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ABSTRACT

The purpose of this thesis is twofold. The first is to use ABEL-HDL design

software and Programmable Logic Devices (PLD's) to implement the logic ofa digital

circuit in a more efficient manner than classic digital design techniques allow. The second

is to give enough introductory details about PLD's and the ABEL design process that

other students may use this thesis as a guide in learning to use ABEL and PLD's in their

digital designs. The thesis explores some ABEL design techniques for programming

PLD's and applies the concepts to reducing the total chip count ofa digital circuit created

by the author using 7400-series logic in a previous graduate course. The results of the

experimental design implementation are discussed and ideas given for further study into

the topic by future thesis students.
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CHAPTER 1

INTRODUCTION

Major improvements have been made in the field of digital circuit design in the

last 15 to 20 years. As many are aware, advancements have been made in chip fabrication

techniques allowing greater operating speed, lower power consumption, and improved

reliability. However, the most revolutionary improvement in digital design has been the

types of devices in which designs may be implemented. One of the most popular of these

is a class of devices known as Programmable Logic Devices (PLD's). PLD's and some

programming techniques for using them in digital designs will be emphasized in this paper.

Every undergraduate Electrical Engineering student is exposed to digital design

techniques during the course of his or her study. These digital design courses generally

employ 7400-series TTL logic chips as the devices of choice for implementing designs.

From an academic point ofview, this makes sense in that these devices typically contain

only a few logic gates or flip-flops per chip and are easily understood by newcomers to the

subject of digital design. These devices are commonly available, inexpensive, require no

special programming, and merely need to be powered and wired properly to work in a

circuit. However, breadboarding and debugging anything more than a simple circuit can

be extremely time-consuming and frustrating. The number of logic chips needed to

implement the design can also become quite large. Power consumption and the physical

size of the final circuit are also valid concerns. For these and other reasons industry has

tended to shy away in most cases from using 7400-series logic for most digital circuit

designs.
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On the other hand, Programmable Logic Devices (PLD's) allow digital circuit

designers to implement designs with just a few chips, the actual number depending on the

complexity of the design and the types of devices used for implementation. Combinatorial

or sequential designs may be programmed into a PLD by the user via a device programmer

unit. The resultant device is able to perform the same logic functions that would've taken

numerous 7400-series chips to accomplish using traditional design methods (Figure 1

shows an example of this). Breadboarding times drop enormously, and most debugging

can be done at the design level rather than at the physical device and circuit level. The

reduction in chip count also leads to reductions in power consumption, physical circuit

size, and cost. For these reasons, programmable logic is now employed in many

commercial and industrial digital circuit designs.

Fig. 1.1 - Comparison of a 7400-series circuit (left) and the PLD that replaces it (right)

The ABEL Hardware Description Language from Data I/O Corporation is

used in this project for all PLD programming and in all of the programming examples and

descriptions. It's a very powerful software package for programming PLD's, but it has a

significant learning curve. To the best of the author's knowledge, the work done in this

project goes much further into this subject than what any other YSU Electrical

Engineering student has done thus far. Therefore, this project and paper may be useful as
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a guide to other students who wish to use ABEL-HDL and PLD's in their designs. The

lessons and techniques that were learned by the author and are presented here could save

others some struggling and headaches and get them on the road to programming PLD's

more quickly. This forms a secondary purpose of the thesis and is responsible for the

order of appearance of the subjects presented.

The main purpose of this project is to investigate and test some methods of

using ABEL-HDL design techniques and PLD's to reduce the chip count ofa digital

circuit. After an introduction to PLD types and their features (Chapter II), the

ABEL-HDL design software is examined with respect to command types and program file

structures (Chapter III). This knowledge is then applied to reduce the chip count in an

experimental circuit designed and built by the author in a previous graduate digital design

course, employing 7400-series design techniques and devices. Despite efforts to make the

original design as efficient as possible, the final chip count totaled 31. In contrast, the final

PLD implementation requires only 4 devices in order to duplicate the logic of the original

circuit (plus a few chips used to isolate the PLD chips from possible harm). The original

experimental circuit design is discussed in Chapter IV. This is then followed by the PLD

experimental circuit design in Chapter V.

Finally, the project results are examined and some ideas for future research are

gIven. During the course of this project, various problems or items of interest were

encountered that could provide a student an opportunity for further study, but were

deemed by the author to be outside the scope of this thesis project. These are presented in

Chapter VI.
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CHAPTERll

AN OVERVIEW OF PLD'S

2.1 - Historical Background

Until the mid 1970's, digital circuit designers basically had two choices in how

to physically implement their designs. The first method was to use off-the-shelf

7400-series devices to build their circuits. This technique had advantages such as low

development costs, short design times, and the ability to build and test circuits without the

need for specialized programming equipment. However, circuits constructed in this

manner tend to be large in size and power consumption. The second method was to use

mask-programmed devices. These were custom manufactured (often by photo-etching)

devices produced by chip foundries that were designed to satisfY the logical functions

specified by the customer's design. Generally, the equivalent logic of hundreds or

thousands ofgates can be implemented in one device package. Using these devices in

designs leads to smaller circuit sizes along with reduced power requirements. However,

design times for mask-programmed devices are usually long and development costs can be

high. Also, elaborate and complicated testing procedures are often needed to evaluate the

programmed devices. For these and other reasons, large production volumes of the end

circuit are generally necessary in order to justifY using these devices in digital designs. It

was apparent that a desirable solution for digital circuit designers would be to have

devices with relatively large equivalent gate densities, but also have the ability to be

programmed by the designer. This would result in a best ofboth worlds situation: the
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reduced circuit size afforded by mask-programmed devices, and the design flexibility of

off-the-shelf devices.

The early 1970's saw the introduction of the first PROM (Programmable

Read-Only Memory). It was soon found that these devices could be used to implement

some simple logic functions as well as their intended data-storing function. These devices

quickly became popular with designers. However, PROM's were limited in what types of

logic functions they could implement.

The PLA (Programmable Logic Array) made it's appearance in the mid 1970's.

This type of device allowed designers to program logic functions using classic SOP (Sum

ofProducts) format. The PLA was originally just a combinatorial logic device. However,

it did not take chip manufacturers long to add feedback paths and flip-flops, thus creating

a class ofPLA-based devices capable of implementing sequential logic as well.

PLD's finally caught on in popularity with digital designers after the

introduction of the PAL (Programmable Array Logic) in the late 1970's. These devices

also feature SOP logic implementation and come in combinatorial and registered forms.

However, they forfeit some of the user-programmability of the PLA in favor of device

speed and simplicity. Regardless, PAL-type devices have grown to be one of the most

popular PLD types in use today. They have grown to include many advanced features that

can be controlled by the designer. CMOS versions have also been introduced. These

devices may be erased electrically and reprogrammed by the designer, making the design

and debugging process more efficient and cost-effective.

Universal programming software became readily available in the early 1980's

and quickly found a home on personal computers. ABEL-HDL from Data VO

Corporation was one of the first full-featured design software packages and is still an

industry standard today. Other software packages are also commonly used in industry, an

example ofwhich is CUPL (Common Universal tool for Programmable Logic) from

Logical Devices. It was initially developed at about the same time ABEL-HDL was being
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developed. Many other software packages exist which tend to offer fewer design features.

Device manufacturers also occasionally offer design software that is oriented toward their

particular brand of devices.

The last major advancement in programmable logic occurred in the mid-1980's

with the introduction of the FPGA (Field Programmable Gate Array). With an equivalent

gate density in the thousands and performance rivaling that of mask-programmed devices,

this type of device was a radical departure from PLD' s. FPGA's are made up of many

LCA's (Logic Cell Array) along with signal routing lines. The LCA essentially consists of

a small number ofgates that can be programmed to implement a simple logic function.

These LCA's are then connected by the user with programmable signal routes. This

arrangement leads to greater design flexibility than PLD's can offer, but also more

complex methods of programming. Except for the fact that they are programmable

devices, FPGA's are so different in design from PLD's that they may be considered to be a

family of devices outside the realm ofPLD's. For this reason, the author chose not to

focus attention on them.

2.2 - Types of PLD's

The device structures ofPROM's, PLA's, and PAL's each contain

programmable fuse arrays that are used by the designer to program the desired logic

functions into the device. Array connections that are not needed for the design logic have

their respective fuses blown. Fuses are left intact for array connections that are necessary

for the programmed logic functions. Each of the three types ofPLD have AND and OR

arrays that are used to implement logic in SOP form. What distinguishes them from each

other is which arrays can be programmed by the user and which ones have permanent

connections.
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The PROM (see Fig. 2.1) has a fixed AND array that provides all of the

possible input product terms. The OR array has fused connection points and can be

programmed by the user. Any output in a PROM can be the sum of any or all of the

outputs from the AND array. This arrangement is adequate for uses such as address

decoders or data storage. SOP logic functions can also be implemented and sequential

logic is a possibility, but external storage registers are needed. These uses for PROM's

are rather inefficient, however. Every combination of inputs is available in the AND array

in a PROM, but very rarely are all of these product terms used in a logic function.

Therefore, much of the device resources go to waste. Also, since all product terms are

available for a given number of inputs, each additional input doubles the number of terms

in the AND array (# of terms = 2n, where n = # of inputs). This increases the physical size

and complexity of the device and tends to put a practical limit on the number of inputs

available.

OR FUSE ARRAY

PERMANENT
AND ARRAY

Fig. 2.1 - Example of a PROM device
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PLA devices (see Fig. 2.2) are the most flexible type ofPLD. They have both

AND and OR fuse arrays that may be programmed by the designer. The AND array

resources are more limited than in PROM's and it is impossible to have every possible

product term represented. This reduces the physical size of the device, but it forces the

designer to perform some minimization of the design logic to be implemented. As in

PROM's, any output can be the sum of any or all of the product terms in the AND array.

This allows for product sharing in the outputs and can lead to more efficient use of device

resources. However, while PLA devices are very flexible for design implementations, they

are limited in speed due to the need for signals to propagate through two fuse arrays.

Figure 2.3 shows an example of a PLA type of device that includes registers and

feedbacks.

AND FUSE ARRAY

OR FUSE ARRAY

Fig. 2.2 - Example of a PLA device
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PAL devices (see Fig. 2.4) have fused AND arrays like in the PLA, but have

fixed OR arrays. Generally, only one OR gate is assigned to each output pin. The

product terms associated with one OR gate are not available to the other OR gates in the

array, thus making product sharing all but impossible. In addition, a limited number of

product terms are available in the AND array. Therefore, logic minimization is very

9

It"I"t
1 ••• 1 •••

0""'"

"1' II t I
111"'"
II. J '" 17.0.1 ••••

.1' • 1'1'
.. " •• J ll', .
• • • • I •••

IO ~,

It ~

12 02,

I3 ::.,

14 ~

IS~'

I6 [j

IS 7

I.
110 '=LJ

t ~- .,

"S~n
II

~-~

---B

....;;;c

~
• ;r

-- ~ ;L
..

::~~

H Hi

-
~,_;J--,.....,
c::l: ..:r
~-,-

-

---::-c- ::::1: I++H-i+f-+++++H+-.JL...r:..>-----,HL..t.H II
! I

.,.T
+

, !
++++++++-++++++++----"--J::>--,-j,;-iI i JJ

'--1\.:1=
++t-++H+-+++H-++f-+++++H+-H+++++!--++H++++~-++l-+· _ ....IL.p-- -;0

'''A-

Ii
LJ

~
~-IFI
~~ ! ~

! I

! I
i I, ,
I'
f l
LJ

NOTE: i='USE NU~8EFt .. FlqS,. FUSE NU~BER ... INCQEMf;N1"

Fig. 2.3 - Example ofa PLA device (FI05) with registers and feedback

PAL devices (see Fig. 2.4) have fused AND arrays like in the PLA, but have

fixed OR arrays. Generally, only one OR gate is assigned to each output pin. The

product terms associated with one OR gate are not available to the other OR gates in the

array, thus making product sharing all but impossible. In addition, a limited number of

product terms are available in the AND array. Therefore, logic minimization is very



10

important when using PAL devices. These devices have a speed advantage over PLA's,

though, since signals only need to propagate through one fuse array. Figure 2.5 shows an

example ofa combinatorial PAL. A example ofa registered PAL is shown in Fig. 2.6.

More advanced PAL devices feature output macrocells. These macrocells are

configurable by the designer to form combinatorial or registered output configurations

with programmable output polarities. These devices with macrocells are extremely

flexible and can often directly replace many other types ofPAL with just one device. An

example ofa macrocell-type PAL is shown in Fig. 2.7. The possible macrocell

configurations for that device are depicted in Fig. 2.8.

AND FUSE ARRAY

PERMANENT
OR ARRAY

Fig. 2.4 - Example of a PAL device
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Fig. 2.7 - Example ofa macrocell PAL device (GAL22VIO)
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This only scratches the surface of the number ofPLD types that are available.

Those readers who are interested in more information on whichtypes ofPLD's exist

(including FPGA's) and the history of their development are referred to Practical Design

Using Programmable Logic2 by David Pellerin and Michael Holley. This book proved to

be an invaluable resource to the author in preparing this papeL The Data I/O LQgic.

Diagram Package4 manual (a companion to the ABEL manuals) is also a good reference.

It contains detailed schematics of over 200 PLD's.
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CHAPTERllI

AN OVERVIEW OF ABEL-HDL

3.1 - Program Features

ABEL-HDL is a powerful software package that allows the digital designer to

implement designs in PLD's using familiar techniques such as Boolean equations, truth

tables, and state diagrams. Using a text editor such as MS-DOS Edit or ABEL's built-in

editor, the designer enters the description of the logic to be implemented. The description

can be quite specific, even to the point of defining actual fuse assignments, if the end

device for implementation is known. However, ABEL also allows the designer to describe

the design logic in very generic terms without specifying an end device. ABEL then has

the ability to determine (along with an optional set of criteria defined by the user) which

devices are capable of implementing the design logic. A variety of logic minimization

algorithms are built into the program and can be used to simplify the design logic.

Extensive simulation capabilities exist in for determining the validity of the design logic at

multiple stages of the ABEL design process. Finally, once the design logic has been

"fitted" into a particular device, a fuse data file may be created for downloading to a

device programmer unit.

The version of ABEL-HDL used by the author in this project is ABEL 4.10

(Version 4.03 was used initially, but was later upgraded to 4.10). It was released in 1991

or 1992 and runs under MS-DOS. The latest release is ABEL 6. It runs under Microsoft

Windows and offers many graphical add-on utilities such as the StateCAD Graphical

Design Entry program (allows graphical state diagram design entry) and Waveform
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Viewer (allows simulation results to be displayed in familiar timing chart form). However,

the same program structures and command syntaxes exist as in ABEL 4 for DOS.

Therefore, the design examples depicted in this project are still valid. In fact, the DOS

version of ABEL still exists under a new title: ABEL-FLO. Data I/O offers it as an

entry-level means of programming PLD's. However, it is not capable ofusing the

graphics utilities and other advanced features of ABEL 6.

3.2 - Command Syntax

ABEL uses a set of symbols for Boolean operators that is different from those

introduced in classical digital design courses. These are used throughout this paper and in

the design examples and are summarized in Table 3.1.

TABLE 3.1

ABEL BOOLEAN OPERATORS

S mbol
!

&
#
$
!$

Descri tion
NOT

AND
OR

Exclusive OR

Exclusive NOR

Assignment operators are used to assign values to an output. These are used

when writing equations. Separate symbols are used for combinatorial or registered

outputs. Using a registered assignment operator in describing the logic for an output

indicates that the output will take on the evaluated value of that logic at the next clock

cycle. Assignment operators are shown in Table 3.2.
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TABLE 3.2

ABEL ASSIGNMENT OPERATORS

S mbol Descri tion
combinatorial output assignment

registered output assignment

Relational operators are used for comparing two items in an expression. They

are primarily employed for conditional decision-making in state diagrams, but can also be

used in equations. These are listed in Table 3.3. They are straight-forward except for the

symbol for the 'equal' condition. The usage of two '=' symbols was necessary in order to

differentiate the condition of' equal' from the combinatorial assignment operator.

TABLE 3.3

ABEL RELATIONAL OPERATORS

Symbol

!=
<

<=

>
>=

Description
equal

not equal
less than

less than or equal

greater than

greater than or equal

ABEL allows signals, either inputs or outputs, to be grouped into sets. This

allows some simplification for the designer in writing the design logic. An example would

be in the case of state variables. Say there are four state variables in the design, yl

through y4. If the design logic requires the comparing of state values, it would simplifY

things if the state variable were grouped into a set. For example:

State_Value = [yl,y2,y3,y4]

Then, instead of writing logic that compares the value of each state variable individually,

the designer may compare the value ofthe set as a whole. For example:

IF (State_Value == 5) THEN...
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ABEL also allows numeric values to be expressed in bases other than ten.

Base ten is assumed whenever a number is used. If the designer wishes to express a

numeric value in a different base, a base operator prefix must be used. These are shown in

Table 3.4.

TABLE 3.4

ABEL BASE OPERATOR PREFIXES

Base System
binary
octal

decimal
hexadecimal

Prefix
I\b
1\0

I\d
I\h

Using these base prefixes, the state value in the above example could also be expressed in

another base, say binary:

IF (State_Value == Ab010l) THEN...

