urx2+11x2)/2.00
yc2=-(ury2+11y2)/2.00
do 502 isweepl=1l,ixdiv{(iicondl)*iydiv(iicondl)

C calculate center coordinates of base element
CALL GETRC (rowl,coll, isweepl,divxl)
1lxl=(coll-1)*delxl/divxl+Xdim((iicondl-1)*4+1)
llyl={(rowl-1)*delyl/divyl+Ydim((iicondl-1)*4+1)
urxl=coll*delxl/divxl+Xdim( (iicondl-1)*4+1)
uryl=rowl*delyl/divy1+Ydim((iicondl—l)*4+1)
ycl=(uryl+llyl)/2.00

'DAS
xcl=(urxl+11x1)/2.00
C calculate distance between elements

d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT (d, len, MXY)
M=M+MXY*xsym*ysym
502 CONTINUE
endif
C Mutual inductance between iicondl and iicond2 in
C fourth quadrant
if(ysym.ne.0.0) then
xc2=(urx2+11x2)/2.00
yc2=-(ury2+11y2)/2.00
do 503 isweepl=l,ixdiv(iicondl)*iydiv(iicondl)
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calculate center coordinates of base element
CALL GETRC (rowl,coll, isweepl,divxl)
1lxl=(coll-1)*delxl/divxl+Xdim((iicondl-1)*4+1)
llyl=(rowl-1)*delyl/divyl+Y¥dim((iicondl-1)*4+1)
urxl=coll*delxl/divxl+Xdim( (iicondl-1)*4+1)
uryl=rowl*delyl/divyl+Ydim((iicondl-1)*4+1)
xcl=(urxl+11x1)/2.00

yecl=(uryl+1llyl)/2.00

calculate distance between elements
d=((xcl-xc2)**2.0+(ycl-yc2)**2.0)**.5

CALL MUT(d, len, MY)

M=M+MY*ysym

503 CONTINUE

QOO0

endif
THIS ASSUMES THAT ALL ELEMENTAL VOLTAGES IN THE LITZ IRE ARE
THE SAME WHICH SHOULD BE THE CASE PROVIDED ALL STRANDS ARE CONNECTED
(I really should be dividing by the sum
of all elemental voltages ) but I just divide by the number of
elements so I don't have to modify the voltage vector

M=M/ (divxl*divyl)

RETURN

END
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FILE REGLITZ.FOR

SUBRQUTINE REGLITZ(iicondl,iicond2,ielem, ixdiv,iydiv,Xdim,
+Ydim, len, M, xsym, ysym)
The purpose of this subroutine is to calculate the
the mutual inductance between a regular conductor element and a
whole litzwire conductor remembering not to divide by the number of
elements in iicond2
parms has all the parameter statements in it
include 'PARMS'
positions for defining conductor boundaries for all conductors

QOO0

@]

