A DIGITAL CIRCUIT DESIGN IMPLEMENTATION USING
ABEL-HDL AND PROGRAMMABLE LOGIC DEVICES

by
Richard B. Alcorn

Submitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science in Engineering
in the
Electrical Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

June, 1997

A DIGITAL CIRCUIT DESIGN IMPLEMENTATION USING

ABEL-HDL AND PROGRAMMABLE LOGIC DEVICES

Richard B. Alcorn

I hereby release this thesis to the public. I understand this thesis will be housed at the
Circulation Desk of the University library and will be available for public access. I also
authorize the University or other individuals to make copies of this thesis as needed for
scholarly research.

Signature:
s s/ae)97
Student Date
Approvals:
SWQ,\DW ‘S_/Zé/?7
Thesis Advisor Date
Wile T ot} $=28-57
Committee Member 7 Date

ool § SeaaeXs S/30] 27

Commyu Membér

i

ABSTRACT

The purpose of this thesis is twofold. The first is to use ABEL-HDL design
software and Programmable Logic Devices (PLD’s) to implement the logic of a digital
circutt in a more efficient manner than classic digital design techniques allow. The second
is to give enough introductory details about PLD’s and the ABEL design process that
other students may use this thesis as a guide in learning to use ABEL and PLD’s in their
digital designs. The thesis explores some ABEL design techniques for programming
PLD’s and applies the concepts to reducing the total chip count of a digital circuit created
by the author using 7400-series logic in a previous graduate course. The results of the
experimental design implementation are discussed and ideas given for further study into

the topic by future thesis students.

v
ACKNOWLEDGEMENTS

Very special thanks go to Professor Samuel Skarote for being on my thesis
committee, for being my thesis advisor up until his retirement in June 1996, and for all of
his help and guidance, both academic and personal, throughout my undergraduate and
graduate years at Youngstown State University. I apologize for not finishing this thesis
before his retirement. I would also like to express my thanks to Dr. Salvatore Pansino for
being my thesis advisor and to Dr. Robert Foulkes for being on my thesis committee. In
addition, I wish to thank Makin and Associates, Inc. of Mayfield Village, Ohio for their
generosity in giving me free samples of Lattice GAL26CV12 devices to use in my
experimental circuit. Finally, credit should be given to William 1. Fletcher of Utah State
University for the origins of the experimental circuit discussed in this thesis. The concept
appeared as a homework problem (# 7-2, pg. 516) in his textbook An Engineering
Approach to Digital Desi gn1 and later appeared in revised form on a test given by Dr.
Pansino in the EE825 Sequential Logic Circuit Analysis and Design class. 1 was inspired
by the concept and turned it into a full-fledged design project in Prof. Skarote’s EE932

Digital Systems Engineering II class.

PAGE

ABSTRACT e iii
ACKNOWLEDGEMENTS ... e, iv
TABLE OF CONTENTS e v

LIST OF FIGURES ..o e vil

CHAPTER

L INTRODUCTION ..o 1
I1. AN OVERVIEW OF PLD’S ..., 4
2.1 Historical Background ... 4
22 Types of PLD’S ..ot 6