These descriptions of command syntax that have been given are by no means

exhaustive, but are sufficient for understanding the design examples to follow in this

paper. Iffurther syntax-related information is desired, the reader is referred to the ABEL

User Manual. 3

3.3 - Source File Structures

A digital logic design that is implemented in ABEL must conform to a standard

file format. There are a number of required structures in an ABEL source file. However,

there are also a number of optional items that the designer may include to simplifY or

clarifY the design. A sample ABEL source file is shown in Fig. 3.1. It's part of the

experimental circuit that will be discussed later. At the moment, it will serve to

demonstrate the structures, both required and optional, of an ABEL file.
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module
title

inputcon
'Input Conditioner, Tug-o-war Game'

20

declarations

inputcon device 'p16v8as';

CLK
P1 IN
P2-IN
Y1
Y2
Y3
Y4
P1 OUT
P2 OUT

equations

pin 1;
pin 2;
pin 3;
pin 17;
pin 16;
pin 15;
pin 14;
pin 19;
pin 18;

Y1 = (P1 IN & Y1.pin) * (CLK & Y2.pin) ;
Y2 = (!CLK & P1 IN) * (P1 IN & Y2.pin) * (CLK & Y2.pin) ;
P1 OUT = (P1 IN-& !Y2.pin) * (!CLK & P1 IN & !Y1.pin);
Y3-= (P2 IN &Y3.pin) * (CLK & Y4.pin) ;-
Y4 = (!CLK & P2 IN) * (P2 IN & Y4.pin) * (CLK & Y4.pin);
P2_0UT = (P2_IN-& !Y4.pin) * (!CLK & P2 IN & !Y3.pin);

test vectors 'Pulse catcher for P1'

CLK,P1 IN -> P1 OUT 1 )

0, 0 -> 0 l;
0, 1 -> 1 1 ;
1, 1 -> 0 l;
1, 1 -> 0 1 ;
0, 1 -> 0 l;
0, 1 -> 0 l;
1, 1 -> 0 1 ;
1, 0 -> 0 l;
0, 0 -> 0 1 ;
0, 0 -> 0 l;
1, 0 -> 0 l;
1, 1 -> 1 l;
0, 1 -> 1 1 ;
0, 1 -> 1 1 ;
1, 1 -> 0 l;
1, 1 -> 0 1 ;
0, 1 -> 0 1 ;
0, 0 -> 0 1 ;
1, 0 -> 0 l;

end

Fig. 3.1 - Sample ABEL logic design source file

The first few lines at the top of the file form a Header. The Header is a

required structure, but includes optional elements as well. The 'module' statement is

required. It defines the beginning of the source file and gives the module a name. In this

example, the module name is 'inputcon'. An optional title may be given to the module. It
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pin 17;
pin 16;
pin 15;
pin 14;
pin 19;
pin 18;

Y1 = (P1 IN & Y1.pin) * (CLK & Y2.pin) ;
Y2 = (!CLK & P1 IN) * (P1 IN & Y2.pin) * (CLK & Y2.pin) ;
P1 OUT = (P1 IN-& !Y2.pin) * (!CLK & P1 IN & !Y1.pin);
Y3-= (P2 IN &Y3.pin) * (CLK & Y4.pin) ;-
Y4 = (!CLK & P2 IN) * (P2 IN & Y4.pin) * (CLK & Y4.pin);
P2_0UT = (P2_IN-& !Y4.pin) * (!CLK & P2 IN & !Y3.pin);

test vectors 'Pulse catcher for P1'

CLK,P1 IN -> P1 OUT 1 )

0, 0 -> 0 l;
0, 1 -> 1 1 ;
1, 1 -> 0 l;
1, 1 -> 0 1 ;
0, 1 -> 0 l;
0, 1 -> 0 l;
1, 1 -> 0 1 ;
1, 0 -> 0 l;
0, 0 -> 0 1 ;
0, 0 -> 0 l;
1, 0 -> 0 l;
1, 1 -> 1 l;
0, 1 -> 1 1 ;
0, 1 -> 1 1 ;
1, 1 -> 0 l;
1, 1 -> 0 1 ;
0, 1 -> 0 1 ;
0, 0 -> 0 1 ;
1, 0 -> 0 l;

end

Fig. 3.1 - Sample ABEL logic design source file

The first few lines at the top of the file form a Header. The Header is a

required structure, but includes optional elements as well. The 'module' statement is

required. It defines the beginning of the source file and gives the module a name. In this

example, the module name is 'inputcon'. An optional title may be given to the module. It
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is indicated with the 'title' statement. This statement is not acted on by the ABEL

compiler, but it does allow the title to show up in the documentation produced by ABEL.

Next comes the Declarations structure. This area of the file is reserved for

indicating details such as device type, signal-to-pin assignments, signal attributes, and

user-defined constants and sets. The 'declarations' statement is not a required element.

ABEL assumes that any statements following the Header and preceding the Logic

Structure(s) (equations, truth_table, and state_diagram) are indeed declarations. In this

example, the'device' statement is used to declare the PLD intended to be used and the

'pin' statement is used to declare signal-to-pin assignments. If a generic approach is being

taken in the design process, the device line and the pin numbers may be eliminated. ABEL

can be made to find devices that the module will 'fit' into and automatically assign pin

numbers to the defined input/output signals.

Following the Declarations are the Logic Structures. These portions of the

source file define the design logic. The descriptions may be equations, truth tables, or

state diagrams. At least one of these Logic Structures are required in a module, but it's

also valid in many situations to have more than one type in the same source file. A Logic

Structure begins with a required keyword. These keywords are 'equations', 'truth_table',

and 'state_diagram'. The Logic Structure used in the example source file is equations.

After the Logic Structures, the designer may include a set of Test Vectors.

This structure is optional, but it is highly advisable that it be used. It allows the designer

to verifY that the design logic functions as intended. This structure begins with the

'test_vectors' keyword. The designer then writes a set ofvectors that tell ABEL how

particular outputs behave when subjected to certain input stimuli. Using these test

vectors, it is possible to describe all of the functional behavior of the design logic. Once

the ABEL source file has been compiled, the resulting compiled logic may be simulated

through the use of the test vectors. The input portion of the vectors are used to stimulate

the compiled logic and the results are compared to the output portion of the vectors.
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ABEL alerts the designer to any discrepancies between the expected output values and the

values determined by the simulation. This is a great aid to the designer in debugging a

logic design.

Finally, the module is terminated with the 'end' keyword. This is a required

structure. It's optional for the module name to follow the 'end' keyword, but it's rarely

used in practice.

3.4 - ABEL Design Flow

All processing of an ABEL source file takes place in the ABEL Design

Environment. Upon typing'ABEL4' at the DOS prompt, the ABEL Design Environment

screen appears. A sample screen is shown in Fig. 3.2.

1DIlI1jl11 Wlell lio"plle ~tlM1Z8 i"artPart ~U1ap IJlefaulls Welp

liB···
Save ~••.

I~nt .•.
Shell

Save and taxl t ~
~~lt

.,
~i

Fig. 3.2 - A sample ABEL Design Environment screen

The ABEL source file may be created in the built-in screen editor or created

externally. Either way, once it is loaded into the ABEL Design Environment, it then may

be compiled via commands in the 'Compile' pull-down menu. If the source file includes

test vectors, they then may be simulated (also from the 'Compile' menu). If errors occur

22

ABEL alerts the designer to any discrepancies between the expected output values and the

values determined by the simulation. This is a great aid to the designer in debugging a

logic design.

Finally, the module is terminated with the 'end' keyword. This is a required

structure. It's optional for the module name to follow the 'end' keyword, but it's rarely

used in practice.

3.4 - ABEL Design Flow

All processing of an ABEL source file takes place in the ABEL Design

Environment. Upon typing'ABEL4' at the DOS prompt, the ABEL Design Environment

screen appears. A sample screen is shown in Fig. 3.2.

1DIlI1jl11 Wlell lio"plle ~tlM1Z8 i"artPart ~U1ap IJlefaulls Welp

liB···
Save ~••.

I~nt .•.
Shell

Save and taxl t ~
~~lt

.,
~i

Fig. 3.2 - A sample ABEL Design Environment screen

The ABEL source file may be created in the built-in screen editor or created

externally. Either way, once it is loaded into the ABEL Design Environment, it then may

be compiled via commands in the 'Compile' pull-down menu. If the source file includes

test vectors, they then may be simulated (also from the 'Compile' menu). If errors occur



23

in the compilation or simulation processes, they may be seen using commands from the

'View'menu. The 'View' menu also allows the designer to view documentation

produced by other ABEL processes.

Having been compiled, the source file then is optimized. There are a number

oflogic minimization options available in the 'Optimize' menu. The optimized source file

may then be simulated (also in the 'Optimize' menu).

The optimized file is then 'fitted' into a device. This is accomplished from the

'SmartPart'menu. If the design is generic in nature, the Device Database may be searched

for PLD's in which the design is capable ofbeing implemented. Ifa device-specific design

is being used, the device is already known. Either way, the source file may be fitted into

the device and the results simulated. The signal-to-pin assignments may also be calculated

by ABEL at this time, if they have not already been assigned in the source file.

Once the source file is fitted into a device, a JEDEC fuse file is created. The

options for doing this are found in the 'PartMap' menu. This fuse file may then also be

simulated. The resulting <filename>.jed file should then be copied onto a 3-112" disk to

be read by the Unisite programmer. This JEDEC file contains the actual fuse data for the

physical process of programming the PLD with the design logic.

The above directions are meant to be only an introduction into the ABEL

design process. For further information, the reader is again referred to the ABEL User

Manual.3
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CHAPTER IV

ORIGINAL EXPERIMENTAL DESIGN IMPLEMENTATION

4.1 - Design Concept

The ABEL design examples that will be discussed are derived from a digital

circuit designed and built by the author in a graduate digital logic design course during the

summer of 1992. 7400-series devices were used in the design implementation. Every

effort was made to limit the total chip count, but in spite of these efforts, the final tally

came to 31 chips.

The circuit was designed to be a 'Tug ofWar' game. The concept is depicted

in Fig. 4.1. The 'rope' consisted ofnine red LED's arranged in a row. A lit LED

indicated the 'knot' position on the rope. A green LED on either end of the rope

indicated the respective winner of the game. A game was started by pressing the RESET

button. A time delay of about 1.5 seconds occurred and then a piezo buzzer sounded to

signal both players to begin pushing their respective buttons. They would continue to

push their buttons until the knot was 'pulled' to their respective winner LED. The piezo

buzzer would then sound three times to indicate that a win condition occurred. The game

then waited in this state until the RESET button was pressed again and another game

would start. In addition, there were two more features. First, all LED's would be lit at

power up to test that they were functioning. Also, if a player would push his button prior

to the 'GO' signal from the buzzer, it was considered cheating and the other player would

automatically win. The final circuit was tested and functioned as intended.
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A block diagram ofthe system design is shown in Fig. 4.2. The system

consisted of four main circuits: the Game Controller, Output Controller, Timing

Controller, and Input Conditioner.

,...--TLJG 0 WAR

•o 0000_0000 e
WIN • WIN

ONo ~ [J .:~:. [J
PLAYER r CFf RESET PLAYER:l.

Fig. 4.1 - Tug ofWar game concept
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4.2 - Game Controller

The Game Controller managed all of the game rules and course of play. It

would issue signals to the Output Controller shift registers to dictate LED 'movement'

and to the Timing Controller to indicate that a time delay or a winner signal should be

started. Communications with the Output Controller were handled synchronously.

However, because the Timing Controller operated at a much slower clock frequency than

the Game Controller, communications with it were accomplished through asynchronous

handshaking. The Game Controller design itselfwas implemented as a Moore-type

sequential circuit. The state diagram is shown in Fig. 4.3 and the circuit schematic is

depicted in Fig. 4.4. It may also be interesting to note that the 7400-series circuit seen in

Fig. 1.1 is the actual original Game Controller circuit.

/power--Llp
/

/
/

SRI

) HL.D

RSET

Fig. 4.3 - State diagram of Game Controller circuit
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4.3 - Output Controller

The Output Controller was in charge of controlling the status of the LED's and

alerting the Game Controller when a win condition had occurred. The circuit (see Fig.

4.5) was composed primarily of three 4-bit universal shift registers connected in series.

The LED signals came directly from the shift register outputs. The shift and broadside
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load signals and data bits came from the Game Controller. In order to get win status

information back to the Game Controller in a synchronous manner, the shift registers were

made to clock on the falling edge of the system clock pulse (note inverter on clock signal).

This ensured that no signal lag occurred.
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Fig. 4.5 - Schematic for original Output Controller circuit
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4.4 - Timing ControUer

The Timing Controller took care of all timing routine and sound effect duties.

The circuit was built around a 4-bit binary counter clocked at a very slow pace

(approximately 5-10 Hz). This difference in clock speeds (the system clock frequency was

set to about 1-5 kHz) mandated that the timing functions be relegated to a separate circuit

and that communications between it and the Game Controller be asynchronous in nature.

The Timing Controller design was implemented as a Mealy-type synchronous circuit,

using the counter outputs as state registers. The state diagram is shown in Fig. 4.6 and

the circuit schematic is depicted in Fig. 4.7.

a. - oooe
b - 000/

c. - 00/0

d - 0011

e - 0100

.f - 010/

~ - 01/0

h - 0/1/.
L - /000

j - /00 /

k - /0 /0

1 - /01/
11'1 - /100

STftP.T/SP/(f(.OR
(Re.st.t)

STARr/ SPKf<, OK

(Cov"t)

STAAT. WI"'Jo/E~/5PKR, OK

(Reset)

WINN£fI,./SPKRJO¥:

(R.es~t )

Fig. 4.6 - State diagram for original Timing Controller design
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Fig. 4.7 - Schematic of original Timing Controller circuit

The 7493 4-bit counter counts when its control inputs (RI and R2) are held

low and asynchronously resets the count outputs to zero when the control inputs are high.

This feature was used in the design to enable the START time delay to be interrupted

upon a player cheating. The counter would then immediately (i.e. asynchronously) reset

to state 'a' and the WINNER routine could be performed.
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4.5 - Input Conditioner

The Input Conditioner was needed due to the asynchronous nature of the

signals from the player pushbuttons. The pulses from the pushbuttons needed to be

captured and synchronized with the system clock so that they could be serviced by the

Game Controller. It was also desired that the pulses be turned into one-shots in order to

prevent a player from being lazy and simply hold his button down. These conditions made

it a logical choice to implement the design as an asynchronous sequential circuit that had

the system clock signal as one of its inputs. Some cross-coupled NAND's and pull-up

resistors were also employed to debounce the pushbuttons. The timing and state diagrams

are shown in Fig. 4.8 and the circuit schematic in Fig. 4.9.

TIMING DIAGRAM
I

! --:-n
i 1'---:--

CLJ(./N/OuT

¢ 'IN/OiiT

CL.I(.¢/wr
eLK"N/O;;;-

STATE DIAGRAM

Fig. 4.8 - Timing and state diagrams for original Input Conditioner circuit
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CHAPTER V

ABEL EXPERIMENTAL DESIGN IMPLEMENTATION

5.1 - Design Concept

The main objective for the ABEL implementation of the Tug ofWar game

circuit was to maintain the functionality of the original circuit while only using one PLD

for each of the four system components (i.e. Game Controller, Output Controller, Timing

Controller, and Input Conditioner). Two deviations from this plan were made, however.

First, it was necessary to make some changes in the signals between the Game Controller

and the Output Controller. This was due to device limitations and will be discussed in

more detail. Secondly, the decision was made to separate the debouncing circuitry from

the Input Conditioner and the LED output inverters from the Output Controller. The

reasoning for this was to isolate the logic portions (i.e. the PLD's) from the input/output

circuits and protect them from any possible harm. Quad NAND and hex inverter chips are

cheap and plentiful and can be replaced easily if damaged. PLD's are more expensive and

generally are not stocked at consumer electronics stores, necessitating ordering from

catalogs.

ABEL 4, being DOS-based, only supports up to eight character length

filenames. Therefore, the filenames (and module names) for the Game Controller, Output

Controller, Timing Controller, and Input Conditioner became GAMECON, OUTCON,

TIMECON, and INPUTCON, respectively.

Macrocell-type PAL devices were used for all four of the system components.

This resulted in great flexibility in terms of the availability of equivalent device

architectures because of the configurable nature of the macrocells. In particular GAL
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TIMECON, and INPUTCON, respectively.

Macrocell-type PAL devices were used for all four of the system components.

This resulted in great flexibility in terms of the availability of equivalent device

architectures because of the configurable nature of the macrocells. In particular GAL
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devices from Lattice Semiconductor Corporation were used. These are CMOS devices

and are electrically erasable and reprogrammable. This feature reduced the number of

chips needed for experimentation since they could be reused if the logic programmed into

them did not function as intended. Manufacturer data sheets for these devices are

included in Appendix B.

5.2 - GAMECON

The GAMECON module (see Fig. 5.1) was programmed as a Moore-type

sequential circuit just as the original Game Controller had been designed. The state

assignments and state transitions remain true to the original design specifications. Three

separate modifications were made to the input/output signals, though. The LEDI and

LED2 outputs from the original circuit were combined into one named LED. LED1 and

LED2 are identical logically and were only separated in the first place because of fanout

concerns. These concerns don't exist inside the PLD. Secondly, the WIN input to the

original circuit was eliminated and both WI and W2 from the Output Controller were

brought in instead. Therefore, the win status determination would be made in the logic of

the GAMECON module rather than in the OUTCON module. This was done because of

resource restrictions in the device used for the OUTCON design that will be explained

later. Finally, an output named CLOCK was created. This signal consists only of an

inversion of the CLK input. It was also necessary for use in the OUTCON design for

reasons that will be explained later.

There are a number of items in the GAMECON file that need to be introduced.

First, in the Declarations section, the reader will notice the use of the 'istype' statement.