REAL*8 Xdim (MPOS)
REAL*8 Ydim (MPOS)
integer ixdiv(MAXCOND),iydiv (MAXCOND)
integer rowl,coll,row2,col?2
real xsym,ysym
integer ielem,iicondl,iicond2, isweep?2
real xcl,xc2,ycl,yc2,M,MX,My,MXY, MM
real divxl,divx2,divyl,divy2
real 11x1,11x2,urxl,urx?2
real 1lyl,1ly2,uryl,ury?2
real delxl,delx2,delyl,dely2
real len,d
MM=0.0
MX=0.0
MY=0.0
MXY=0.0
M=0.0
divxl = ixdiv(iicondl
divx2 = ixdiv(iicond2
divyl = iydiv(iicondl
divy2 = iydiv(iicond2
C calculate x dimension of base conductor iicondl
delxl=Xdim( (iicondl-1)*4+42)-Xdim((iicondl-1)*4+1)
C calculate y dimension of base conductor iicondl
delyl=Ydim((iicondl-1)*4+3)-Ydim( (iicondl-1)*4+2)
C calculate x dimension of conductor iicond2
delx2=Xdim( (iicond2-1)*4+2)-Xdim( (iicond2-1)*4+1)
C calculate y dimension of conductor iicond?
dely2=Ydim((iicond2—l)*4+3)—Ydim((iicond2-1)*4+2)
Mutual inductance between iicondl and iicond2 in
first quadrant
C calculate center coordinates of base element
CALL GETRC(rowl,coll,ielem,divxl)
1lxl=(coll-1)*delxl/divxl+Xdim{{(iicondl-1)*4+1)
1lyl=(rowl-1)*delyl/divyl+Ydim((iicondl-1)*4+1)
urxl=coll*delxl/divxl+Xdim( (iicondl-1)*4+1)
uryl=rowl*delyl/divyl+Ydim( (iicondl-1)*4+1)
xcl=(urxl+11x1)/2.00
ycl=(uryl+llyl)/2.00
do 500 isweep2=1,ixdiv{iicond2)*iydiv(iicond2)
C calculate center coordinates of litz element
CALL GETRC(row2,col2,isweep2,divxZ)
11x2=(col2-1)*delx2/divx2+Xdim((iicond2-1)*4+1)

)
)
)
)

[@Ne!



lly2=(row2-1) *dely2/divy2+Ydim((iicond2-1)*4+1)
urx2=col2*delx2/divx2+Xdim( (iicond2-1) *4+1)
ury2=row2*dely2/divy2+Ydim((iicond2-1) *4+1)
xc2=(urx2+11x2)/2.00

yc2=(ury2+11y2)/2.00

C calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT (d, len, MM)

M=M+MM

500 CONTINUE

C Mutual inductance between iicondl and iicond2 in

C second quadrant

if (xsym.ne.0.0) then
do 501 isweep2=1,ixdiv{(iicond2)*iydiv(iicond2)

C calculate center coordinates of base element
CALL GETRC (row2,col2, isweep2,divx2)
11x2=(col2-1)*delx2/divx2+Xdim( (iicond2-1) *4+1)
1ly2=(row2-1) *dely2/divy2+¥dim( (iicond2-1) *4+1)
urx2=col2*delx?2/divx2+Xdim( (iicond2-1)*4+1)
ury2=row2*dely2/divy2+Ydim( (iicond2-1) *4+1)
xc2=-(urx2+11x2)/2.00
yc2=(ury2+11y2)/2.00

C calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT (d, len, MX)

M=M+MX*xsym
501 CONTINUE
endif
C Mutual inductance between iicondl and iicond2 in
C third quadrant
if(ysym.ne.0.0.and.xsym.ne.0.0) then
do 502 isweep2=1,ixdiv(iicond2)*iydiv(iicond2)

C calculate center coordinates of base element
CALL GETRC (row2,col2, isweep2,divx2)
11x2=(col2-1) *delx2/divx2+Xdim( (iicond2-1) *4+1)
1ly2=(row2-1)*dely2/divy2+Ydim((iicond2-1) *4+1)
urx2=col2*delx2/divx2+Xdim( (iicond2-1) *4+1)
ury2=row2*dely2/divy2+Ydim( (iicond2-1)*4+1)
xc2=-(urx2+11x2)/2.00
yc2=-(ury2+11y2)/2.00

C calculate distance between elements
d=((xcl-xc2)**2,0+(ycl-yc2)**2.0)**.5
CALL MUT(d, len, MXY)

M=M+MXY*xsym*ysym
502 CONTINUE
endif
C Mutual inductance between iicondl and iicond2 in
C fourth quadrant
if(ysym.ne.0.0) then
do 503 isweep2=1,ixdiv(iicond2)*iydiv(iicond2)