1L AN OVERVIEW OF ABEL-HDL ..., 16

3.1 Program Featuresocooooiiiiiiiiiiiiiiiiiee 16

32 Command SYNtaxcccooiiiiiiiiiiiiiiii e 17

33 Source File Structures ... 19

34 ABELDesign Flow ... 22

IV. ORIGINAL EXPERIMENTAL DESIGN IMPLEMENTATION 24

4.1 Desig CONCEPL ..ooovvviiiiiiiiiiiiiii e 24

42 Game Controllerocccooiiiiiii 26

4.3 Output Controllercccoiiiiiiiiiiiiii e 27

4.4 Timing Controllercoccooviiiiiiiiiiiiiiiiiii 29

4.5 Input Conditionerccooooiiiiiiiiiiiiiiiiiii e, 31

TABLE OF CONTENTS

PAGE
A% ABEL EXPERIMENTAL DESIGN IMPLEMENTATION 33
51 Design ConCeptoooooviiiiiiieiiiiiiie e 33
52 GAMECON ..o 34
53 OUTCON e 38
54 TIMECON .o 41
55 INPUTCON ..o 47
56 Additional NOtescccccoovviiiiiiiiiiiieie e, 48
VL CONCLUSION .o 50
6.1 Project Results ..., 50
6.2 SUMMATY ..o 52
6.3 Ideas for Future Research ..o, 53
APPENDIX A ABEL DESIGN PROCESS DOCUMENTATION 54
A1 GAMECON Documentationcc..ccoeivviiioiiiiiee 54
A2 OUTCON Documentationccccoeoiiieeiiiiiiiiiieiea 60
A3 TIMECON Documentationcccccooeiiieiiiiieiieiin 65
A4 INPUTCON Documentationcccccoeevimviiiiiiiiennn. 71
APPENDIX B. MANUFACTURER DATA SHEET EXCERPTS 75
B.1 Lattice GAL16V8 Data Sheet Excerpts 76
B.2 Lattice GAL22V10 Data Sheet Excerpts 85
B.3 Lattice GAL26CV12 Data Sheet Excerpts 90
REFERENCES e 95

Vi

vit

LIST OF FIGURES

FIGURE PAGE
1.1 Comparison of a 7400-series circuit and the PLD that replacesit 2
2.1 Example of a PROM devicecocoiiiiiiiiiii 7
22 Example of a PLA devicecccoiiiiiiiiiiii e 8
2.3 Example of a PLA device (F105) with registers and feedback 9
24 Example of a PAL deviCecccoooiiiiiiiiiiiiii e 10
2.5 Example of a combinatorial PAL (P16L8)coooiiiiiiiiicee, 11
2.6 Example of a registered PAL (P16R4) ... 12
2.7 Example of a macrocell PAL device (GAL22VI10) ..., 13
2.8 GAL22V10 macrocell configurationscccccoooiiiiiiiiiiiceee 14
3.1 Sample ABEL logic design source file ... 20
3.2 A sample ABEL Design Environment SCreenccccovevrviioiiiniinennn. 22
4.1 Tug of War game CONCEPtoooviiiiiiiiiiiiiiie e 25
4.2 Block diagram of original system design implementation 25
43 State diagram of Game Controller circuit ... 26
4.4 Schematic of original Game Controller design ... 27
4.5 Schematic for original Output Controller circuit ... 28
4.6 State diagram for original Timing Controller design 29
4.7 Schematic of original Timing Controller circuit ..o, 30
4.8 Timing and state diagrams for original Input Conditioner circuit 31
4.9 Schematic of original Input Conditioner circuit ... 32

viii

FIGURE PAGE
5.1 GAMECON source fillecccoooiiiiiiiiii e 35
52 OUTCON source fileccooociiiiiiiiiiiiiiiieti e, 39
53 TIMECON state diagramcocoiiiiiiee oo 42
54 TIMECON source file ...t 43
55 INPUTCON source fileccccooiiiiiiiiiiiiiiiieeeee e 47

6.1 Schematic of PLD implementation of Tug of War 51

CHAPTER 1

INTRODUCTION

Major improvements have been made in the field of digital circuit design in the
last 15 to 20 years. As many are aware, advancements have been made in chip fabrication
techniques allowing greater operating speed, lower power consumption, and improved
reliability. However, the most revolutionary improvement in digital design has been the
types of devices in which designs may be implemented. One of the most popular of these
is a class of devices known as Programmable Logic Devices (PLD’s). PLD’s and some
programming techniques for using them in digital designs will be emphasized in this paper.

Every undergraduate Electrical Engineering student is exposed to digital design
techniques during the course of his or her study. These digital design courses generally
employ 7400-series TTL logic chips as the devices of choice for implementing designs.
From an academic point of view, this makes sense in that these devices typically contain
only a few logic gates or flip-flops per chip and are easily understood by newcomers to the
subject of digital design. These devices are commonly available, inexpensive, require no
special programming, and merely need to be powered and wired properly to work in a
circuit. However, breadboarding and debugging anything more than a simple circuit can
be extremely time-consuming and frustrating. The number of logic chips needed to
implement the design can also become quite large. Power consumption and the physical
size of the final circuit are also valid concerns. For these and other reasons industry has
tended to shy away in most cases from using 7400-series logic for most digital circuit

designs.