This statement is used to tell ABEL what type of attribute should be assigned to a given

output. For example, S1 is defined to have the output attribute of a 'buffer' (i.e. positive

logic). Register output attributes were assigned to yl through y4. If this had not been
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Module
Title

Declarations

gamecon
'Game Controller, Tug-o-war Game'

35

gamecon device 'p26cv12';

CLK
P1
P2
RSET
OK
W1
W2
Sl
SO
WINNER
START
LR
LED
y1,y2,y3,y4
CLOCK

pin 1;
pin 2;
pin 3;
pin 4;
pin 8;
pin 9;
pin 10;
pin 27 istype 'buffer';
pin 26 istype 'buffer';
pin 17 istype 'buffer';
pin 18 istype 'buffer';
pin 25 istype 'buffer';
pin 24 istype 'buffer';
pin 23,22,20,19 istype 'reg';
pin 16 istype 'buffer';

Stval [y1,y2,y3,y4];
a [0,0,0,0];
b [0,1,0,0];
c [0,1,0,1];
d [1,1,0,1];
e [0,1,1,1];
f [1,1,1,1];
g [1,1,1,0];
h [1,1,0,0];
i [0,1,1,0];

Equations

Stval.clk = CLK;
CLOCK = !CLK;

state_Diagram Stval

state a: Sl = 1;
SO = 1;
LED = 1;
If RSET then b else a;

state b: Sl = 1;
SO = 1;
LED = 0;
START = 1;
If (P1 & !P2) then h
Else
If (!P1 & P2) then i
Else
If OK then c
Else b;

state c: Sl 0;
SO 0;
If (P1 & !P2) then d
Else
If (!P1 & P2) then e
Else
If RSET then b
Else c;

Fig. 5.1 - GAMECON source file
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b [0,1,0,0];
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d [1,1,0,1];
e [0,1,1,1];
f [1,1,1,1];
g [1,1,1,0];
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Equations

Stval.clk = CLK;
CLOCK = !CLK;

state_Diagram Stval

state a: Sl = 1;
SO = 1;
LED = 1;
If RSET then b else a;

state b: Sl = 1;
SO = 1;
LED = 0;
START = 1;
If (P1 & !P2) then h
Else
If (!P1 & P2) then i
Else
If OK then c
Else b;

state c: Sl 0;
SO 0;
If (P1 & !P2) then d
Else
If (!P1 & P2) then e
Else
If RSET then b
Else c;

Fig. 5.1 - GAMECON source file



state d: Sl 1;
SO 0;
LR 0;
If WI then f else c;

state e: Sl 0;
SO 1;
LR 0;
If W2 then f else c;

state f: Sl = 0;
SO = 0;
WINNER = 1;
If OK then g else f;

state g: Sl = 0;
SO = 0;
If RSET then b else g;

state h: Sl 1;
SO 0;
LR 1;
Goto f;

state i: Sl 0;
SO 1 ;
LR 1;
Goto f;

Test vectors 'Test !CLOCK'

36

CLK
o
1

->
->
->

CLOCK] )
1 ] ;
o ];

Test vectors 'power-up and reset/start routine'

[CLK, Pl,P2,RSET,OK ->
[.c. ,.X.,.x., 0 ,.x.] ->
[.c.,.x.,.X.,O ,.x.] ->
[.c.,.X.,.x.,l ,.x.] ->
[.c.,O , 0 ,.x., 0 ] ->
[.c.,O , 0 ,.x., 1 ] ->

stval,Sl,SO,LED,START ] )
a , 1, 1, 1 0];
a , 1, 1, 1 0];
b , 1, 1, 0 1];
b , 1, 1, 0 1];
c , 0, 0, .x., 0 ];

Test vectors 'Player 1 cheat routine'

CLK, Pl,P2,RSET,OK ] ->
.c.,O ,0, 1 ,.x.] ->
.c.,l ,0, .x.,.x.] ->
.c.,.x.,.x.,.x.,.x.] ->
.c.,.x.,.x.,.x., 0 ] ->
.c.,.x.,.x.,.x., 1 ] ->
.c.,.x.,.x., 0 ,.x.] ->
.c.,.x.,.x., 1 ,.x.] ->

Stval,Sl,SO,LR,WINNER ] )
b ,1, 1,.x., 0 ];
h , 1, 0, 1, 0 ];
f , 0, 0, .x., 1 ];
f , 0, 0, .x., 1 ];
g , 0, 0, .x., 0 ];
g, 0, 0, .x., 0 ];
b, 1,1,.X., 0 ];

Test vectors 'Player 2 cheat routine'

CLK, Pl,P2,RSET,OK ] ->
.c., 0 , 0, .x., 0 ] ->
.c.,O , 1, .x.,.x.] ->
.c.,.x.,.x.,.x.,.x.] ->
.c.,.x.,.x.,.x., 1 ] ->
.c.,.x.,.x.,l ,.x.] ->

Stval,Sl,SO,LR,WINNER ] )
b , 1, 1,.x., 0 ];
i , 0, 1, 1, 0 ];
f , 0, O,.x., 1 ];
g ,0, O,.x., 0 ];
b , 1, 1,.x., 0 ];

Fig. 5.1 (cant'd.) - GAMECON source file

state d: Sl 1;
SO 0;
LR 0;
If WI then f else c;

state e: Sl 0;
SO 1;
LR 0;
If W2 then f else c;

state f: Sl = 0;
SO = 0;
WINNER = 1;
If OK then g else f;

state g: Sl = 0;
SO = 0;
If RSET then b else g;

state h: Sl 1;
SO 0;
LR 1;
Goto f;

state i: Sl 0;
SO 1 ;
LR 1;
Goto f;

Test vectors 'Test !CLOCK'
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CLK
o
1

->
->
->

CLOCK] )
1 ] ;
o ];

Test vectors 'power-up and reset/start routine'

[CLK, Pl,P2,RSET,OK ->
[.c. ,.X.,.x., 0 ,.x.] ->
[.c.,.x.,.X.,O ,.x.] ->
[.c.,.X.,.x.,l ,.x.] ->
[.c.,O , 0 ,.x., 0 ] ->
[.c.,O , 0 ,.x., 1 ] ->

stval,Sl,SO,LED,START ] )
a , 1, 1, 1 0];
a , 1, 1, 1 0];
b , 1, 1, 0 1];
b , 1, 1, 0 1];
c , 0, 0, .x., 0 ];

Test vectors 'Player 1 cheat routine'

CLK, Pl,P2,RSET,OK ] ->
.c.,O ,0, 1 ,.x.] ->
.c.,l ,0, .x.,.x.] ->
.c.,.x.,.x.,.x.,.x.] ->
.c.,.x.,.x.,.x., 0 ] ->
.c.,.x.,.x.,.x., 1 ] ->
.c.,.x.,.x., 0 ,.x.] ->
.c.,.x.,.x., 1 ,.x.] ->

Stval,Sl,SO,LR,WINNER ] )
b ,1, 1,.x., 0 ];
h , 1, 0, 1, 0 ];
f , 0, 0, .x., 1 ];
f , 0, 0, .x., 1 ];
g , 0, 0, .x., 0 ];
g, 0, 0, .x., 0 ];
b, 1,1,.X., 0 ];

Test vectors 'Player 2 cheat routine'

CLK, Pl,P2,RSET,OK ] ->
.c., 0 , 0, .x., 0 ] ->
.c.,O , 1, .x.,.x.] ->
.c.,.x.,.x.,.x.,.x.] ->
.c.,.x.,.x.,.x., 1 ] ->
.c.,.x.,.x.,l ,.x.] ->

Stval,Sl,SO,LR,WINNER ] )
b , 1, 1,.x., 0 ];
i , 0, 1, 1, 0 ];
f , 0, O,.x., 1 ];
g ,0, O,.x., 0 ];
b , 1, 1,.x., 0 ];

Fig. 5.1 (cant'd.) - GAMECON source file
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Test vectors 'Normal competition'

( [ eLK, P1,P2,RSET, OK, Wl,W2 ] -> Stval,Sl,SO,LR ] )

[ .c. , a , 0, .x. , 1 ,.x., .x.] -> c 0, 0, .x.];
[ .c. , a , 0, a , .x., .x., ox .. ] -> c 0, 0, .x.];
[ .c., a , 0, 1 ,.x., .x., .x.] -> b 1, 1, .x.];
[ .c. f a , 0, .x. , 1 ,.x., .x.] -> c 0, 0, .x.];
[ .c. , 1 , 1, a ,.x.,.x. I .x.] -> c 0, 0, .x.];
[ .c. , 1 , 0, .x. f .x., .x., ox.] -> d 1, 0, a ] ;
[ .c., .x. I .x., .x., .x., a , a ] -> c 0, 0, .x.];
[ .c. , a , 1, .x.,.xo,ox .. ,ox .. l -> e 0, 1, a ] ;

[ .c., .x., .x., .x., .x., a , a ] -> c 0, 0, .x.];
[ .c. , 1 , a , .x., .x., .x., .x.] -> d 1, 0, a ] ;
[ .c., .x. ,.x. I .x .. , .x., 1 , a ] -> f 0, 0, .x.];
[ .c., .x., .x., .x., 1 ,.x., .x.] -> g 0, 0, .x.];
[ .c. I .x., .x. f 1 ,.x., .x., .x.] -> b 1, 1, .x.];
[ .c. f a , a , .x. f 1 ,.x., .x.] -> c 0, 0, .x.];
[ .. c. , a , 1 , .x., .x., .x. lOX.] -> e 0, 1, a ] ;
[ .c., .x., .x. , .x., .x., a , 1 ] -> f 0, 0, .x.];

end

Fig. 5.1 (cont'd.) - GAMECON source file

done, ABEL may have assumed y1 through y4 to be combinatorial outputs. Also, in the

Declarations section, notice the use ofa set named 'Stval' that includes all four of the

state variables. Below that is a list of defined set constants 'a' through 'i' that cover all of

the state values in the circuit. The set and set constants were useful in simplifying the

writing of the state diagram section of the source file.

Secondly, in the Equations section, the reader will notice the use of a 'dot

extension' in describing the clock source for the' Stval' registers. Dot extensions are used

to accurately describe register and feedback signals and clear up any potential ambiguities.

For example, the registers used for 'Stval' have attributes such as register input (.D),

register output (.Q), register clock input (.clk), asynchronous reset (.AR), synchronous

preset (. SP), etc. Without specifying a dot extension for' Stval' in an equation involving

it, ABEL would be clueless in many cases as to which part of the registers it should be

addressing with that equation.

Next, the reader is for the first time introduced to an example of a

State_Diagram structure. Immediately following the State_Diagram keyword are the state

variables for the state diagram. In this case, the set 'Stval' is used as a shortcut. The set

constants that were defined previously are also used in the individual state definitions in
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the state diagram. It's also interesting to note that the syntax for the branching logic is

strikingly similar to BASIC or FORTRAN.

Lastly, the Test_Vectors section deserves some attention. When writing test

vectors to simulate the actions of a state machine, it is necessary to write them such that

the simulation begins in the power-up or initial state. The following vectors should then

step the state machine through its states just as the normal operational flow will occur. It

is not possible to skip states while doing this. At this time, also note the use of the special

constants' .c.' (clocked input; low-high-Iow) and '.x.' (don't care) in the vectors.

ABEL generates reports at every step of the design process. These include

simulation results, compiled equations, device resource allocations, etc. These are

included for GAMECON and the other system component designs in Appendix A.

5.3- OUTCON

In programming the OUTCON module (see Fig. 5.2), a different approach was

taken. Since this was not a state machine, the state diagram method of description was of

no use. In addition, a truth table description would be highly impractical. The only

recourse was to use equations to describe the design logic.

A couple of set definitions were made in the Declarations section that are

worth noting prior to discussing the equations. First, the two shift register control signals

were put in a set named 'Select'. Second, all of the LED outputs were grouped into a set

named 'OutLED'. The 'OutLED' set was created to simplify the equations that had to do

with broadside load conditions since all of the LED outputs could be set properly in the

same equation.

Also of note in the Declarations section is the CLOCK input signal. This signal

is the inverted system clock pulse output from the GAMECON module. Referring back to

the original Output Controller design, the shift registers needed to be clocked on the
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Title
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OUtcon device 'P26CV12, ;

CLOCK
Sl,SO
LR
LED
W1,L1,L2,L3,L4,L5,L6,L7,L8,L9,W2

'buffer' ;

Select = [Sl,SO);
OUtLED [W1,L1 .. L9,W2);

Equations

pin 1;
pin 2,3;
pin 4;
pin 5;
pin 27,26,25,24,23,22,20,19,18,17,16 istype

OUtLED.CLK = CLOCK;
When (Select == 0) then OUtLED := OUtLED.fb;
When (Select == 1) & (LR == 0) then W2 .- L9.fb;
When (Select == 1) & (LR == 0) then L9 .- L8.fb;
When (Select == 1) & (LR == 0) then L8 .- L7.fb;
When (Select == 1) & (LR == 0) then L7 .- L6.fb;
When (Select == 1) & (LR == 0) then L6 .- L5.fb;
When (Select == 1) & (LR == 0) then L5 .- L4.fb;
When (Select == 1) & (LR == 0) then L4 .- L3.fb;
When (Select == 1) & (LR == 0) then L3 .- L2.fb;
When (Select == 1) & (LR == 0) then L2 .- L1.fb;
When (Select == 1) & (LR == 0) then L1 := W1.fb;
When (Select == 1) & (LR == 0) then W1 .- 0;
When (Select == 2) & (LR == 0) then W1 := L1.fb;
When (Select == 2) & (LR == 0) then L1 .- L2.fb;
When (Select == 2) & (LR == 0) then L2 .- L3.fb;
When (Select 2) & (LR == 0) then L3 .- L4.fb;
When (Select 2) & (LR == 0) then L4 .- L5.fb;
When (Select 2) & (LR == 0) then L5 .- L6.fb;
When (Select 2) & (LR == 0) then L6 .- L7.fb;
When (Select 2) & (LR == 0) then L7 .- L8.fb;
When (Select 2) & (LR == 0) then L8 .- L9.fb;
When (Select == 2) & (LR == 0) then L9 := W2.fb;
When (Select 2) & (LR == 0) then W2 := 0;
When (Select == 3) then OUtLED := [LED,LED,LED,LED,LED,l,LED,LED,LED,LED,LED);
When (Select == 1) & (LR == 1) then OutLED := [1,0,0,0,0,0,1,0,0,0,0);
When (Select == 2) & (LR == 1) then OutLED := [0,0,0,0,1,0,0,0,0,0,1);

Test vectors 'Broadside load and hold operation'

[CLOCK,Sl,SO, LR,LED) ->
[ .C. ,1, 1,.X., 1 ) ->
[ .C. ,0, O,.X., 1 ) ->
[ .C. ,1, 1,.X., ° ) ->

W1,L1,L2,L3,L4,L5,L6,L7,L8,L9,W2 ) )
1,1,1,1,1,1,1,1,1,1,1);
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 );
0,0,0,0,0,1,0,0,0,0, ° );

Fig. 5.2 - OUTCON source file

falling-edge of the system clock pulse in order to return the win status results to the Game

Controller by the next rising-edge of the clock. Unfortunately, the GAL26CV12 (and

most PLD's for that matter) does not allow signal inversion on the signal lines leading to

the clock inputs on the registers. This necessitated feeding the clock input pin on the
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OUtcon device 'P26CV12, ;

CLOCK
Sl,SO
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W1,L1,L2,L3,L4,L5,L6,L7,L8,L9,W2

'buffer' ;

Select = [Sl,SO);
OUtLED [W1,L1 .. L9,W2);

Equations

pin 1;
pin 2,3;
pin 4;
pin 5;
pin 27,26,25,24,23,22,20,19,18,17,16 istype

OUtLED.CLK = CLOCK;
When (Select == 0) then OUtLED := OUtLED.fb;
When (Select == 1) & (LR == 0) then W2 .- L9.fb;
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When (Select == 1) & (LR == 0) then L5 .- L4.fb;
When (Select == 1) & (LR == 0) then L4 .- L3.fb;
When (Select == 1) & (LR == 0) then L3 .- L2.fb;
When (Select == 1) & (LR == 0) then L2 .- L1.fb;
When (Select == 1) & (LR == 0) then L1 := W1.fb;
When (Select == 1) & (LR == 0) then W1 .- 0;
When (Select == 2) & (LR == 0) then W1 := L1.fb;
When (Select == 2) & (LR == 0) then L1 .- L2.fb;
When (Select == 2) & (LR == 0) then L2 .- L3.fb;
When (Select 2) & (LR == 0) then L3 .- L4.fb;
When (Select 2) & (LR == 0) then L4 .- L5.fb;
When (Select 2) & (LR == 0) then L5 .- L6.fb;
When (Select 2) & (LR == 0) then L6 .- L7.fb;
When (Select 2) & (LR == 0) then L7 .- L8.fb;
When (Select 2) & (LR == 0) then L8 .- L9.fb;
When (Select == 2) & (LR == 0) then L9 := W2.fb;
When (Select 2) & (LR == 0) then W2 := 0;
When (Select == 3) then OUtLED := [LED,LED,LED,LED,LED,l,LED,LED,LED,LED,LED);
When (Select == 1) & (LR == 1) then OutLED := [1,0,0,0,0,0,1,0,0,0,0);
When (Select == 2) & (LR == 1) then OutLED := [0,0,0,0,1,0,0,0,0,0,1);

Test vectors 'Broadside load and hold operation'

[CLOCK,Sl,SO, LR,LED) ->
[ .C. ,1, 1,.X., 1 ) ->
[ .C. ,0, O,.X., 1 ) ->
[ .C. ,1, 1,.X., ° ) ->

W1,L1,L2,L3,L4,L5,L6,L7,L8,L9,W2 ) )
1,1,1,1,1,1,1,1,1,1,1);
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 );
0,0,0,0,0,1,0,0,0,0, ° );

Fig. 5.2 - OUTCON source file

falling-edge of the system clock pulse in order to return the win status results to the Game

Controller by the next rising-edge of the clock. Unfortunately, the GAL26CV12 (and

most PLD's for that matter) does not allow signal inversion on the signal lines leading to

the clock inputs on the registers. This necessitated feeding the clock input pin on the



Test vectors 'Shift zeros right and then left'
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[CLOCK,Sl,SO, LR,LED] -> [ Wl,Ll,L2,L3,L4,L5,L6,L7,L8,L9,W2 ] )

.C. 1, 1, .X., 0 ] -> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ;

.C. 0, 1, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] ;

.C. 0, 1, 0 ,.X.] -> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] ;

.C. 0, 1, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ] ;

.C. 0, 1, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ] ;

.C. 0, 1, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ;

.C. 1, 0, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ] ;

.C. 1, 0, 0 ,.X.] -> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ] ;

.C. 1, 0, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] ;

.C. 1, 0, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] ;

.C. 1, 0, 0 , .X.] -> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ;

.C. 1, 0, 0 ,.X.] -> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] ;

.C. 1, 0, 0 ,.X.] -> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] ;

.C. 1, 0, 0 ,.X.] -> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] ;

.C. 1, 0, 0 ,.X.] -> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ;

.C. 1, 0, 0 , .X.] -> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ;

Test vectors 'Shift 1 left'

[CLOCK,Sl,SO, LR,LED] -> [ Wl,Ll,L2,L3,L4,L5,L6,L7,L8,L9,W2 ] )
[ .C. , 1, 1, .X., 0 ] -> [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ];
[ .C. , 1, 0, 1 ,.X.] -> [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 ];

Test vectors 'Shift 1 right'

End

[CLOCK,Sl,SO, LR,LED] ->
[ .C. ,1, l,.X., 0 ] ->
[ .C. ,0,1,1 ,.X.] ->

Wl,Ll,L2,L3,L4,L5,L6,L7,L8,L9,W2 ] )
0,0,0,0,0,1,0,0,0,0,0];
1,0,0,0,0,0,1,0,0,0,0];

Fig. 5.2 (cont'd.) - OUTCON source file

26CV12 with the defined CLOCK output from the GAMECON device in order to

simulate a falling-edge clock trigger.

The Equations section includes a rather large number of equations. Since

ABEL doesn't have a mathematical or logical operator for shifting bits in a defined set

such as 'OutLED', it was necessary to write an equation for each LED output in the set

for both the left and right shift operations. This was a rather inelegant, brute-force

method of accomplishing shift operations, but it worked. On a side note, the' .tb' dot

extension probably was not necessary in the LED outputs. The use of the registered

assignment operator in the equations probably should have indicated to ABEL that the

LED signals involved in the equation logic were registered feedbacks (it never hurts to be

prepared, though).