C calculate center coordinates of base element
CALL GETRC (row2,col2, isweep2,divx2)
11x2=(col2-1)*delx2/divx2+Xdim((iicond2-1) *4+1)
lly2=(row2—l)*dely2/divy2+Ydim((iicond2—1)*4+1)
urx2=col2*delx2/divx2+Xdim( (iicond2-1)*4+1)
ury2=row2*dely2/divy2+Y¥dim( (iicond2-1)*4+1)
xc2=(urx2+11x2)/2.00
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yc2=-(ury2+11y2)/2.00
C calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT({(d, len,MY)
M=M+MY*ysym
503 CONTINUE
endif
RETURN
END
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FILE MUTSYM.FOR

SUBROUTINE MUTSYM(ieleml, ielem2,ircondl,ircond2,ixdiv,iydiv
+,Xdim, Ydim, len, MTOT, xsym, ysym)
The purpose of this subroutine is to calculate the mutual impedance
between the base element and another element plus
its symmetrical counterparts
parms has all the parameter statements in it
include 'PARMS'
positions for defining conductor boundaries for all conductors

QOO0

@]

REAL*8 Xdim (MPOS)

REAL*8 Ydim (MPOS)

integer ixdiv(MAXCOND), iydiv (MAXCOND)
integer rowl, coll, row2,col2,ircondl, ircond2
integer ieleml,ielem2

real xsym,ysym

real xcl,xc2,ycl,yc2

real divxl,divx2,divyl,divy2

real 11x1,11x2,urxl,urx?2

real 1lyl,1lly2,uryl,ury?2

real delxl,delx2,delyl,dely2

real len,MTOT,M, MM, MX, MY, MXY

real d,dtmpx,dtmpy

MTOT=0.0

divxl= ixdiv(ircondl
divyl= iydiv(ircondl

)
)
ircond?2)
)

(
{
divx2= ixdiv(
divy2= iydiv{ircond2
delxl=(Xdim( (ircondl-1)*4+2)-Xdim({ircondl-1)*4+1))
delyl= (Ydim( (ircondl-1)*4+3)-Ydim( (ircondl-1)*4+2))
delx2=(Xdim( (ircond2-1)*4+2)-Xdim( (ircond2-1) *4+1})
) ))

dely2= (Ydim( (ircond2-1)*4+3)-Ydim( (ircond2-1)*4+2
C calculate center coordinates of both elements
CRALL GETRC (rowl,coll,ieleml,divxl)
11x1l=(coll-1)*delxl/divxl+Xdim( (ircondl-1)*4+1)
lly1=(rowl—l)*delyl/divyl+Ydim((ircondl—l)*4+l)
urxl=coll*delxl/divxl+Xdim( (ircondl-1)*4+1)
uryl=rowl*delyl/divyl+Y¥dim( (ircondl-1)*4+1)
xcl=(urxl+11x1)/2.00
ycl=(uryl+1llyl)/2.00
CALL GETRC (row2,col2,ielem2,divx2)
11x2=(col2-1)*delx2/divx2+Xdim( (ircond2-1)*4+1)
lly2=(row2—1)*dely2/divy2+Ydim((ircond2—l)*4+l)
urx?2=col2*delx2/divx2+Xdim( (ircond2-1)*4+1)
ury2=row2*dely2/divy2+Y¥dim( (ircond2-1)*4+1)
xc2=(urx2+11x2)/2.00
yc2=(ury2+11y2)/2.00
C calculate distance between elements
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dtmpx= (xcl-xc2)

dtmpy=(ycl-yc2)
d=(dtmpx**2+dtmpy**2)**.5

C write (20,*) 'In Mutsym dtmpx,dtmpy,d="',dtmpx,dtmpy,d
CALL MUT(d, len, M)
MM=M