On the other hand, Programmable Logic Devices (PLD’s) allow digital circuit
designers to implement designs with just a few chips, the actual number depending on the
complexity of the design and the types of devices used for implementation. Combinatorial
or sequential designs may be programmed into a PLD by the user via a device programmer
unit. The resultant device is able to perform the same logic functions that would’ve taken
numerous 7400-series chips to accomplish using traditional design methods (Figure 1
shows an example of this). Breadboarding times drop enormously, and most debugging
can be done at the design level rather than at the physical device and circuit level. The
reduction in chip count also leads to reductions in power consumption, physical circuit
size, and cost. For these reasons, programmable logic is now employed in many

commercial and industrial digital circuit designs.

Fig. 1.1 - Comparison of a 7400-series circuit (left) and the PLD that replaces it (right)

The ABEL Hardware Description Language from Data I/O Corporation is
used in this project for all PLD programming and in all of the programming examples and
descriptions. It’s a very powerful software package for programming PLD’s, but it has a
significant learning curve. To the best of the author’s knowledge, the work done in this
project goes much further into this subject than what any other YSU Electrical

Engineering student has done thus far. Therefore, this project and paper may be useful as

a guide to other students who wish to use ABEL-HDL and PLD’s in their designs. The
lessons and techniques that were learned by the author and are presented here could save
others some struggling and headaches and get them on the road to programming PLD’s
more quickly. This forms a secondary purpose of the thesis and is responsible for the
order of appearance of the subjects presented.

The main purpose of this project is to investigate and test some methods of
using ABEL-HDL design techniques and PLD’s to reduce the chip count of a digital
circuit. After an introduction to PLD types and their features (Chapter II), the
ABEL-HDL design software is examined with respect to command types and program file
structures (Chapter I11). This knowledge is then applied to reduce the chip count in an
experimental circuit designed and built by the author in a previous graduate digital design
course, employing 7400-series design techniques and devices. Despite efforts to make the
original design as efficient as possible, the final chip count totaled 31. In contrast, the final
PLD implementation requires only 4 devices in order to duplicate the logic of the original
circuit (plus a few chips used to isolate the PLD chips from possible harm). The original
experimental circuit design is discussed in Chapter IV. This is then followed by the PLD
experimental circuit design in Chapter V.

Finally, the project results are examined and some ideas for future research are
given. During the course of this project, various problems or items of interest were
encountered that could provide a student an opportunity for further study, but were
deemed by the author to be outside the scope of this thesis project. These are presented in

Chapter VL.

CHAPTER T

AN OVERVIEW OF PLD’S

2.1 - Historical Background

Until the mid 1970’s, digital circuit designers basically had two choices in how
to physically implement their designs. The first method was to use off-the-shelf
7400-series devices to build their circuits. This technique had advantages such as low
development costs, short design times, and the ability to build and test circuits without the
need for specialized programming equipment. However, circuits constructed in this
manner tend to be large in size and power consumption. The second method was to use
mask-programmed devices. These were custom manufactured (often by photo-etching)
devices produced by chip foundries that were designed to satisfy the logical functions
specified by the customer’s design. Generally, the equivalent logic of hundreds or
thousands of gates can be implemented in one device package. Using these devices in
designs leads to smaller circuit sizes along with reduced power requirements. However,
design times for mask-programmed devices are usually long and development costs can be
high. Also, elaborate and complicated testing procedures are often needed to evaluate the
programmed devices. For these and other reasons, large production volumes of the end
circuit are generally necessary in order to justify using these devices in digital designs. It
was apparent that a desirable solution for digital circuit designers would be to have
devices with relatively large equivalent gate densities, but also have the ability to be

programmed by the designer. This would result in a best of both worlds situation: the

reduced circuit size afforded by mask-programmed devices, and the design flexibility of
off-the-shelf devices.

The early 1970’s saw the introduction of the first PROM (Programmable
Read-Only Memory). It was soon found that these devices could be used to implement
some simple logic functions as well as their intended data-storing function. These devices
quickly became popular with designers. However, PROM’s were limited in what types of
logic functions they could implement.