Test vectors 'Shift zeros right and then left'
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[CLOCK,Sl,SO, LR,LED] -> [ Wl,Ll,L2,L3,L4,L5,L6,L7,L8,L9,W2 ] )
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.C. 1, 0, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ] ;

.C. 1, 0, 0 ,.X.] -> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ] ;

.C. 1, 0, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ] ;

.C. 1, 0, 0 , .X.] -> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ] ;
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.C. 1, 0, 0 ,.X.] -> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ;

.C. 1, 0, 0 , .X.] -> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ;

Test vectors 'Shift 1 left'

[CLOCK,Sl,SO, LR,LED] -> [ Wl,Ll,L2,L3,L4,L5,L6,L7,L8,L9,W2 ] )
[ .C. , 1, 1, .X., 0 ] -> [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ];
[ .C. , 1, 0, 1 ,.X.] -> [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 ];

Test vectors 'Shift 1 right'

End

[CLOCK,Sl,SO, LR,LED] ->
[ .C. ,1, l,.X., 0 ] ->
[ .C. ,0,1,1 ,.X.] ->

Wl,Ll,L2,L3,L4,L5,L6,L7,L8,L9,W2 ] )
0,0,0,0,0,1,0,0,0,0,0];
1,0,0,0,0,0,1,0,0,0,0];

Fig. 5.2 (cont'd.) - OUTCON source file

26CV12 with the defined CLOCK output from the GAMECON device in order to

simulate a falling-edge clock trigger.

The Equations section includes a rather large number of equations. Since

ABEL doesn't have a mathematical or logical operator for shifting bits in a defined set

such as 'OutLED', it was necessary to write an equation for each LED output in the set

for both the left and right shift operations. This was a rather inelegant, brute-force

method of accomplishing shift operations, but it worked. On a side note, the' .tb' dot

extension probably was not necessary in the LED outputs. The use of the registered

assignment operator in the equations probably should have indicated to ABEL that the

LED signals involved in the equation logic were registered feedbacks (it never hurts to be

prepared, though).
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With regards to the previously mentioned elimination of the WIN output and

subsequent usage ofboth WI and W2 as signals back to GAMECON, this was not the

intent in the first attempt at the OUTCON module design. WIN had been defined as an

output of OUTCON and used the same logic as in the Output Controller design:

WIN = WI $W2

However, while attempting to 'fit' the OUTCON module into the 26CVI2 device, ABEL

indicated that this logic could not be assigned due to the fact that the 26CVI2 has no

resources available for exclusive-OR functions. The logical alternative would have been

to use the SOP equivalent of the equation:

WIN = (WI & !W2) # (!WI & W2)

Unfortunately, adding this equation to the design logic resulted in a "too many feedbacks

used" error message for the WI and W2 outputs. This was due to feedback resource

limitations in the 26CVI2 device. In the end, the WI and W2 outputs were each routed

to the GAMECON module as inputs and both designs interacted fine.

5.4 - TIMECON

The design for the TIMECON module differs from the original Timing

Controller design, yet the functionality remains the same. TIMECON is implemented as a

Moore-type sequential design (see Fig. 5.3), whereas the Timing Controller was a

Mealy-type design. The decision to use a Mealy implementation in the Timing Controller

was forced by the fact that the 4-bit binary counter used as state variables could not be

branched. States could only be sequenced in numerical order. This necessitated the
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Fig. 5.3 - TIMECON state diagram

sharing of states for differing output conditions, thus a Mealy design was needed. This

constraint does not exist in PLD' s, so more flexibility was available in the design for

TIMECON. Using a Moore design enabled the START and WINNER routines to be

separated, thus eliminating the need for an asynchronous reset of the registers upon an

interruption of the START time delay routine (i.e. when a player cheats) as was used in

the Timing Controller design. In the TIMECON design, when an START routine

interruption occurred, the next state transition was a synchronous one to state 'a'. This

situation made it much easier to write test vectors that accurately described the behavior

of the design. The ABEL source file for TIMECON is shown in Fig. 5.4.
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Module
Title

timecon
'Timing Controller - Tug-o-War Game'
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Declarations

timecon device 'p22v10';

CLK
START
WINNER
y1,y2,y3,y4,y5
OK
SPKR

pin 1;
pin 2;
pin 3;
pin 21,20,19,18,17 istype 'reg';
pin 22 istype 'buffer';
pin 16 istype 'buffer';

Stval [y1,y2,y3,y4,y5] ;

a [0,0,0,0,0];
b [0,0,0,0,1];
c [0,0,0,1,1] ;
d [0,0,0,1,0] ;
e [0,0,1,1,0] ;
f [0,1,1,1,0];
g [1,1,1,1,0] ;
h [1,1,0,1,0] ;
i [0,1,0,1,0];
j [0,1,0,1,1] ;
k [0,1,0,0,1];
1 [0,1,0,0,0] ;
m [0,0,1,0,0] ;
n [0,1,1,0,0] ;
0 [1,1,1,0,0] ;
P [1,0,1,0,0] ;
q [1,0,0,0,0] ;

Equations

Stval.clk = CLK;

State_Diagram Stval

state a: SPKR = 0;
OK = 0;
If START then b
Else
If WINNER then m
Else a;

state b: SPKR = 0;
OK = 0;
If START then c
Else a;

state c: SPKR = 0;
OK = 0;
If START then d
Else a;

state d: SPKR = 0;
OK = 0;
If START then e
Else a;

state e: SPKR = 0;
OK = 0;
If START then f
Else a;

Fig. 5.4 - TIMECON source file

Module
Title

timecon
'Timing Controller - Tug-o-War Game'
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Declarations

timecon device 'p22v10';

CLK
START
WINNER
y1,y2,y3,y4,y5
OK
SPKR

pin 1;
pin 2;
pin 3;
pin 21,20,19,18,17 istype 'reg';
pin 22 istype 'buffer';
pin 16 istype 'buffer';

Stval [y1,y2,y3,y4,y5] ;

a [0,0,0,0,0];
b [0,0,0,0,1];
c [0,0,0,1,1] ;
d [0,0,0,1,0] ;
e [0,0,1,1,0] ;
f [0,1,1,1,0];
g [1,1,1,1,0] ;
h [1,1,0,1,0] ;
i [0,1,0,1,0];
j [0,1,0,1,1] ;
k [0,1,0,0,1];
1 [0,1,0,0,0] ;
m [0,0,1,0,0] ;
n [0,1,1,0,0] ;
0 [1,1,1,0,0] ;
P [1,0,1,0,0] ;
q [1,0,0,0,0] ;

Equations

Stval.clk = CLK;

State_Diagram Stval

state a: SPKR = 0;
OK = 0;
If START then b
Else
If WINNER then m
Else a;

state b: SPKR = 0;
OK = 0;
If START then c
Else a;

state c: SPKR = 0;
OK = 0;
If START then d
Else a;

state d: SPKR = 0;
OK = 0;
If START then e
Else a;

state e: SPKR = 0;
OK = 0;
If START then f
Else a;

Fig. 5.4 - TIMECON source file
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state f: SPKR = 0;
OK = 0;
If START then g
Else a;

state g: SPKR = 0;
OK = 0;
If START then h
Else a;

state h: SPKR = 0;
OK = 0;
If START then i
Else a;

state i: SPKR = 0;
OK = 0;
If START then j
Else a;

state j: SPKR = 0;
OK = 0;
If START then k
Else a;

state k: SPKR = 0;
OK = 0;
If START then 1
Else a;

state 1: SPKR = 1 ;
OK = 1;
Goto a;

state m: SPKR = 1;
OK = 0;
Goto n;

state n: SPKR = 0;
OK = 0;
Goto 0;

state 0: SPKR = 1 ;
OK = 0;
Goto p;

state p: SPKR = 0;
OK = 0;
Goto q;

state q: SPKR = 1;
OK = 1;
Goto a;

Fig. 5.4 (cont'd.) - TIMECON source file

The source file is rather straightforward and follows the state diagram in Fig.

5.3. As in GAMECON, the state variables are grouped into a set named 'Stval' and set

constants are defined for the individual state values. The test vectors are perhaps the most

interesting feature of the TIMECON source file. The vectors for the 'Interruptions of

start loop' are quite large in number. This was necessary due to the fact that the vectors
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state f: SPKR = 0;
OK = 0;
If START then g
Else a;

state g: SPKR = 0;
OK = 0;
If START then h
Else a;

state h: SPKR = 0;
OK = 0;
If START then i
Else a;

state i: SPKR = 0;
OK = 0;
If START then j
Else a;

state j: SPKR = 0;
OK = 0;
If START then k
Else a;

state k: SPKR = 0;
OK = 0;
If START then 1
Else a;

state 1: SPKR = 1 ;
OK = 1;
Goto a;

state m: SPKR = 1;
OK = 0;
Goto n;

state n: SPKR = 0;
OK = 0;
Goto 0;

state 0: SPKR = 1 ;
OK = 0;
Goto p;

state p: SPKR = 0;
OK = 0;
Goto q;

state q: SPKR = 1;
OK = 1;
Goto a;

Fig. 5.4 (cont'd.) - TIMECON source file
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constants are defined for the individual state values. The test vectors are perhaps the most

interesting feature of the TIMECON source file. The vectors for the 'Interruptions of

start loop' are quite large in number. This was necessary due to the fact that the vectors
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Test Vectors 'power-up, normal start loop'

[CLK,START,WINNER) -> [Stval,SPKR, OK) )

[.c. , 0 0 -> a 0 0 ) ;
[.c. , 0 0 -> a 0 0 ) ;
[.c. , 1 0 -> b 0 0 ) ;

[.c. , 1 0 -> c 0 0 ) ;
[.c. , 1 0 -> d 0 0 ) ;
[.c. , 1 0 -> e 0 0 ) ;
[.c. , 1 0 -> f 0 I 0 ) ;
[.c. , 1 0 -> g 0 0 ) ;
[.c. , 1 0 -> h 0 0 ) ;
[.c. , 1 0 -> i 0 0 ) ;
[.c. , 1 0 -> j 0 0 ) ;
[.c. , 1 0 -> k 0 0 ) ;
[.c. , 1 0 -> 1 1 1 ) ;
[.c. , . x. .x . -> a 0 0 ] ;

Test Vectors 'Normal winner loop'

[CLK,START,WINNER) -> [Stval,SPKR, OK) )

[.c. , 0 1 ) -> [ m 1 0 l;
[.c. , . x. , .x . ) -> [ n 0 0 ) ;

[.c. , . x. .x . ) -> [ 0 1 0 l;
[.c. , . x. .x . 1 -> [ P 0 0 ) ;
[.c. , . x. .x . ) -> [ q 1 1 ) ;
[.c. , . x. , .x . ) -> [ a 0 0 l;

Test Vectors 'Interruptions of start loop'

[CLK,START,WINNERl -> [Stval,SPKR, OK) )

[.c. , 1 0 -> b 0 0 ) ;

[.c. , 0 .x. -> a 0 0 l;
[. c. , 1 0 -> b 0 0 l;
[.c. , 1 0 -> c 0 0 l;
[.c. , 0 .x. -> a 0 0 ) ;
[.c. , 1 0 -> b 0 0 ) ;
[.c. , 1 0 -> c 0 , 0 ) ;

[.c. , 1 0 -> d 0 0 ) ;

[. c. , 0 .x. -> a 0 0 ) ;

[.c. , 1 0 -> b 0 0 l;
[.c. , 1 0 -> c 0 0 l;
[.c. , 1 0 -> d 0 0 l;
[.c. , 1 0 -> e 0 0 l;
[.c. , 0 .x. -> a 0 0 ) ;
[.c. , 1 0 -> b 0 0 ) ;
[.c. , 1 0 -> c 0 0 l;
[.c. , 1 0 -> d 0 0 l;
[.c. , 1 0 -> e 0 0 ) ;

[.c. , 1 0 -> f 0 0 ) ;
[.c. , 0 .x. -> a 0 0 l;
[.c. , 1 0 -> b 0 0 ) ;

[.c. , 1 0 -> c 0 0 ) ;

[.c. , 1 0 -> d 0 0 l;
[.c. , 1 0 -> e 0 0 ) ;

[.c. , 1 0 -> f 0 0 ) ;
[.c. , 1 0 -> g 0 0 l;
[.c. , 0 .x. -> a 0 0 l;
[.c. , 1 0 -> b 0 0 ) ;
[.c. , 1 0 -> c 0 0 1 ;
[.c. , 1 0 -> d 0 0 l;
[.c. , 1 0 -> e 0 0 l;
[.c. , 1 0 -> f 0 0 l;
[.c. , 1 0 -> g 0 0 1 ;
[.c. , 1 0 -> h 0 0 ) ;

[.c. , 0 .x. -> a 0 0 ) ;

Fig. 5.4 (cont' d.) - TIMECON source file
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Test Vectors 'power-up, normal start loop'
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[.c. , 0 .x. -> a 0 0 l;
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Fig. 5.4 (cont' d.) - TIMECON source file
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[.c. , 1 0 -> [ b 0 0 1 ;
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[.c. , 1 0 -> [ e 0 0 1 ;
[.c. , 1 0 -> [ f 0 0 1 ;
[.c. , 1 0 -> [ g , 0 0 1 ;
[.c. , 1 0 -> [ h 0 0 1 ;
[.c. , 1 0 -> [ i 0 0 1 ;
[.c. , 0 .x. -> [ a 0 0 1 ;
[.c. , 1 0 -> [ b 0 0 1 ;
[.c., 1 0 -> [ c 0 0 1 ;
[.c. , 1 0 -> [ d , 0 0 1 ;
[.c., 1 0 -> [ e 0 0 1 ;
[.c. , 1 0 -> [ f 0 0 1 ;
[.c. , 1 0 -> [ g , 0 0 1 ;
[.c. , 1 0 -> [ h 0 0 1 ;
[.c. , 1 0 -> [ i 0 0 1 ;
[.c. , 1 0 -> [ j 0 0 1 ;
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[.c. , . x. .x . -> [ a 0 0 1 ;

end

Fig. 5.4 (cont'd.) - TIMECON source file

must step through all of the states leading up to the target state. Since the START routine

can possibly be interrupted in any state from 'b' to 'k', it was necessary to simulate a reset

from each of these states. Every time an interruption occurred and the circuit reset to

state'a', it was necessary to begin stepping through all of the preceding states in order to

reach the next state to be simulated as being interrupted. This is a prime example of how

tedious writing test vectors can sometimes be. This set of vectors (nearly 100 in number)

probably took longer to write than the logic portion of the file.
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5.5 - INPUTCON

The design for the INPUTCON module followed exactly the design and

functionality of the original Input Conditioner circuit. Not only were the inputs and

outputs identical to the original circuit, but the equations used to describe the logic in the

ABEL source file (see Fig. 5.5) were exactly the same as those that made up the

asynchronous sequential logic in the original circuit.

module
title

inputcon
'Input Conditioner, Tug-o-war Game'

declarations

inputcon device 'p16v8as';

CLK
P1 IN
P2 IN
Y1
Y2
Y3
Y4
P1 OUT
P2 OUT

equations

pin 1;
pin 2;
pin 3;
pin 17;
pin 16;
pin 15;
pin 14;
pin 19;
pin 18;

Y1 = (P1 IN & Y1.pin) # (CLK & Y2.pin);
Y2 = (!CLK & P1 IN) # (P1 IN & Y2.pin) # (CLK & Y2.pin);
P1 OUT = (P1 IN-& !Y2.pin) # (!CLK & P1 IN & !Y1.pin);
Y3-= (P2 IN &Y3.pin) # (CLK & Y4.pin);-
Y4 = (!CLK & P2 IN) # (P2 IN & Y4.pin) # (CLK & Y4.pin);
P2_0UT = (P2_IN-& !Y4.pin) # (!CLK & P2 IN & !Y3.pin);

test vectors 'Pulse catcher for P1'

CLK,P1_IN -> P1 OUT 1 )

0, 0 -> 0 1 ;
0, 1 -> 1 1 ;
1, 1 -> 0 1 ;
1, 1 -> 0 1 ;
0, 1 -> 0 1 ;
0, 1 -> 0 1 ;
1, 1 -> 0 1 ;
1, 0 -> 0 1 ;
0, 0 -> 0 1 ;
0, 0 -> 0 1 ;
1, 0 -> 0 1 ;
1, 1 -> 1 1 ;
0, 1 -> 1 1 ;
0, 1 -> 1 1 ;
1, 1 -> 0 1 ;
1, 1 -> 0 1 ;
0, 1 -> 0 1 ;
0, 0 -> 0 1 ;
1, 0 -> 0 1 ;

end

Fig. 5.5 - INPUTCON source file
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Equations were used to describe the logic instead of a state diagram structure

due to the asynchronous sequential behavior of the design. During the course of the

author's research, no evidence was found that ABEL will allow a state diagram structure

to describe an asynchronous design. It apparently assumes a registered design when a

state diagram logic structure is used in a source file. In any event, combinatorial feedback

equations were used to describe the sequential logic of the design, as is evident from the

usage of the combinatorial output assignment operator '=' and the '.pin' feedback dot

extension.

The reader will also notice that test vectors only exist for the player 1

(P I_OUT) equations. The equations that determine P2_OUT are identical to those for

P I_OUT except for the substitution ofP2_IN for P I_IN. Therefore, it was easier to

simply change the test vector heading signals for PI to P2 and re-simulate the vectors

rather than typing an additional set of them.

5.6 - Additional Notes

Truth tables were considered for describing design logic at various points in

the design process of each of the four modules. However, in each case, it was eventually

decided that this was too inefficient a method. In the GAMECON and TIMECON

modules synchronous sequential designs were used. Although these may be implemented

in truth table form, the state diagram method of description is more intuitive since the

sequential design process basically begins by drawing a state diagram. In the case of

OUTCON, there were a large number of inputs involved (including feedback signals) and

the truth table would soon have become unwieldy. Finally, in the case of INPUTCON, the

equation method of logic description made so much sense in that the equations already

existed from the original 7400-series design. It would have required more effort to

investigate using a truth table implementation.
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In addition, Mealy-type synchronous sequential design methods were not used

in any of the four module designs. However, the state diagram structure in ABEL does

support the Mealy form of state machine logic. The overall format of a Mealy state

diagram in ABEL is similar to that ofa Moore design with one exception. The fact that

outputs are assigned during the state transition rather than upon arriving in a state (as in a

Moore design) is accommodated with the 'with...endwith' statements. For example:

If START then c with [SPKR,OK} := [0;0]; endwith;

The 'with... endwith' statements ensure that the outputs are decoded at the proper time

and do not lag by a clock cycle.