C calculate

C**************************X SYMMETRY*******************************

if (xsym.ne.0.0) then
C calculate center coordinates of 2nd quadrant element
xc2=-(urx2+11x2)/2.00
yc2=(ury2+11y2)/2.00
C calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT (d, len, M)
MX=M
endif
C**************************Y SYMMETRY*******************************
if(ysym.ne.0.0) then
xc2=(urx2+11x2)/2.00
yc2=-(ury2+11y2)/2.00
C calculate distance between elements
d=(({xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT({(d, len, M)
MY=M
endif
C**************************XY SYMMETRY******************************
if (xsym*ysym.ne.0.0) then
xc2=- (urx2+11x2)/2.00
yc2=-(ury2+11y2)/2.00
C calculate distance between elements
d=((xcl-xc2)**2.0+ (ycl-yc2)**2.0)**.5
CALL MUT(d, len,M)
MXY=M
endif
MTOT=MM+MX*xsym+MY *ysym+MXY*xsym*ysym
RETURN
end
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FILE MUT.FOR

Q OHONONONO NSNS

@

SUBROUTINE MUT (d, len, M)
This subroutine calculates the mutual inductance of two
areas. M is calculated by putting current filaments
at the center of their areas and using the current
filament mutual inductance formula from page 31 in Grover's
Inductance Calculations

parms has all the parameter statements
include 'PARMS'
positions for defining conductor boundaries for all conductors

real M, len,d
calculate the mutual inductance for two parallel filaments spaced
d apart with a length of len Grover page 31
write(20,*) 'In Mut d=',d,len

M=(.002*len* (log(len/d +(1.00+len*len/d/d) **.5)
+ -(1.00+d*d/len/len)**.5 + d/len))/1000000.0

RETURN
END
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FILE SELF.FOR

SUBROUTINE self( a, b, len, 1)

C GMD Taken from The Theory and Practice of Absolute Measurements
C in Electricity and Magnetism by Andrew Gray MA Volume IT
C Self Inductance Formula taken from Grover's Inductance Calculations
C Page 35
real tl,t2,t3,t4,t5,t6
real a,b

real len,l

C a and b are the x and y dimension of the element
real r

C Geometric mean distance between two rectangles
t1=0.5*1log (a*a+b*b)
t2=-b*b*log(l.0+a*a/b/b)/12.0/a/a
t3=-a*a*log(l.0+b*b/a/a)/12.0/b/b
t4=2.0*b*atan(a/b)/3.0/a
t5=2.0*a*atan{b/a)/3.0/b
t6=-25.0/12.0
r=exp (tl1+t2+t3+£4+t5+t6)
l=.002*len*(log(2.0*len/(a+b))+.5—(log(r/(a+b))+l.5))/(l.Oe+6)

RETURN
end
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subroutine ctest(ielem, row,cnum,iicond, ixdiv,iydiv,ttype)

QO

number in
C parms has
INCLUDE
C positions for
integer
integer
integer
integer
integer
ielem=0
inum=0
range=0

irange=0
iicond=0

The purpose of this subroutine is to return the conductor

iicond and the number of element it is in ielem
all the parameter statements in it

' PARMS'

defining conductor boundaries for all conductors
ixdiv (MAXCOND)

iydiv (MAXCOND)

ttype (MAXCOND)

range, cnum

iicond, ielem, row, icond, inum, irange, irangeprev

irangeprev=0

do 99 icond=1, cnum
irangeprev=range

if (ttype(icond) .eqg.2) then

range=

else

range+1l

range=range+ixdiv(icond) *iydiv (icond)

endif

if(row.

le.range.and.row.gt.irangeprev) then

iicond=icond
irange=range

endif

99 continue

ielem=row - (irange-ixdiv(iicond)*iydiv(iicond))

return
end
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FILE LTEST.FOR

C

SUBROUTINE LTEST(element,litz,cnum,iicond,ttype,ixdiv,iydiv)
parms has all the parameter statements in it

include

' PARMS'

C positions for defining conductor boundaries for all conductors

C

99

integer
integer
integer
integer
logical

ttype (MAXCOND)

ixdiv (MAXCOND)

iydiv (MAXCOND)
element, icond, cnum, iicond, inum
litz

litz=.false.