The PLA (Programmable Logic Array) made it’s appearance in the mid 1970’s.
This type of device allowed designers to program logic functions using classic SOP (Sum
of Products) format. The PLA was originally just a combinatorial logic device. However,
it did not take chip manufacturers long to add feedback paths and flip-flops, thus creating
a class of PLA-based devices capable of implementing sequential logic as well.

PLD’s finally caught on in popularity with digital designers after the
introduction of the PAL (Programmable Array Logic) in the late 1970’s. These devices
also feature SOP logic implementation and come in combinatorial and registered forms.
However, they forfeit some of the user-programmability of the PLA in favor of device
speed and simplicity. Regardless, PAL-type devices have grown to be one of the most
popular PLD types in use today. They have grown to include many advanced features that
can be controlled by the designer. CMOS versions have also been introduced. These
devices may be erased electrically and reprogrammed by the designer, making the design
and debugging process more efficient and cost-effective.

Universal programming software became readily available in the early 1980’s
and quickly found a home on personal computers. ABEL-HDL from Data 1/O
Corporation was one of the first full-featured design software packages and is still an
industry standard today. Other software packages are also commonly used in industry, an
example of which is CUPL (Common Universal tool for Programmable Logic) from

Logical Devices. It was initially developed at about the same time ABEL-HDL was being

developed. Many other software packages exist which tend to offer fewer design features.
Device manufacturers also occasionally offer design software that is oriented toward their
particular brand of devices.

The last major advancement in programmable logic occurred in the mid-1980’s
with the introduction of the FPGA (Field Programmable Gate Array). With an equivalent
gate density in the thousands and performance rivaling that of mask-programmed devices,
this type of device was a radical departure from PLD’s. FPGA'’s are made up of many
LCA’s (Logic Cell Array) along with signal routing lines. The LCA essentially consists of
a small number of gates that can be programmed to implement a simple logic function.
These LCA’s are then connected by the user with programmable signal routes. This
arrangement leads to greater design flexibility than PLD’s can offer, but also more
complex methods of programming. Except for the fact that they are programmable
devices, FPGA’s are so different in design from PLD’s that they may be considered to be a
family of devices outside the realm of PLD’s. For this reason, the author chose not to

focus attention on them.

2.2 - Types of PLD’s

The device structures of PROM’s, PLA’s, and PAL’s each contain
programmable fuse arrays that are used by the designer to program the desired logic
functions into the device. Array connections that are not needed for the design logic have
their respective fuses blown. Fuses are left intact for array connections that are necessary
for the programmed logic functions. Each of the three types of PLD have AND and OR
arrays that are used to implement logic in SOP form. What distinguishes them from each
other is which arrays can be programmed by the user and which ones have permanent

connections.

The PROM (see Fig. 2.1) has a fixed AND array that provides all of the
possible input product terms. The OR array has fused connection points and can be
programmed by the user. Any output in a PROM can be the sum of any or all of the
outputs from the AND array. This arrangement is adequate for uses such as address
decoders or data storage. SOP logic functions can also be implemented and sequential
logic is a possibility, but external storage registers are needed. These uses for PROM’s
are rather inefficient, however. Every combination of inputs is available in the AND array
in a PROM, but very rarely are all of these product terms used in a logic function.
Therefore, much of the device resources go to waste. Also, since all product terms are
available for a given number of inputs, each additional input doubles the number of terms
in the AND array (# of terms = 2, where n = # of inputs). This increases the physical size
and complexity of the device and tends to put a practical limit on the number of inputs

available.

PERMANENT

AND ARRAY VOV NN

101/02/03/04)

Fig. 2.1 - Example of a PROM device

PLA devices (see Fig. 2.2) are the most flexible type of PLD. They have both
AND and OR fuse arrays that may be programmed by the designer. The AND array
resources are more limited than in PROM’s and it is impossible to have every possible
product term represented. This reduces the physical size of the device, but it forces the
designer to perform some minimization of the design logic to be implemented. As in
PROM’s, any output can be the sum of any or all of the product terms in the AND array.
This allows for product sharing in the outputs and can lead to more efficient use of device
resources. However, while PLA devices are very flexible for design implementations, they
are limited in speed due to the need for signals to propagate through two fuse arrays.
Figure 2.3 shows an example of a PLA type of device that includes registers and

feedbacks.