If the reader is interested in using truth tables or Mealy-type sequential logic in

his design, he is referred again to the ABEL User Manual3 and Practical Design Using

Programmable Logic.2 These references have numerous design examples ofboth

techniques.
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CHAPTER VI

CONCLUSION

6.1 - Project Results

The circuit schematic for the PLD implementation of the Tug ofWar game is

shown in Fig. 6.1. Now, go back and compare this to Fig. 4.2. The reader will notice a

striking similarity between the block diagram ofthe original 7400-series system design and

the schematic of the PLD system design. Each system component (block) corresponds to

a single PLD, as was the project intent. This graphically demonstrates one of the

strongest advantages ofusing PLD's in a digital circuit design: the conceptual design in

many cases may be directly translated into a hardware design.

Once assembled and tested, it was determined by the author that the entire

system, with all of its components, was functioning properly. The author even went as far

as to drag a couple of students from an adjacent laboratory to witness this fact. They

played a few rounds of the game and were satisfied with its operations.

The final device count, including the Quad-NAND and Hex-Inverter chips, was

7. This is versus a total chip count of31 in the original 7400-series design. That equates

to a reduction factor of over 4 to 1. If the input debouncing and output buffering logic

had been implemented in their respective PLD's, the total device count would stand at 4,

for a reduction of nearly 8 to 1. This would probably be the effective limit for least chip

count while using these types of devices (PAL's) in implementing this design. While the

individual module designs could have been more complex and still fit into their respective

PLD's (many product terms went unused on all 4 devices), only one module may be

programmed into a particular device. Also, the small number of outputs on a given PLD
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effectively limit the logic that can be assigned to a module and still fit into the device.

Therefore, a 1 to 1 correspondence between each of the system components and PLD

would appear to be the practical limit for device count limitation in this design.
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6.2 - Summary

Programmable Logic Devices are a valuable resource to the digital system

designer. When they made their appearance in the 1970's, they finally enabled the

designer to implement efficient and practical digital designs without the need to rely on the

response time of a chip manufacturer in designing a mask-programmed device. Design

and debug times, as well as physical circuit dimensions, were drastically reduced.

With the advent of the PC in the early to mid 1980's, universal PLD

programming software became widely available. Sophisticated programming languages

such as ABEL-HDL, along with commercially available universal programmer units,

allowed the designer to design, program, and test PLD-based digital designs at his desk,

enjoying previously unknown levels of flexibility in the design process.

Using ABEL-HDL, the digital designer is capable oftuming design concepts

such as Boolean equations, truth tables, and state diagrams directly into hardware

implementations. A specific target device does not even need to be identified when the

design process is begun. ABEL has the ability to take a generic design and determine

which device architectures it will fit into. However, the designer may also use

hardware-specific terms in the logic descriptions to tailor a design to a particular device, if

so desired.

In order to demonstrate the concepts above, an example of the process of

designing a digital system with PLD's was conducted by the author. Using ABEL design

techniques, the logic of a previously constructed 7400-series digital circuit was

implemented more efficiently using a smaller number of chips.
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6.3 - Ideas for Future Research

There are a number of related topics that the author came upon during the

course of this project that may be worthy offurther study. First is the writing oftest

vectors. A properly written set of test vectors is crucial to the success of a PLD program.

They must be written to accurately simulate all logical behavior in a design, including such

things as asynchronous inputs. Often, this is a difficult task. Perhaps a more systematic

approach to writing test vectors could be developed.

Also, the proper use of tools such as dot extensions and signal attributes could

be investigated. To this day, despite all the work performed on this project, the author is

still often confused as to when it is necessary to use these tools and when it is not. Most

of the time, ABEL is capable of determining the proper signal attributes and device

resource usage from the logic descriptions in the source file. However, this is not always

the case. Learning when to use dot extensions and signal attributes and when not to could

be an interesting area of study.

Finally, ABEL has FPGA programming capabilities (ABEL-FPGA). Also, the

Data I/O Unisite programmer can program such devices with the proper adapter modules.

Both of these currently exist at the YSU Electrical Engineering department. While the

author chose not to research FPGA's, the reader is encouraged to look into them as

possible target devices for digital designs.
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APPENDIX A

ABEL DESIGN PROCESS DOCUMENTATION

A.l- GAMECON Documentation

Simulate ABEL 4.03 Date Thu Jun 1 15:26:41 1995

Fuse file: 'gamecon.jed' Vector file: 'gamecon.tmv' Part: 'P26CV12'

ABEL 4.03 Data I/O Corp. JEDEC file for: P26CV12 V9.0
Created on: Thu Jun 1 15:26:35 1995

Game Controller, Tug-o-war Game

••••• Test !CLOCK •••••

C
L

C 0
L C
K K

VOO01
VOO02

••••• power-up and reset/start routine •••••
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S
R T

C S L A
L P P E 0 I ~ ~ ~

S S E R
K 1 2 T K 1 0 D T

VOO03

§I I ~ L I ~ LJJr ~
V0004
V0005
VOO06
V0007

••••• Player 1 cheat routine ••••• W
I

R N
C S N
L P P E 0 I ~ ~ ~

S S L E
K 1 2 T K 1 0 R R

V0008

~r L~ J J?CLf?
V0009
VOO10
VOOll
V0012
V0013
VOO14
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••••• Player 2 cheat routine •••••
W
I

R N
C S N
L P P E 0 I 2 ~ ~

S S L E
K 1 2 T K 1 0 R R

V0015

I ~ [ 6 ~ J ~ L~ r ~
V0016
V0017
V0018
V0019

••••• Normal competition •••••
R

C S
L P P E 0 W w I ~

s S L
K 1 2 T K 1 2 1 0 R

V0020
V0021
V0022
VOO23 c:V0024
V0025 c:
VOO26 c:
V0027 c:
VOO28 EV0029
VOO30 c:
V0031 c:V0032
VOO33 c:
V0034 c:
VOO35 .--
35 out of 35 vectors
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P26CV12 Programmed logic ====

= (

= (
#

= (
#

= (
#

= ( !yl.FB & y2.FB & y3.FB & !y4.FB
# yl.FB & y2.FB & !~3.FB & !y4.FB
# !RSET & yl.FB & YZ.FB & y3.FB
# y'l.FB & y2.FB & y3.FB & y4.FB
# W2 & y2.FB & y3.FB & y4.FB
# Wi & yl.FB & v2.FB & ~4.FB
# Pi & !P2 & !yl.FB & yZ.FB & !y3.FB ); " ISTYPE 'BUFFER'

= ( ClK);

=( y2.FB
# RSET & !yl.FB & !y3.FB & !y4.FB ); " ISTYPE 'BUFFER'= ( ClK);

= ( !yl.FB & y2.FB & y3.FB & !y4.FB
# yl.FB & y2.FB & !~3.FB & !y4.FB
# !RSET & yl.FB & yZ.FB & y3.FB
# y'l.FB & y2.FB & y3.FB & y4.FB
# w2 & y2.FB & y3.FB & y4.FB
# Wi & yl.FB & y2.FB & ~4.FB
# !Pl & P2 & !yl.FB & yZ.FB & !y3.FB ); " ISTYPE 'BUFFER'= ( ClK);

= ( yl.FB & y2.FB & !y3.FB
# !yl.FB & y2.FB & y3.FB
# !oK & ~2.FB & ~3.FB & y4.FB
# P2 & !RSET & yZ.FB & !y3.FB & y4.FB
# !Pl & !RSET & y2.FB & !y3.FB & y4.FB
# !Pl & P2 & y2.FB & !y3.FB & y4.FB
# Pi & !P2 & y'2.FB & !y3.FB & y4.FB
# Pi & P2 & OK & y2.FB & !y3.FB & !y4.FB
# !Pl & !P2 & OK & y2.FB & !y3.FB & !y4.FB ); " ISTYPE 'BUFFER'= ( ClK);
= ( !ClK);

yl.FB & y2.FB & !y3.FB
!yl.FB & !y3.FB & !y4.FB };

!yl.FB & !y3.FB & !y4.FB
!yl.FB & y2.FB & y3.FB }j

!yl.FB & !y2.FB & !y3.FB & !y4.FB };

= ( !yl.FB & y2.FB & !y3.FB & !y4.FB );
!yl.FB & y2.FB & y3.FB & !y4.FB

yl.FB & y2.FB & !y3.FB & !y4.FB }j

= ( yl.FB & y2.FB & y3.FB & y4.FB }jWINNER

yl.C
y2.D

y2.C

y3.D

yl.D

y3.C

y4.D

S0

y4.C

CLOCK
Sl

lED

START
lR
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P26CV12

+---------" /---------+
I " /
I

ClK I 1 28
I

Pl I 2 27 Sl
I

P2 I 3 26 S0
I

RSET I 4 25 lR
I
I 5 24 lED
I
I 6 23 yl
I

Vee I 7 22 y2

OK 8 21 GND

loll 9 20 y3

W2 10 19 y4

11 18 START

12 17 WINNER

13 16 CLOCK

14 15

---------------------------
SIGNATURE: N/A
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Game Controller. Tug-o-war Game

P26CV12 Resource Allocations

Device I Resource Design
Resources 1 Available Requirement---------------------- ----------- ----------------------------------- ----------- -------------

Dedicated input pins 14 7
Combinatorial inputs 14 7
Registered inputs 0

Dedicated output pins 11
Bidirectional pins 12 0
Combinatorial outputs 7
Registered outputs 4
Reg/Com outputs 12
Two-input XOR 0

Buried nodes 0
Buried registers 0
Buried combinatorials 0

Part 1
Utilization 1 Unused

=============1============
I

7 1 7 ( 50 x)
7 1 7 ( 50 X)

1
I
I

11 1 1 ( 8 X)
1
1

11 1 1 ( 8 X)
1
1
I
I
1

ABEL 4.03 Device Utilization Cnart Tnu Jun
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1 15:26:36 1995

Game Controller. Tug-o-war Game

P26CV12 Product Terms Distribution ====

Signal I Pin
Name I Assigned

===============================1==========
y1.REG 1 23
y2.REG 1 22
y3.REG 1 20
~4.REG 1 19
CLOCK I 16
Sl I 27
S0 1 26
lED 1 24
START 1 18
lR 1 25
WINNER 1 17

Terms
Used--------------

7
2
7
9
1
2
2
1
1
2
1

Terms Terms
Max Unused------- -------------- -------
10 3
12 10
12 5
10 1

8 7
8 6
8 6
8 7
8 7
8 6
8 7

ClK
P1
P2
RSET
OK
W1
W2

---- list of Inputs/Feedbacks ----

Signal Name 1 Pin 1 Pin Type
============================== 1==========1=========

1 1 I ClK/IN
I 2 I INPUT
1 3 I INPUT
I 4 I INPUT
1 8 I INPUT
1 9 I INPUT
1 10 1 INPUT
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P26CV12 Product Terms Distribution ====
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Name I Assigned

===============================1==========
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lED 1 24
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lR 1 25
WINNER 1 17

Terms
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7
2
7
9
1
2
2
1
1
2
1

Terms Terms
Max Unused------- -------------- -------
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12 10
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10 1

8 7
8 6
8 6
8 7
8 7
8 6
8 7

ClK
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Game Controller, Tug-o-war Game

P26CV12 Unused Resources

Pin I Pin 1 Product 1 Flip-flop
Number I Type 1 Terms 1 Type
=======1========1=============1==========

5 I INPUT I I
6 1 INPUT I 1

11 1 INPUT I 1
12 1 INPUT I I
13 1 INPUT I 1
14 I INPUT I 1
15 I BIDIR I NORMAL 8 1 D
28 1 INPUT I 1

ABEL 4.03 Device Utilization Chart Thu Jun
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1 15:26:36 1995

Game Controller, Tug-o-war Game

==== I/O Files

Module: 'gamecon'

Input files
----------------------
ABEL PLA file: gamecon.tt3
Vector file: gamecon.tmv
Device library: P26CV12.dev

Output files------------------------
Report file: gamecon.doc
Programmer load file: gamecon.jed
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Game Controller, Tug-o-war Game

==== I/O Files

Module: 'gamecon'

Input files
----------------------
ABEL PLA file: gamecon.tt3
Vector file: gamecon.tmv
Device library: P26CV12.dev

Output files------------------------
Report file: gamecon.doc
Programmer load file: gamecon.jed



A.2 - OUTCON Documentation

Si~late ABEL 4.83 Date Wed "ay 31 18:03:35 1995

Fuse file: 'outcon.jed' Uector file: 'outcon.t~v' Part: 'P26CU12'

ABEL 4.03 Data I/O Corp. JEDEC file for: P26CU12 U9.0
Created on: Wed ~y 31 18:03:30 1995

Output Controller. Tug-o-war Ga~

***** Broadside load and hold operation *****

C
L
0 L
C S S L E W L L L L L L L L L W
K 1 0 H D 1 1 2 3 4 5 6 "1 8 9 2

U0001

I~ ~ ~ II ) ) ) ) ) ) ,) ) ) ) )U0002
U0083

***** Shift zeros right and then left *****

C
L
0 L
C S S L E W L L L L L L L L L W
K 1 0 H D 1 1 2 3 4 5 6 "1 8 9 2

U0004 CU0005
U0006 c:
U0007 c:
U0008 c:
U0009 c:
U0010 c:
U0011 c:
U0012 c:
U0013 c:
U0014 c:
U0015 c:
U0016 c:
U001"1 c:
U0018 c:
U0019 c:

r-

***** Shift 1 left *****

C
L
0 L
C S S L E W L L L L L L L L L W
K 1 0 H D 1 1 2 3 4 5 6 "1 8 9 2

U0020
I~ II ~ ~ II Ir II II II ~ ~ II II II II ~U0021

***** Shift 1 right *****

C
L
0 L
C S S L E W L L L L L L L L L W
K 1 0 H D 1 1 2 3 4 5 6 "1 8 9 2

U0022
I~ ..u ~ ~ II ~ II II II Ir ~ ~ II II II IrU0023

23 out of 23 vectors passed.
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C
L
0 L
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C
L
0 L
C S S L E W L L L L L L L L L W
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ABEL 4.03 - Device Utilization Chart Wed May 31 18:03:30 1995
Output Controller, Tug-o-war Game

---- P26CV12 Programmed Logic ====

W1.D = ( !51 & 50 & LR
# 51 & 50 & LED
# 51 & !50 & !LR & L1.FB
# !51 & !50 & W1. FB ); .. 15TYPE 'BUFFER'

W1.C = ( CLOCK) ;

L1.D = ( 51 & 50 & LED
# 51 & !50 & !LR & L2.FB
# !51 & 50 & !LR & W1. FB
# !51 & !50 & L1. FB ); .. 15TYPE 'BUFFER'

L1.C = ( CLOCK) ;

L2.D = ( 51 & 50 & LED
# 51 & !50 & !LR & L3.FB
# !51 & 50 & !LR & L1. FB
# !51 & !50 & L2. FB ); .. 15TYPE 'BUFFER'

L2.C = ( CLOCK) ;

L3.D = ( 51 & 50 & LED
# 51 & !50 & !LR & L4.FB
# !51 & 50 & !LR & L2.FB
# !51 & !50 & L3. FB ); .. 15TYPE 'BUFFER'

L3.C = ( CLOCK) ;

L4.D = ( 51 & 50 & LED
# 51 & !50 & LR
# 51 & !50 & LS.FB
# !51 & 50 & !LR & L3.FB
# !51 & !50 & L4.FB ) ; .. 15TYPE 'BUFFER'

L4.C = ( CLOCK) ;

LS.D = ( 51 & 50
# 51 & !LR & L6.FB
# 50 & !LR & L4.FB
# !51 & !50 & LS.FB ) ; .. 15TYPE 'BUFFER'

LS.C = ( CLOCK) ;

L6.D = ( !51 & 50 & LR
# 51 & 50 & LED
# 51 & !50 & !LR & L7.FB
# !51 & 50 & LS.FB
# !51 & !50 & L6. FB ); .. 15TYPE 'BUFFER'

L6.C = ( CLOCK) ;

L7.D = ( 51 & 50 & LED
# 51 & !50 & !LR & L8.FB
# !51 & 50 & !LR & L6.FB
# !51 & !50 & L7. FB ); .. 15TYPE 'BUFFER'

L7.C = ( CLOCK) ;
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Output Controller, Tug-o-war Game

P26CV12 Programmed Logic

L8.D = ( Sl & S0 & LED
# Sl & !S0 & !LR & L9.FB
# !Sl & S0 & !LR & L7.FB
# !Sl & !S0 & L8.FB ) ; .. ISTYPE 'BUFFER'

L8.C = ( CLOCK) ;

L9.D = ( Sl & S0 & LED
# Sl & !S0 & !LR & W2.FB
# !Sl & S0 & !LR & L8.FB
# !Sl & !S0 & L9.FB ) ; .. ISTYPE 'BUFFER'

L9.C = ( CLOCK) ;

W2.D = ( Sl & S0 & LED
# Sl & !S0 & LR
# !Sl & S0 & !LR & L9.FB
# !Sl & !S0 & W2. FB ); .. ISTYPE 'BUFFER'

W2.C = ( CLOCK ) ;

ABEL 4.03 Device Utilization Chart
Page 3
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Output Controller, Tug-o-war Game

P26CV12 Chip Diagram

P26CV12

+---------,, /---------+
/

CLOCK 1 28

Sl 2 27 W1

S0 3 26 L1

LR 4 25 L2

LED 5 24 L3

6 23 L4

Vee 7 22 L5

8 21 GND

9 20 L6

10 19 L7

11 18 L8

12 17 L9

13 16 W2

14 15

SIGNATURE: N/A
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P26CV12 Chip Diagram

P26CV12

+---------,, /---------+
/

CLOCK 1 28

Sl 2 27 W1

S0 3 26 L1

LR 4 25 L2

LED 5 24 L3

6 23 L4

Vee 7 22 L5

8 21 GND

9 20 L6

10 19 L7

11 18 L8

12 17 L9

13 16 W2

14 15

SIGNATURE: N/A



63

ABEL 4.03 Device Utilization Chart
Page 4

Wed May 31 18:03:30 1995

Output Controller, Tug-o-war Game

P26CV12 Resource Allocations

8 X)

8 X)1 (

1 (

9 ( 64 x)
9 ( 64 X)

11

11

5
5o

11
o
o

11

o
o
o
o

Design 1 Part 1
Requirement 1 Utilization 1 Unused

=============1=============1============
1 1
1 5

5

12

12

14
14

Resource
Available----------------------

Device
Resources--------------------------------------------

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
Bidirectional pins
Combinatorial outputs
Registered outputs
Reg/Com outputs
Two-input XOR