inum=0

do 99 icond=1, cnum
if(ttype(icond).ne.2) then
inum=inum+ixdiv (icond) *iydiv (icond)

else

inum=inum+1l
if (element.eqg.inum) then

litz=.

true.

iicond=icond

endif
endif

continue

RETURN
END
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FILE GETRC.FOR

SUBROUTINE GETRC (row,col,ielem,divx)
integer row,col,ielem

real divx

integer itest

itest=ielem/divx

if(ielem.eq. (itest*divx)) then
row=itest
col=divx

else

row=ielem/divx+1l
col=ielem-divx* (row-1)

endif

RETURN

END
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FILE SLNPD.FOR

SUBROUTINE SLNPD(A,B,D,N, NX)
implicit real*8(a-h,o0-2z)

C
C SOLUTION OF LINEAR SYSTEMS OF EQUATIONS
C BY THE GAUSS ELIMINATION METHOD PROVIDING
C FOR INTERCHANGING OF ROWS WHEN ENCOUNTERING A
C ZERO DIAGONAL COEFFICIENT
C
C A:SYSTEM MATRIX
C B:ORIGINALLY IT CONTAINS THE INDEPENDANT COEFFICIENTS.
C AFTER SOLUTION IT CONTAINS THE VALUES OF THE SYSTEM UNKNOWNS.
C
C N:ACTUAL NUMBER OF UNKNOWNS
C NX:ROW AND COLUMN DIMENSION OF A
C
COMPLEX*16 A(NX,NX),B(NX),C,D
C DO 9999 I99=1,N
C WRITE(6,*)"' A(',I99,',J)=",(A(I99,J),J=1,N)

C9999 CONTINUE
TOL = 1.E-35
TOLl = 1.E-15
N1l = N-1
DO 100 K=1,N1
Kl =K + 1
C = A(K,K)
IF(abs(C)-TOLl) 1,1,3
1 DO 7 J=K1,N

C TRY TO INTERCHANGE ROWS TO GET NONZERC DIAGONAL COEFFICIENT

IF (abs (A(J,K))-TOL1) 7,7,5
5 DO 6 L=K,N
C=A (K, L)
A(K,L) = A(J,L)
6 A(J,L) =C
C=B(K)
B(K) = B(J)
B(J) =C
C = A(K,K)
GO TO 3
7 CONTINUE
GO TO 8
c NO DIAGONAL FOUND -> ERROR RETURN
C
C DIVIDE ROW BY DIAGONAL COEFFICIENT
C
3 C=A (K, K)
DO 4 J=K1,N
A(K,J) = A(K,J)/C
4 CONTINUE
B(K) = B(K)/C
C

C ELIMINATE UNKNOWN X (K) FROM ROW I
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C
DO 10 I=K1l,N
IF(abs(A(I,K)).LT.TOL) GO TO 10
C = A(I,K)
DO 9 J=KI1,N
c IF(abs(A(K,J)).LT.TOL) GO TO 9
A(I,J) = A(I,J) - C*A(K,J)
9 CONTINUE
B(I) = B(I) -C*B(K)
10 CONTINUE
100 CONTINUE
C
C COMPUTE LAST UNKNOWN
C
IF (abs (A(N,N))-TOLl) 8,8,101
101 B(N) = B(N)/A(N,N)
C

C APPLY BACKSUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS
C
DO 200 L=1,N1

K=N-L
K1=K+1
DO 200 J=KI1,N
B(K) = B(K) - A(K,J)*B(J)
200 CONTINUE
C
C COMPUTE VALUE OF DETERMINANT
C
D= 1.
C DO 250 I=1,N
C D = D*A(I,I)
C250 CONTINUE
RETURN
8 WRITE(3,2) K
2 FORMAT (' ****** SINGULARITY IN ROW',I5)
D=0.
RETURN

END
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