Buried nodes
Buried registers
Buried combinatorials
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Output Controller, Tug-o-war Game

P26CV12 Product Terms Distribution ====

Signal Pin 1 Terms Terms Terms
Name Assigned 1 Used Max Unused

=============================== ========== ------- ------- -------------- ------- -------
W1.REG 27 4 8 4
L1.REG 26 4 8 4
L2.REG 25 4 8 4
L3.REG 24 4 8 4
L4.REG 23 5 10 5
L5.REG 22 4 12 8
L6.REG 20 5 12 7
L7.REG 19 4 10 6
L8.REG 18 4 8 4
L~.REG 17 4 8 4
W2.REG 16 4 8 4

---- List of Inputs/Feedbacks ----

Signal Name 1 Pin 1 Pin Type
============================== 1==========1=========
CLOCK 1 1 1 CLK/IN
Sl I 2 1 INPUT
S0 I 3 1 INPUT
LR I 4 1 INPUT
LED I 5 1 INPUT

63

ABEL 4.03 Device Utilization Chart
Page 4

Wed May 31 18:03:30 1995

Output Controller, Tug-o-war Game

P26CV12 Resource Allocations

8 X)

8 X)1 (

1 (

9 ( 64 x)
9 ( 64 X)

11

11

5
5o

11
o
o

11

o
o
o
o

Design 1 Part 1
Requirement 1 Utilization 1 Unused

=============1=============1============
1 1
1 5

5

12

12

14
14

Resource
Available----------------------

Device
Resources--------------------------------------------

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
Bidirectional pins
Combinatorial outputs
Registered outputs
Reg/Com outputs
Two-input XOR

Buried nodes
Buried registers
Buried combinatorials

ABEL 4.03 Device Utilization Chart
Page 5

Wed May 31 18:03:30 1995

Output Controller, Tug-o-war Game

P26CV12 Product Terms Distribution ====
Signal Pin 1 Terms Terms Terms

Name Assigned 1 Used Max Unused
=============================== ========== ------- ------- -------------- ------- -------
W1.REG 27 4 8 4
L1.REG 26 4 8 4
L2.REG 25 4 8 4
L3.REG 24 4 8 4
L4.REG 23 5 10 5
L5.REG 22 4 12 8
L6.REG 20 5 12 7
L7.REG 19 4 10 6
L8.REG 18 4 8 4
L~.REG 17 4 8 4
W2.REG 16 4 8 4

---- List of Inputs/Feedbacks ----

Signal Name 1 Pin 1 Pin Type
============================== 1==========1=========
CLOCK 1 1 1 CLK/IN
Sl I 2 1 INPUT
S0 I 3 1 INPUT
LR I 4 1 INPUT
LED I 5 1 INPUT
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Output Controller. Tug-o-war Game

P26CV12 Unused Resources

Pin 1 Pin
Number 1 Type
=======1========

6 I INPUT
8 1 INPUT
9 1 INPUT

10 I INPUT
11 I INPUT
12 I INPUT
13 I INPUT
14 I INPUT
15 I BIDIR
28 I INPUT

Product I Flip-flop
Terms Type

------------- ----------------------- ----------

NORMAL 8 D

ABEL 4.03 Device Utilization Chart
Page 7

Wed May 31 18:03:30 1995

Output Controller. Tug-o-war Game

==== I/O Files

Module: 'outcon'

Input files
----------------------
ABEL PLA file: outcon.tt3
Vector file: outcon.tmv
Device library: P26CV12.dev

Output files------------------------
Report file: outcon.doc
Programmer load file: outcon.jed
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Output Controller. Tug-o-war Game

P26CV12 Unused Resources

Pin 1 Pin
Number 1 Type
=======1========

6 I INPUT
8 1 INPUT
9 1 INPUT

10 I INPUT
11 I INPUT
12 I INPUT
13 I INPUT
14 I INPUT
15 I BIDIR
28 I INPUT

Product I Flip-flop
Terms Type

------------- ----------------------- ----------

NORMAL 8 D
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Output Controller. Tug-o-war Game

==== I/O Files

Module: 'outcon'

Input files
----------------------
ABEL PLA file: outcon.tt3
Vector file: outcon.tmv
Device library: P26CV12.dev

Output files------------------------
Report file: outcon.doc
Programmer load file: outcon.jed
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A.3 - TIMECON Documentation

Simulate ABEL 4.10 Date Wed May 7 23:56:38 1997

Fuse file: 'timecon.jed' Vector file: 'timecon.tmv' Part: 'P22V10'

ABEL 4.10 Data I/O Corp. JEDEC file for: P22V10 V9.0
Created on: Wed May 7 23:56:25 1997

Timing Controller - Tug-o-War Game

••••• power-up, normal start loop •••••

C
L
K

S
T
A
R
T

W
I
N
N
E
R

S
P
K
R

o
K

V0001
V0002
V0003
VOO04
V0005
V0006
VOO07
V0008
VOO09
V0010
VOOll
V0012
VOO13
VOO14
••••• Normal winner loop •••••

o
K

S
P
K
R

of start loop •••••

W
S I
T N

C A N
L R E
K T R

V0015

~ iV0016
VOO17
VOO18
V0019
VOO20

••••• I nterrupt ions

W
S I
T N

C A N
L R E
K T R

VOO21 L...-

V0022 c::::
VOO23 c::::V0024
V0025 §V0026
VOO27
VOO28
V0029 c::::
V0030
V0031
VOO32 j::V0033
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Simulate ABEL 4.10 Date Wed May 7 23:56:38 1997

Fuse file: 'timecon.jed' Vector file: 'timecon.tmv' Part: 'P22V10'

ABEL 4.10 Data I/O Corp. JEDEC file for: P22V10 V9.0
Created on: Wed May 7 23:56:25 1997

Timing Controller - Tug-o-War Game

••••• power-up, normal start loop •••••

C
L
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W
I
N
N
E
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S
P
K
R

o
K

V0001
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V0003
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V0005
V0006
VOO07
V0008
VOO09
V0010
VOOll
V0012
VOO13
VOO14
••••• Normal winner loop •••••

o
K

S
P
K
R

of start loop •••••

W
S I
T N

C A N
L R E
K T R

V0015

~ iV0016
VOO17
VOO18
V0019
VOO20

••••• I nterrupt ions

W
S I
T N

C A N
L R E
K T R

VOO21 L...-

V0022 c::::
VOO23 c::::V0024
V0025 §V0026
VOO27
VOO28
V0029 c::::
V0030
V0031
VOO32 j::V0033
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E:
of 97 vectors passed.

§
E

V0034
V0035
V0036
V0037
V0038
V0039
V0040
V0041
V0042
V0043
V0044
V0045
VOO46
V0047
V0048
VOO49
VOO50
V0051
V0052
V0053
VOO54
VOO55
VOO56
V0057
VOOSB
V0059
V0060
VOO61
V0062
VOO63
VOO64
V0065
VOO66
V0067
V0068
VOO69
VOO70
VOO71
VOO72
V0073
V0074
VOO75
VOO76
VOO77
VOO78
VOO79
VOO80
V0081
V0082
V0083
VOO84
VOO85
V0086
V0087
VOO88
V0089
V0090
V0091
VOO92
V0093
V0094
V0095
VOO96
V0097
97 out
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VOO71
VOO72
V0073
V0074
VOO75
VOO76
VOO77
VOO78
VOO79
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V0087
VOO88
V0089
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V0091
VOO92
V0093
V0094
V0095
VOO96
V0097
97 out
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==== P22V10 Programmed logic ====
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y1.D

y1.C
y2.D

y2.C
y3.D

y3.C
y4.D

y4.C
y5.D
y5.C
SPKR

OK

= ( y2.FB & y3.FB & !y4.FB & !y5.FB
# ~l.FB & y3.FB & 'l4.FB & '~5.FB
# START & y2.FB & y3.FB & 'y5.FB ); .. ISTYPE 'BUFFER'= ( ClK);

= ( START & y2.FB & y4.FB & 'y5.FB
# START & 'y1.FB & r3.FB & 'r5.FB
# '~1.FB & y3.FB & .l4.FB & .l5.FB
# START & 'y1.FB & yZ.FB & 'y3.FB & y5.FB ); .. ISTYPE 'BUFFER'

= ( ClK) ;

= ( 'START & WINNER & 'r1.FB & 'y2.FB & 'y4.FB & 'y5.FB
# START & 'll.FB & .y2.FB & y4.FB & 'y5.FB
# S2.FB & r3.FB & 'y4.FB & 'yS.FB
= ,~t~~B&&'~§J~ ~ ';{~B&&";5~~B ); .. ISTYPE 'BUFFER'

= ( ClK);
= ( START & !y1.FB & !y2.FB & ty3.FB & y5.FB

# START & y2.FB & y4.FB & 'y5.FB
# START & 'y1.FB & y4.FB & 'y5.FB ); .. ISTYPE 'BUFFER'

= ( ClK);

= ( START & 'y1.FB & 'y2.FB & 'r3.FB & 'y4.FB
# START & 'y1.FB & y2.FB & .y3.FB & y4.FB); .. ISTYPE 'BUFFER'= ( ClK);

= ( yi.FB & !y2.FB & !y3.FB & !y4.FB & !y5.FB
# 'y1.FB & r2.FB & 'y3~FB & 'y4.FB & 'y5.FB
# 'v1.FB & .y2.FB & y3.FB & 'y4.FB & 'y5.FB
# yl.FB & y2.FB & y3.FB & 'y4.FB & 'y5.FB );

= ( y1.FB & !y2.FB & !y3.FB & !y4.FB & !y5.FB
# 'y1.FB & y2.FB & 'y3.FB & 'y4.FB & 'y5.FB );
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y1.D

y1.C
y2.D

y2.C
y3.D

y3.C
y4.D

y4.C
y5.D
y5.C
SPKR

OK

= ( y2.FB & y3.FB & !y4.FB & !y5.FB
# ~l.FB & y3.FB & 'l4.FB & '~5.FB
# START & y2.FB & y3.FB & 'y5.FB ); .. ISTYPE 'BUFFER'= ( ClK);

= ( START & y2.FB & y4.FB & 'y5.FB
# START & 'y1.FB & r3.FB & 'r5.FB
# '~1.FB & y3.FB & .l4.FB & .l5.FB
# START & 'y1.FB & yZ.FB & 'y3.FB & y5.FB ); .. ISTYPE 'BUFFER'

= ( ClK) ;

= ( 'START & WINNER & 'r1.FB & 'y2.FB & 'y4.FB & 'y5.FB
# START & 'll.FB & .y2.FB & y4.FB & 'y5.FB
# S2.FB & r3.FB & 'y4.FB & 'yS.FB
= ,~t~~B&&'~§J~ ~ ';{~B&&";5~~B ); .. ISTYPE 'BUFFER'

= ( ClK);
= ( START & !y1.FB & !y2.FB & ty3.FB & y5.FB

# START & y2.FB & y4.FB & 'y5.FB
# START & 'y1.FB & y4.FB & 'y5.FB ); .. ISTYPE 'BUFFER'

= ( ClK);

= ( START & 'y1.FB & 'y2.FB & 'r3.FB & 'y4.FB
# START & 'y1.FB & y2.FB & .y3.FB & y4.FB); .. ISTYPE 'BUFFER'= ( ClK);

= ( yi.FB & !y2.FB & !y3.FB & !y4.FB & !y5.FB
# 'y1.FB & r2.FB & 'y3~FB & 'y4.FB & 'y5.FB
# 'v1.FB & .y2.FB & y3.FB & 'y4.FB & 'y5.FB
# yl.FB & y2.FB & y3.FB & 'y4.FB & 'y5.FB );

= ( y1.FB & !y2.FB & !y3.FB & !y4.FB & !y5.FB
# 'y1.FB & y2.FB & 'y3.FB & 'y4.FB & 'y5.FB );
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Timing Controller - Tug-o-War Game

P22V10 Chip Diagram

P22V10

+---------\.
\.

/---------+
/

ClK 1 24 Vee

START 2 23

WINNER 3 22 OK

4 21 yl

5 20 y2

6 19 y3

7 18 y4

8 17 y5

9 16 SPKR

10 15

11 14

GND 12 13

---------------------------
SIGNATURE: N/A
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Timing Controller - Tug-o-War Game

P22V10 Chip Diagram

P22V10

+---------\.
\.

/---------+
/

ClK 1 24 Vee

START 2 23

WINNER 3 22 OK

4 21 yl

5 20 y2

6 19 y3

7 18 y4

8 17 y5

9 16 SPKR

10 15

11 14

GND 12 13

---------------------------
SIGNATURE: N/A
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Timing Controller - Tug-o-War Game

---- P22V10 Resource Allocations ====

Device Resource 1 Design 1 Part
Resources Available I Requirement 1 Utilization Unused

====================== ===========1=============1============= ------------------------1 1
Dedicated input pins 12 1 3 1 3 9 ( 75 x)
Combinatorial inputs 12 1 3 1 3 9 ( 75 x)
Registered inputs 1 0 11 1
Dedicated output pins 1 7 1
Bidirectional pins 10 1 0 1 7 3 ( 30 x)
Combinatorial outputs 1 2 1
Registered outputs 1 5 1
Reg/Com outputs 10 1 - 1 7 3 ( 30 x)
Two-input XOR 1 0 11 1
Buried nodes 1 0 1
Buried registers 1 0 1
Buried combinatorials 1 0 1

ABEL 4.10 Device Utilization Chart Wed May
Page 4

7 23:56:25 1997

Timing Controller - Tug-o-War Game

---- P22V10 Product Terms Distribution ====

Signal 1 Pin 1 Terms I Terms I Terms
Name 1 Assigned 1 Used I Max I Unused

===============================1==========1=======1=======1=======
yl.REG I 21 1 3 1 12 I 9
y2.REG 1 20 1 4 1 14 I 10
y3.REG 1 19 1 5 I 16 I 11
y4.REG 1 18 1 3 1 16 1 13
l5.REG 1 17 1 2 1 14 1 12
sPKR I 16 1 4 1 12 I 8
OK 1 22 1 2 1 10 1 8

==== list of Inputs/Feedbacks

Signal Name
------------------------------------------------------------
ClK
START
WINNER

I Pin 1 Pin Type
1==========1=========
1 1 1 ClK/IN
1 2 1 INPUT
I 3 1 INPUT
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Timing Controller - Tug-o-War Game

---- P22V10 Resource Allocations ====

Device Resource 1 Design 1 Part
Resources Available I Requirement 1 Utilization Unused

====================== ===========1=============1============= ------------------------1 1
Dedicated input pins 12 1 3 1 3 9 ( 75 x)
Combinatorial inputs 12 1 3 1 3 9 ( 75 x)
Registered inputs 1 0 11 1
Dedicated output pins 1 7 1
Bidirectional pins 10 1 0 1 7 3 ( 30 x)
Combinatorial outputs 1 2 1
Registered outputs 1 5 1
Reg/Com outputs 10 1 - 1 7 3 ( 30 x)
Two-input XOR 1 0 11 1
Buried nodes 1 0 1
Buried registers 1 0 1
Buried combinatorials 1 0 1
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7 23:56:25 1997

Timing Controller - Tug-o-War Game

---- P22V10 Product Terms Distribution ====

Signal 1 Pin 1 Terms I Terms I Terms
Name 1 Assigned 1 Used I Max I Unused

===============================1==========1=======1=======1=======
yl.REG I 21 1 3 1 12 I 9
y2.REG 1 20 1 4 1 14 I 10
y3.REG 1 19 1 5 I 16 I 11
y4.REG 1 18 1 3 1 16 1 13
l5.REG 1 17 1 2 1 14 1 12
sPKR I 16 1 4 1 12 I 8
OK 1 22 1 2 1 10 1 8

==== list of Inputs/Feedbacks

Signal Name
------------------------------------------------------------
ClK
START
WINNER

I Pin 1 Pin Type
1==========1=========
1 1 1 ClK/IN
1 2 1 INPUT
I 3 1 INPUT
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Timing Controller - Tug-o-War Game

P22Vlla Unused Resources ====

Pin I Pin
Number I Type
=======1========

4 I INPUT
5 I INPUT
6 1 INPUT
7 1 INPUT
8 I INPUT
9 I INPUT

113 I INPUT
11 I INPUT
13 I INPUT
14 I BIDIR
15 I BIDIR
23 I BIDIR

Product
Terms

=============

NORMAL 8
NORMAL 113
NORMAL 8

Flip-flop
Type

--------------------

D
D
D

ABEL 4.113 Device Utilization Chart Wed May
Page 6

7 23:56:26 1997

Timing Controller - Tug-o-War Game

==== I/O Files ====
Module: 'timecon'

Input files
----------------------
ABEL PLA file: timecon.tt3
Vector file: timecon.tmv
Device library: P22Vlla.dev

Output files
============
Report file: timecon.doc
Programmer load file: timecon.jed
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Timing Controller - Tug-o-War Game

P22Vlla Unused Resources ====

Pin I Pin
Number I Type
=======1========

4 I INPUT
5 I INPUT
6 1 INPUT
7 1 INPUT
8 I INPUT
9 I INPUT

113 I INPUT
11 I INPUT
13 I INPUT
14 I BIDIR
15 I BIDIR
23 I BIDIR

Product
Terms

=============

NORMAL 8
NORMAL 113
NORMAL 8

Flip-flop
Type

--------------------

D
D
D

ABEL 4.113 Device Utilization Chart Wed May
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Timing Controller - Tug-o-War Game

==== I/O Files ====
Module: 'timecon'

Input files
----------------------
ABEL PLA file: timecon.tt3
Vector file: timecon.tmv
Device library: P22Vlla.dev

Output files
============
Report file: timecon.doc
Programmer load file: timecon.jed
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A.4 - INPUTCON Documentation

Simulate ABEL 4.1213 Date Thu Jun 1 16:38:35 1995

Fuse file: 'inputcon.jed' Vector file: 'inputcon.jed' Part: 'P16V8C'

ABEL 4.1213 Data I/O Corp. JEDEC file for: P16V8C V9.121
Created on: Thu Jun 1 16:38:15 1995

Input Conditioner, Tug-o-war Game

C
l
K

P
1

r
N

P
1

o
U
T

V121001
VOOl2l2
VOO03
V0004
V0005
V001216
V1211211217
V0008
V1211211219
V121121 1121
VOOll
VOO12
V0013
VOO14
VOO15
VI2II2I16
V12112117
VOO18
V12112119
19 out

ABEL 4.1121 Device Utilization Chart
Page 1

Tue Mar 18 18:39:26 1997

Input Conditioner, Tug-o-war Game

P16V8AS Programmed logic

Yl = ( ClK & Y2.PIN
# PCIN & Y1. PIN ) ;

Y2 = !( !ClK & !Pl IN
# ClK & !Y2:-PIN ) ;

Pi_OUT = ( !ClK & Pi_IN & !Yl.PIN
# Pi_IN & !Y2.PIN ) ;

Y3 = ( ClK & Y4.PIN
# P2_IN & Y3.PIN ) ;

Y4 = !( !ClK & !P2 IN
# ClK & !Y4:-PIN ) ;

P2_0UT = ( !ClK & P2_IN & !Y3.PIN
# P2_IN & !Y4.PIN ) ;
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Input Conditioner, Tug-o-war Game

C
l
K

P
1

r
N

P
1

o
U
T

V121001
VOOl2l2
VOO03
V0004
V0005
V001216
V1211211217
V0008
V1211211219
V121121 1121
VOOll
VOO12
V0013
VOO14
VOO15
VI2II2I16
V12112117
VOO18
V12112119
19 out

ABEL 4.1121 Device Utilization Chart
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Input Conditioner, Tug-o-war Game

P16V8AS Programmed logic

Yl = ( ClK & Y2.PIN
# PCIN & Y1. PIN ) ;

Y2 = !( !ClK & !Pl IN
# ClK & !Y2:-PIN ) ;

Pi_OUT = ( !ClK & Pi_IN & !Yl.PIN
# Pi_IN & !Y2.PIN ) ;

Y3 = ( ClK & Y4.PIN
# P2_IN & Y3.PIN ) ;

Y4 = !( !ClK & !P2 IN
# ClK & !Y4:-PIN ) ;

P2_0UT = ( !ClK & P2_IN & !Y3.PIN
# P2_IN & !Y4.PIN ) ;
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Input Conditioner, Tug-o-war Game

P16V8AS Chip Diagram

P16V8AS

+---------" /---------+
" / I

I
ClK 1 2121 I Vee

I
PCIN 2 19 I Pi_OUT

I
P2_IN 3 18 I P2_0UT

I
4 17 I Yl

I
5 16 I

I
6 15 I

I
7 14 I Y4

I
8 13 I Y3

I
9 12 I Y2

I
GND 1121 11 I

I
I

--------------------------- ,

SIGNATURE: N/A
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Input Conditioner, Tug-o-war Game

P16V8AS Chip Diagram

P16V8AS

+---------" /---------+
" / I

I
ClK 1 2121 I Vee

I
PCIN 2 19 I Pi_OUT

I
P2_IN 3 18 I P2_0UT

I
4 17 I Yl

I
5 16 I

I
6 15 I

I
7 14 I Y4

I
8 13 I Y3

I
9 12 I Y2

I
GND 1121 11 I

I
I

--------------------------- ,

SIGNATURE: N/A
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ABEL 4.10 Device Utilization Chart
Page 3

Tue Mar 18 18:39:27 1997

Input Conditioner, Tug-o-war Game

P16V8AS Resource Allocations

2 000 Xl
o ( 0 xl
2 ( 25 xl

o
6
6

Part 1
Utilization 1 Unused=============1============

1
3 I 7 ( 70 xl
3 I 7 ( 70 xl

I
I
1
1
1
1
1
I
I
I
I

3
3
o
2
4
6
oo
o
o
o

Design
Requirement

=============

2
6
8

10
10

Resource
Available----------------------

Device
Resources

======================

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
Bidirectional pins
Combinatorial outputs
Re~istered outputs
Two-input XOR

Buried nodes
Buried registers
Buried combinatorials

ABEL 4.10 Device Utilization Chart
Page 4

Tue Mar 18 18:39:27 1997

Input Conditioner, Tug-o-war Game

P16V8AS Product Terms Distribution ====

Signal 1 Pin 1 Terms 1 Terms 1 Terms
Name I Assigned 1 Used I Max 1 Unused

===============================1==========1=======1=======1=======Yl I 17 1 2 I 8 I 6
Y2 I 12 I 2 I 8 1 6
Pi OUT I 19 1 2 1 8 1 6
Y3- 1 13 I 2 I 8 I 6
Y4 1 14 1 2 1 8 1 6
P2_0UT 1 18 I 2 1 8 1 6

list of Inputs/Feedbacks

Signal Name
==============================
ClK
PLIN
P2 IN
Yl:"PIN
Y2.PIN
Y3.PIN
Y4.PIN

1 Pin I Pin Type
1==========1=========
1 1 I INPUT
1 2 I INPUT
I 3 I INPUT
I 17 I COMB FB
I 12 I COMB FB
1 13 1 COMB FB
1 14 1 COMB FB
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Input Conditioner, Tug-o-war Game

P16V8AS Resource Allocations

2 000 Xl
o ( 0 xl
2 ( 25 xl

o
6
6

Part 1
Utilization 1 Unused=============1============

1
3 I 7 ( 70 xl
3 I 7 ( 70 xl

I
I
1
1
1
1
1
I
I
I
I

3
3
o
2
4
6
oo
o
o
o

Design
Requirement

=============

2
6
8

10
10

Resource
Available----------------------

Device
Resources

======================

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
Bidirectional pins
Combinatorial outputs
Re~istered outputs
Two-input XOR

Buried nodes
Buried registers
Buried combinatorials

ABEL 4.10 Device Utilization Chart
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Input Conditioner, Tug-o-war Game

P16V8AS Product Terms Distribution ====

Signal 1 Pin 1 Terms 1 Terms 1 Terms
Name I Assigned 1 Used I Max 1 Unused

===============================1==========1=======1=======1=======Yl I 17 1 2 I 8 I 6
Y2 I 12 I 2 I 8 1 6
Pi OUT I 19 1 2 1 8 1 6
Y3- 1 13 I 2 I 8 I 6
Y4 1 14 1 2 1 8 1 6
P2_0UT 1 18 I 2 1 8 1 6

list of Inputs/Feedbacks

Signal Name
==============================
ClK
PLIN
P2 IN
Yl:"PIN
Y2.PIN
Y3.PIN
Y4.PIN

1 Pin I Pin Type
1==========1=========
1 1 I INPUT
1 2 I INPUT
I 3 I INPUT
I 17 I COMB FB
I 12 I COMB FB
1 13 1 COMB FB
1 14 1 COMB FB
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Input Conditioner, Tug-o-war Game

P16V8AS Unused Resources

Pin
Number
=======

4
5
6
7
8
9

11
15
16

Pin
Type

----------------
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

OUTPUT
OUTPUT

Product
Terms--------------------------

NORMAL 8
NORMAL 8

Flip-flop
Type

--------------------

ABEL 4.10 Device Utilization Chart
Page 6

Tue Mar 18 18:39:27 1997

Input Conditioner, Tug-o-war Game

==== I/O Files

Module: 'inputcon'

Input files
===========
ABEL PLA file: inputcon.tt3
Vector file: inputcon.tmv
Device library: P16V8AS.dev

Output files
------------------------Report file: inputcon.doc
Programmer load file: inputcon.jed
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Input Conditioner, Tug-o-war Game

P16V8AS Unused Resources

Pin
Number
=======

4
5
6
7
8
9

11
15
16

Pin
Type

----------------
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

OUTPUT
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Flip-flop
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==== I/O Files

Module: 'inputcon'

Input files
===========
ABEL PLA file: inputcon.tt3
Vector file: inputcon.tmv
Device library: P16V8AS.dev

Output files
------------------------Report file: inputcon.doc
Programmer load file: inputcon.jed
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MANUFACTURER DATA SHEET EXCERPTS

(Used with permission from Lattice Semiconductor Corp. - see below)

Date: Tue, 3 Jun 97 09:34:37 PDT
To: "Rick Alcorn" <ralcorn@cisnet.com> (by way of Travis Illig <tillig@latticesemi.com»
From: steve stark <steve_stark@latticesemi.com>
Subject: Re:

You have our permission to use these pages. Would you be willing to send me
a copy ofyour thesis when completed?

Regards,

Steve Stark

At 08:20 AM 6/3/97 -0600, you wrote:
>Dear Sir or Madam:
>
>1 downloaded Data Sheets (1996 Data Book) for the GAL16V8, GAL22VlO, and
>GAL26CV12 from your web site during the course of my Master's Thesis work
>at Youngstown State University. 1 would like to include some of these Data
>Sheet pages in my Thesis paper. The pages that 1 wish to include are:
>
>GAL16V8: 1,3,4,5,6,7,8,9,19
>GAL22VlO: 1,3,4,5,13
>GAL26CV12: 1,3,4,5,13
>
>May 1 have permission to include these in my paper?
>
>RickAlcorn
>ralcorn@cisnet.com
>
*****************************************************
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* Hillsboro, OR 97124-6421
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* 503-681-3037 (Fax)
* steve_stark@latticesemi.com
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GAL 16V8
High Performance E2CMOS PLD

Generic Array Logic™

76

FEATURES

• HIGH PERFORMANCE E"CMOS- TECHNOLOGY
- 3.5 n. Maximum ProplIgIItIon Delay
- Fmax =250 MHz
- 3.0 n. Maximum from Clock Input to Data Output
- UltraMOS" Advanced CMOS Technology

• 50% to 75% REDUCTION IN POWER FROM BIPOLAR
- 75mA Typ Icc on Low Power Devlca
- 45mA Typ Icc on Quarter Power Device

• ACTIVE PULL·UPS ON ALL PINS

• E' CELL TECHNOLOGY
- Reconflgurabla Logic
- Reprogrammable cella
-100% TeatadlGuarantaed 100% YIelds
- High Speed Electrtcal Erasure «looms)
- 20 Year Data Retention

• EIGHT OUTPUT LOGIC MACROCELLS
- Maximum Flaxlbility for COmplax Logic Designs
- Programmable Output Polarity
- AlsO Emulate. 200pln PAL· Devices with Full

FunctlonlFuse MapIParameirlc Compatibility

• PRELOAD AND POWER-GN RESET OF ALL REGISTERS
- 100% Functional TaatabUity

• APPUCATIONS INCLUDE:
- DMA COntrol
- State Machine Control
- High Speed Graphic. Processlng
- Standard logic Speed Upgrade

• ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

FdNCTIONAI GLOCK DIAGRM.'

•.;:eilOll.Mc!=2'::r-tr VOla

VOla

r7jllOLIIC!=:t>::r--·· VOla

r'8lclUl4~ I=~ .L 1I0IO

ir-'810Lt~~:=::"'"r- 1I0IO

IfOE

PIN CONFIGURATION

The GAL16V8D, at3.5 ns maxinum propagation delay tiTle. com­
bines a high performance CMOS process with Electricaly Eras­
able (F) floating gate technology to provide the highest speed
peI100nance available in 1he PLO mal1<el. High speed erase limes
«100ms) allow the devices to be reprogrammed quickly and ef­
ficiently.

The generic architecture provides maximum design fleXibility by
allowing 1he Output Logic Macrocell (OLMC) to be configured by
the user. An important subset of the many architecture configu­
rations possible with the GAL16Va are the PAL architectures
listed in !he table of the macrocell description section. GAL16Va
devices are capable of emulating any of these PAL archilectures
with fullfunctionlluse maplparametric compatibility.

Unique test circuitry and reprogrammable cells aHow complete
AC. DC. and functional testing during manufacture. As a result,
Lattice Semiconductor guarantees 100% field programmability
and functionality of all GAL products. In addition, 100 erase/write
cycles and data retention in excess of 20 years are guaranteed.

PLCC

DIP

CopyrightC1996 L.antce 8emlconouctor Cofp. All bfwId or produd 1'18fM8 are trademarka Of Nglatered IradernlltbotitlfHrrespectjv& holders. The~Ioneand informatklo herein aresL>t!jecl:
to change wIhout ootlce.

LATTlCE SEMICONDUCTOR CORP., 5555 Northeast Moore Cl., HiHsboro. Oregon 97124, U.S.A.
Te!. (503) 68Hl118; 1-881l-!SP-PLDS; FAX (503) 681-3037; hUp:/Iwww.lallicesemi.com
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OUTPUT LOGIC MACROCELL (OLMC)

Specifications GAL 16VB
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The following discussion pertains to configuring the output logic
macrocell. It should be noted that actual implementation is ac­
complished by development softwarelhardware and is complelely
transparent to the user.

PAL ArctliteClurea
Emule1ed by GALleV8

GALleV8
GloblII OlMC Mode

l8L8
16H8
18P8

18Ra
18Re
18R4

18RP8
18RPe
16RP4

There are three global OlMC configuration modes possible:
simple. complex, and registered. Details of each of these
modes are illustrated in the toIowi1g pages. Two global bits. SYN
and ACO, control the mode configuration for all macrocells. The
XOR bitof each macrocel controls the polarity of the output in any
of the three modes, while the AC1 bit of each of the macrocells
controls the input/output configuration. These two global and 16
individual archileclure bits define all possible configurations in a
GAl16V8. The information given on these architecture bits is
only to give a better understanding althe device. Compiler soft·
ware will transparently set these architecture bits from the pin
definitions. so the user should not need to directly menipulate
these architecture bits.

The following is a list of the PAL architectures that the GAl16V8
can emulate. It also shows the OlMC mode under which the
GAl16V8 emulates the PAL architecture.

COMPILER SUPPORT FOR OLMC

Software compilers support the three different global OlMC
modes as different device types. These device types are listed
In the table below. Most compilers have the ability to automali­
caIy select the device type. generally based on the register usage
and output enable (OE) usage. Register usage on the device
forces the software to choose the registered mode. All combina­
torial outputs with OE controlled by the product tenn will force the
software to choose the complex mode. The software win choose
the simple mode only when aU outputs are dedicated combinatorial
without OE control. The different device types listed in the table
can be used to override the automatic device selection by the
software. For further details. refer to the compiler software
manuals.

When using compiler software 10 configure the device, the user
must pay special attention to the following restrictions in each
mode.

Reglatered
Registered
Reglatered
Registered
Registered
Registered

Complex
Complex
Complex

10L8 Simple
12L8 Simple

l4L4 I Simple
l8L2 Simple
10ti8 Simple
l2H8 Simple

l4H4 L Simple

L.

. 1_6H_2_____ __S_I_m_p.Ie ....

lOPe Simple
l2P6 Simple
14P4 Simple
l8P2 Simple

In registered mode pin 1 and pin 11 are pennanently configured
as clock and output enable. respectively. These pins cannot be
configured as dediceted inputa in the registered mode.

In complex mode pin 1 and pin 11 become dedicated inputa and
usa the feedback paths of pin 19 and pin 12 respectively. Because
of this feedback path usage, pin 19 and pin 12 do not have the
feedback option in this mode.

In simple mode all feedback paths of the output pins are routed
via the adjacent pins. In doing so, the two inner most pins ( pins
15 and 16) will not have the feedback option as these pins are
always configured as dedicated combinatorial output.

Registered Complex Simple Auto Mode Select

ABEL P16V8R P16V8C P16V8AS P16V8
CUPL G16V8MS G16V8MA G16VSAS G16V8
LOGIIC GA1l6V8 R GA1l6V8 C7 GA1l6V8 C8 GAl16V8
OrCAD·PLD "Reoistered'" 'Comolex'" "Simole" GAl16V8A
PLDesigner - P16V8R' P16V8C' P16V8C' P16V8A
TANGo-PLD G16V8R G16V8C G16V8AS3 G16V8

1) Used with Conflgurlltlon keyword.
2} Prior to Version 2.0 support.
3) Supported on Version 1.20 or later.

3 1996 Data Book

mlattice"
:::::: semiconductor
•••••• Corporalion

OUTPUT LOGIC MACROCELL (OLMC)

Specifications GAL 16VB

77

,-.--.-------.- 'r--.------------,
The following discussion pertains to configuring the output logic
macrocell. It should be noted that actual implementation is ac­
complished by development softwarelhardware and is complelely
transparent to the user.

PAL ArctliteClurea
Emule1ed by GALleV8

GALleV8
GloblII OlMC Mode

l8L8
16H8
18P8

18Ra
18Re
18R4

18RP8
18RPe
16RP4

There are three global OlMC configuration modes possible:
simple. complex, and registered. Details of each of these
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Software compilers support the three different global OlMC
modes as different device types. These device types are listed
In the table below. Most compilers have the ability to automali­
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and output enable (OE) usage. Register usage on the device
forces the software to choose the registered mode. All combina­
torial outputs with OE controlled by the product tenn will force the
software to choose the complex mode. The software win choose
the simple mode only when aU outputs are dedicated combinatorial
without OE control. The different device types listed in the table
can be used to override the automatic device selection by the
software. For further details. refer to the compiler software
manuals.
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Reglatered
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Complex
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l4L4 I Simple
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lOPe Simple
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In registered mode pin 1 and pin 11 are pennanently configured
as clock and output enable. respectively. These pins cannot be
configured as dediceted inputa in the registered mode.

In complex mode pin 1 and pin 11 become dedicated inputa and
usa the feedback paths of pin 19 and pin 12 respectively. Because
of this feedback path usage, pin 19 and pin 12 do not have the
feedback option in this mode.

In simple mode all feedback paths of the output pins are routed
via the adjacent pins. In doing so, the two inner most pins ( pins
15 and 16) will not have the feedback option as these pins are
always configured as dedicated combinatorial output.

Registered Complex Simple Auto Mode Select

ABEL P16V8R P16V8C P16V8AS P16V8
CUPL G16V8MS G16V8MA G16VSAS G16V8
LOGIIC GA1l6V8 R GA1l6V8 C7 GA1l6V8 C8 GAl16V8
OrCAD·PLD "Reoistered'" 'Comolex'" "Simole" GAl16V8A
PLDesigner - P16V8R' P16V8C' P16V8C' P16V8A
TANGo-PLD G16V8R G16V8C G16V8AS3 G16V8

1) Used with Conflgurlltlon keyword.
2} Prior to Version 2.0 support.
3) Supported on Version 1.20 or later.
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REGISTERED MODE

In the Registered mode. macrocells are configured as dedicated
registered outpUI$ or as 110 funetlons.

Architecture conligurations available in this mode are simUar to
the common 16Ra and 16RP4 devices wi1h various pennutations
of polarity. 110 and register placement.

All registered macrocels share common clocl< and output enable
control pins. Ally macrocell c::en be configured as registered or
VO. Up to eight registers or up to eight I/O's are possible in this

·_------~I

~-=£-fjD-R-----t-~-----O
r X9~ ,r-'--~I :

71'1' ,- -.---- ....--..- ,
--oJ I

I
I

OE

Specifications GAL 1BVB

mode. Dedicated Input or output funetlons c::en be implemented
as subsel$ of the VO function.

Registered outputs have eight product tenns per output. 1/0's
have seven product tenns per output.

The JEDEC fuse numbers. including the UserElectronic Signature
(UES) fuses and the Product Tenn Disable (PTD) fuses. are
shown on the logic diagram on the following page.

Registered Conflguratton for Registered Mode

-SYN=O.
-ACO=1.
- XOR=O defines Active low Output.
- XOR=1defines Active High Output.
- AC1=0 defines this output configuration.
- Pin 1 controls common CLK for the registared outpul$.
- Pin 11 controls common OE for the registered outpul$.
- Pin 1 & Pin 11 are pennanently configured as ClK &
OE.

78

Combinatorial Configuration for Registered Mode

-SYN=O.
-ACO=l.
- XOR=O defines Active low Output.
- XOR=l defines Active High Output.
- AC1 =1 defines this output configuration.
- Pin 1 &Pin 11 are pennanenUy configured as ClK &
0£:'

IL _
Nota: The development software configures all of the architecture control bits and checks for proper pin usage automatically.
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REGISTERED MODE lOGIC DIAGRAM

DIP & PLCC Package Pinouts
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COMPLEX MODE

In the complex mode, mscrocells are configured as output only
or VO functions.

Architecture configurations available in this mode are similar to
the common 16L8 and 16P8 devices with programmable polarity
in each macroceU.

Up to six I/O's are possible in this mode. Dedicated inputs or
outputs can be implemented as subsets of the VO function. The
two outer most macrocelts (pins 12 & 19) do not have input ca·

Specifications GAL 16V8

pablUty. Designs requiring eight VO's can be implemented in the
Registered mode.

AU macrocalls have seven product terms per 0U1put. One product
term is used for programmable output enable control. Pins 1 and
11 are always ava~abIe as data inputs into the AND array.

The JEDEC fuse numbers including the UES fuses and PrO fuses
are shown on the logic diagram on the foUowing page.

Combinatorial 110 Configuration for Complex Mode

80

·SYN=l .
. ACO=l.
- XOA=O defines Active Low Output.
- XOR=l defines Active High Output.
-AC1=1.
• Pin 13 through Pin 18 are configured to this function.

Combinatorial Output Configuration for Complex Mode

·SYN=l .
• ACO=1.
• XOR=O defines Active Low Output.
- XOA=l defines Active High Output.
·AC1=1.
• Pin 12 and Pin 19 are configured to this function.

Note: The development software configures all of the architecture control bits and checks for propar pin usage automaticaUy.

--_._-----------._._-------------------
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COMPLEX MODE LOGIC DIAGRAM

DIP &PLCC Package PInouts
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Specifications GAL 1BVB

v""("",,.~

--twl~4 .
eLK \\\\\ ~\\=\\=\-,-+-._~-------L..~

84

INTERNAL REGISTER Internal flegisler :=
a -OUTPUT &.~~:::L.\l:;.0L'£::,6L':!L~-~'.'.:to~l.oglc..:'O-,·L....-.c.-__

FEEDBACK/EXll;ANAl~ Dav".Pln ~
OUTPUT AEGIS1CA I\M!\MI\N\IV\I\ Reset to Logic '," '---

___________________________. --1

Circuitry wlthlo the GAL16V8 provides a reset signal to all reg­
Isters during power-up. AB internal registers wiU have their Q

outputs set low after a specified lime (tpr. 1llS MAX). As a result,
the state on the registered output pins (if they are enabled) wiB
always be high on power-up. regardless of the programmed
polarity of the output pins. This feature can greaUy simplify state
machine design by providing a known state on power-up. Be­
cause of the asynchronous nature of system power-up. some

INPUT/OUTPUT EQUIVALENT SCHEMATICS

PIN~

conditions must be met to guarantee a valid power-up resetof the
device. Rrs~ the Vee rise must be monotonic. 5e00nd. the clock
input must be at stallc TTL level as shown 10 the diagram during
power up. The registers will reset within a maximum of tpr lime.
As in normal system operation. avoid clocking the device until all
input and feedback path setup times have been met The clock
must also meet the minimum pulse width requirements.

Vee

:....---· ..·v~-;
: ESD :
: Protection :
: Circuh i
. .. .'- " "~_. _.. - -- ~ -~ -,

PIN

Typ_ Vref; 3.2V

lYplcallnput

Tn·State
Control

Data
Outpul

Typ. Vref; 3.2V

Active Pull-up
Circuit

r •.L---.
: Vret ;

Feedback
(To Input Buffer)

Typical Output

PIN
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High Performance E2CMOS PLD

Generic Array Logic™
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• HIGH PERFORMANCE E'CMOS·TECHNOLOGY
- 5 na Maximum Propagation Delay
- Fmax =200 MHz
- 4 na Maximum from Clock Input to Data Output
- UltraMOS" Advanced CMOS Tachnology

• ACTIVE PULL-UPS ON ALL PINS

• COMPATIBLE WITH STANDARD 22V10 DEVICES
- Fully FunctlonlFuae-MapJParametrlc Compatible

with Blpoler and UVCMOS 22V10 Devlcea

• 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR
- 90mA Typlcallcc on Low Power Device
- 45mA Typlcallcc on Quarter Power Device

• E2 CELL TECHNOLOGY
- Raconflgurable logic
- Reprogrammable Cella
- 100% TestedlGuaranteed 100% YIelds
- High Speed Electrical Erasure «100ms)
- 20 Vear Data Retention

• TEN OUTPUT LOGIC MACROCELLS
- Maximum FleXibility for Complex logic Designs

• PRELOAD AND POWER-DN RESET OF REGISTERS
- 100% Functional Testability

• APPUCATIONS INCLUDE:
- ONA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade

• ELECTRONIC SIGNATURE FOR IOENTIFICATION

DESCRIPTION

FUNCTIONAL BLOCK DIAGRAr,l

PIN CON"IGURATION

The GAl22Vl OC, at5ns maximum propagation delay time, com­
bines a high performance CMOS process with Electrically Eras­
able (E") floating gate technology to provide the highest perform­
ance available of any 22Vl0 device on the market. CMOS cir­
cuitry allows the GAL22Vl0 to consume much less power when
compared to bipolar 22V10 devices. E" technology offers high
speed «lOOms) erase times, providing the ability to reprogram
or reconflQure the device quickly and efficiently.

The generic architecture provides maximum design flexibility by
allowing the Output Logic Macrocell (OLMC) to be configured by
the user. The GAL22Vl0 is fufty funclionlfuse map/parametric
compalible with standard bipolar and CMOS 22Vl 0 devices.

Unique test circuitry and reprogrammabte cells aHow complete
AC, DC, and funclionaltesting during manufacture. As a result,
Lattice Semiconductor guarantees 100% fiald programmability
and functionally of all GAL products. In addition, 100 eraselwrite
cycles and date retention in excess of 20 years are guaranteed.

DIP

lieu< 1 '-' 24 Vee

vOla
VOiQ

GAL v%
I 22V10 110/0

I 6 110/0

18 IIO/Q

IIO/Q

IIO/Q

PIIO/Q

1 P110/0

GNO 12 lap 1

Copyrjght C 1996 Lattice SemlconductOfCorp. All brand or pt'oduct names are trademarks Of registered tradematks of their respective holders. The specifications and ln1onnation herein are Slbject
to change WItlout notlce.

LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
Tel. (503) 681--0118; HI88-ISP-PLDS; FAX (503) 681-3037; http://www.lallicesemi.com
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OUTPUT LOGIC MACROCELL (OLMC)

The GAL22V10 has a variable number of product terms per
OLMC. Of the ten available OLMCs, two OLMCs have access to
eight product terms (pins 14 and 23, DIP pinout), two have ten
product terms (pins 15 and 22), two have twelve product terms
(pins 16 and 21), two have fourteen product terms (pins 17 and
20), and two OLMCs have sixteen product \elmS (pins 18 and 19).
In addition to the product terms avaHabte for logic. each OlMC
has an addilional product-lerm declicated to output enablecontrol,

The outputpolarity of each OLMO can be individual}' programmed
to be true or inverting, in either combinatorial or registered mode.
This allows each output to be individually conflQured as either
active high or active low.

Specifications GAL22V10

The GAL22V10 has a product term ror Asynchronous~t (AR)
and a product term for Synchronous Preset (SP). These two
product terms are common to aM registered OLMCs. The Asyn­
chronous Reset sets all registers to zero any lime this dedicated
product term is asserted. The Synchronous Preset sets aU reg­
isters to a logic one on the rislng edge of the next clock pulse after
this product term is asserted.

NOTE: The AR and SP product terms will force the a output of
the fllp-flop into the same state regardless of the polarity of the
output Therefore. a reset operalion. which sets the register output
to a zero, may result in either a high or low at the output pin,
depending on the pin polarity chosen.

4 TO 1
"lUX

86

GAl22V10 OUTPUT LOGIC MACROCElL (OlMC)

OUTPUT LOGIC MACROCELL CONFIGURATIONS

Each of the Macraeells of the GAL22V10 has two primary func­
tional modes: registered, and combinatorial 1/0. The modes and
the output polarity are set by two bits (50 and 51), which are nor­
mally controHed by the logic compiler. Each of \hese two primary
modes, and the bit sellings required to enable them, are described
below and on the following page.

REGISTERED
In registered mode the output pin associated with an individual
OlMC is driven by the a output of that OlMC's D-type flip-flop.
logic polarity of the output signal at the pin may be selected by
specifying that the output buffer drive either true (active high) or
Inverted (active low). Output tri-state control is available as an in­
dividual product-term for each OLMC, and can theretore be de­
fined by a logic equation. The D flip-fIop's IQ output is fed back
Into the AND array, with both the true and complement of the
feedback avaHable as inputs to the AND array.

3

NOTE: In registered mode, the feedback is from \he IQ output of
the register, and not from the pin; therefore, a pin defined as
registered is an output only, and cannot be used for dynamic
1/0. as can the combinatorial pins.

COMBINATORIAL 110
In combinatorial mode the pin associated with an indivlduaI OLMC
is driven by the output of the sum term gate. logic polarity of the
output signal at the pin may be selected by specifying that the
output buffer drive either true (active high) or inverted (active low).
Output tri-slate control is available as an individual product-tenn
for each output, and may be individually set by the compiler as
either·on' (dedicated output), "off" (dedicated input), or'product­
term driven" (dynamic 110). Feedback into \he AND array Is from
the pin side of the output enable buffer. Both polarities (true and
inverted) of the pin are fed back into the AND array.

1996 Data Book
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POWER-UP RESET

Vee
Vce(min.)

elK

INTERNAl. REGISTER
Q-OUTPUT

AGTIVELQW
OUTPUT REGIS1'ER

ACTIVE HIGH YYXXX.X'/XX;(jJ(/\ Oov>ce Pm {-
OUTPUT REGIS1'ER Resol" L?il1C -0: __.

L- .__... .... •. -"

Circuitry within the GAL22V10 provides a reset signal to all reg­
isters during power·up. All internal registers will have !heir Q out·
puts set low after a specified time (tpr, 11JS MAX). As a result, the
state on the registered output pins (if they are enabled) will be
either high or low on power-up, depending on the programmed
polarity of !he output pins. This feature can greatly simplify state
machine design by providing a known state on power-up. The
timing diagram for power-up is shown below. Because of !he asyn-

chronous nature of system power·up, some conditions must be
met to guarantee a valid power'up reset of the GAL22V10. First,
the Vee rise must be monotonic. Second, the clock input must
be at static TTL level as shown in the diagram during power up.
The registers will reset within a maximum of tpr time. As in nor·
mal system operation, avoid clocking !he device until aJ inputand
feedback path setup times have been met. The clock must also
meet the minimum pulse width requirements.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

PIN~ ~'"
Feedback ...

PIN

Feedback
(To Input Buffer)

Ttl-State
Control

ActiVe Pull-up
Circuli

Data
Outpul

PIN

Typical Input Typical Output
----_.__.._--------------------------_..-...•- •...._...
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FEATURES "UNCTIONAL BLOCK DIAGRAr.1

• HIGH PERFORMANCE E'CMOS'"TECHNOLOGY
- 7.5 n. Maximum Propagation Delay
- Fmax =142.8 MHz
- 4.5ns Maximum from Clock Input to Data OU1put
- TTL Compatible 16 mA OutpU1s
- UItnlMOS" Advanced CMOS Technology

• ACTIVE PULL-UPS ON ALL PINS

• LOW POWER CMOS
- 90 mA 'fYplcallcc

• E' CELL TECHNOLOGY
- Reconflgurable Logic
- Reprogrammable Cells
- 100% TestedIGuaranteed 100% Yields
- High Speed Electrical Erasura«100ms)
- 20 Year Deta Retention

• TWELVE OUTPUT LOGIC MACROCELLS
- Uses Standard 22V10 Macrocells
- Maximum flexibility for Complex logic Designs

• PRELOAD AND POWER-oN RESET OF REGISTERS
- 100% Functional Testability

• APPUCATIONS INCLUDE:
- DMA Control
- State Machine Control
- High Spead Graphics Procesalng
- Slandard logic Speed Upgrade

• ELECTRONIC SIGNATURE FOR IDENTIFICATION
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The GAL26CV12, at 7.5 ns maximum propagation delay lime,
combines a high performance OMOS process with Electrically
Erasable (E') floating gate technology to provide the highest
perfonnance 28-pin PlD available on the mari<.el. E,'2 technology
offers high speed «lOOms) erase limes, providing the ability to
reprogram or reconfigure the device quickly and efficiently.

Expanding upon the industry standard 22Vl0 architecture. the
GAL26CV12 eliminates the leaming curve lypicaHy associated
with using a new device architecture. The generic architeelure
provides maximum design fteJribility by aJowing the Output logic
Macrocell (OlMO) to be configured by !he u_. The GAL26CV12
OLMO is fully compatible with the OlMO in standard bipolar and
CMOS 22Vl0 devices.

Unique test circuitry and reprogrammabie cells aHow complete
AO, DC, and functional testing during manufacture. As a result,
Lalliee SemiCOnductor guarantees 100% field programmability
and functionality ofall GAL products. In addition, 100 eraselwrite
cycles and data retention in excess of 20 years are guaranteed.
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OUTPUT LOGIC MACROCELL (OLMC)

The GAl26CV12 has a variable number of product terms per
OLMC. Of the twelve available OlMCs. two OLMCs haveaccess
to twelve product terms (pins 20 and 22), two have acoess to ten
product terms (pW'is 19and 23), and the other elght OLMCs have
eight product termseaoh.ln addition 10 the pmduct termsavalable
for logic, each OLMC has an additional product term dedicated
to output enable control.

The output polarity of eaoh OlMC can be individualy programmed
to be true or inverting, In either combinatorial or registered mode.
This allows each output to be individually configured as either
active high or active low.

Specifications GAL26CV12

The GAL26CV12 has a product term for Asynchronous Reset
(AR) and a product term for Synchronous Preset (SP). These two
product terms are common to all registered OlMCs. The Asyn­
chronous Reset sets all registered outputs to zero any time this
dedicated product term Is asserted. The Synchronous Preset sets
all registers to a logic one on the rising edge of the next clock
pulse after this product term Is asserted.

NOTE: The AR and SP product terms will force the a output of
the flip-flop into the seme stete regardless of the polarity of the
output Therefore, a reset operation, which sels the register output
to a zero, may result in either a high or low at the output pin,
depending on the pin polarity chosen.

4 TO 1
MUX
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GAL26CV12 OUTPUT LOGIC MACROCELL (OLMC)

OUTPUT LOGIC MACROCELL CONFIGURATIONS

Each of the Macrocells of the GAL26CV12 has two primary
functional modes: registered, and combinatorialI/O. The modes
and the output polarity are set by two bits (SO and S1), which are
normally controlled by the logic compiler. Each of these two
primary modes, and the bit settings required to eneble them, are
described below and on the the following page.

REGISTERED
In registered mode the output pin essociated with an individual
OLMC is driven by the a output of that OLMC's D-type flip-flop.
Logic polarity of the output signal at the pin may be selected by
specifying that the output buffer drive either true (active high) or
inverted (active low). Output tri·state control Is available as an
individual product term for each OlMC. and can therefore be
defined by a logic equation. The 0 ftip-flop's JQ output is fed back
Into the AND array, with both the true and complement of the
feedback available as inputs to the AND array.

3

NOTE: In registered mode, the feedback is from the /Q output of
the register, and not from the pin; therefore, a pin defined as
registered is an output only, and cannot be used for dynamic
Ito, as can the combinatorial pins.

COMBINATORIAL 110
In combinatorial mode the pin essociaIed with an individual OLMC
is driven by the output of the sum telm gste. logic polarity of the
output signal at the pin may be selected by specifying that the
output buffer drive either true (active high) or Inverted (active low).
Output tri-state control is available as an individual product term
for each output and may be individually set by the compiler as
either ·on" (dedicated output), "off' (dedicated input), or "product
term driven" (dynamic I/O). Feedback into the AND array is from
the pin side of the output enable buffer. Both polarities (true and
inverted) of the pin are fed back into the AND array.
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Specifications GAL26CV12

POWER-UP RESET

Vee
Vcc(mIn.)

ClK

INTERNAL REGISTER
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OUTPUT REGISTER

~DevtooPln \
R...,lloLogIc"l' L-

ACTIVE HIGH 'f:I.:I..YXXf.J(XXXXJ\ Device Pin ;-
OUTPUT REGISTER R...,I to logic "0'

Circuilry within the GAL26CV12 provides a reset signal to at reg­
isters during power-up. All internal registers w~1 have their a
outputs set low after a specified time (tpr, 1J1$ MAX). As a result,
the atate on the registered output pins (if they are enabled) will
be either high or low on power-up, depending on the programmed
polarity of the output pins. This feature can greatly simpify state
machine design by providing a known stale on power-up. Be­
cause of the asynchronous nature of system power-up, some

conditions must be met to guarankle a vaid power-up reset of the
device. First, the Vee rise must be monotonic. Second, the clock
input must be at static TTL level as shown in the diagram during
power up. The registers will reset within a maximum of tpr time.
As in nonnal system operallon, avoid ctocki1g the device until aD
Input and feedback path setup limes have been mel The clock
must also meet the minimum pulse width requirements.

INPUT/OUTPUT EQUIVALENT SCHEMATICS

PIN~ .~PIN
Feedback .,, ..J

PIN

Feedback
(To Input Buffer)

Active Pull·up
Circuit

VeoTrI·State
Control

~,t~

Active Pull·up
Cireail

PIN

Vee

TypleallnpU1 'tYpical OUtput
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