AND FUSE ARRAY

N -
[01]02]03]04]

Fig. 2.2 - Example of a PLA device

l‘fu---':'ii AHEEE I IS ! TITE
HH '
0 Ehit :.-r -
2
L .
iz [z}i$= . s s flﬂln!u-u
s
13 [E}—L{>= : {‘ m-lm—-
1@ [EHo- » ! (-
s E}L«(\; " ; W—@Pﬂ/d{'
16 [Fhitm = g t—
17 EH— » T r
M
8 E}—L(>~ ::
18 EE,)—LV :
110 Ei}l—{)& :
11 Eaf { o B
]
12 gl »
]
113 @—LD r -
»
114 E]_}—I—(r »
T »
115 Gt n
M >l
-
s 1
»
¥t L
e TP —
» ;{; l
ol
2
- L] 4 1
“
mm»g oelvivieivsieiieivielele) t;c;f:cpc;uc)u PODUROLY POVLTLYY DULULDOD
X1
- l;:, ——;—‘«n
P e
g :g_r}«
o S s L
e e [% oid
STATE i3 E i } L4l
8 —’j& »:
B¢ E;_~. 4
e =
L e fing
- e S]
e @ -
> ST 47 =
P =8 GEE S Ul
g b : i -«—«--~—-*dy~—£ﬁ 3
[".) me' H
sEyre
= D s
- TEH o o
~~~~~~ {1 cax

NOTE: FUSE NUMBER = FIAST FUSE NUMBER + INCREMENT

Fig. 2.3 - Example of a PLA device (F105) with registers and feedback

PAL devices (see Fig. 2.4) have fused AND arrays like in the PLA, but have
fixed OR arrays. Generally, only one OR gate is assigned to each output pin. The
product terms associated with one OR gate are not available to the other OR gates in the
array, thus making product sharing all but impossible. In addition, a limited number of

product terms are available in the AND array. Therefore, logic minimization is very



10

important when using PAL devices. These devices have a speed advantage over PLA’s,
though, since signals only need to propagate through one fuse array. Figure 2.5 shows an
example of a combinatorial PAL. A example of a registered PAL is shown in Fig. 2.6.
More advanced PAL devices feature output macrocells. These macrocells are
configurable by the designer to form combinatorial or registered output configurations
with programmable output polarities. These devices with macrocells are extremely
flexible and can often directly replace many other types of PAL with just one device. An
example of a macrocell-type PAL is shown in Fig. 2.7. The possible macrocell

configurations for that device are depicted in Fig. 2.8.

L A PERMANENT
M M %\ﬁ Vi OR ARRAY

,,,,,,,,

&

@ﬂ“ﬁ“ﬁf
1
AND FUSE ARRAY / \/ \ A

ooy

Fig. 2.4 - Example of a PAL device



&
$2ho

120
160
ji 3
224

gRBBRyy

R g

o

gu
-
~

576

3

872
704
738

o

E—i3

T

eIz

r .

Y

15}

T

ry.

Fig. 2.5 - Example of a combinatorial PAL (P16L8)

11



8
Y

@

Bl

8

[ |

[ 1

§§ > D G
Lt g

Fig. 2.6 - Example of a registered PAL (P16R4)

{13}

)
in =
R

12



DIP (PL.CC) Package Pinouts

13 TD
i o 4 8 12 16 20 24 = a3z 36 40
1 00 ASYNCHRONOUS RESET
(TO ALL REGISTERS)
0044
| 8 ir omc 1 |
» 1% ;e
| o6 L 5608 !
L “ 2 b
a0 =1 |
= i 19 oLme i 22 (26
: ==t 1 %0 "’*‘/“’T“* (28)
0680 3 5810
4 51
2(3) 13 e 5811
u‘. a o 1
: 3,12 || owme bl 2128)
: = 2 !
v SN S
3(4) —t= ] *
1406 i
14 -—-—#« 20 (24)
: =T o:sg:c i
2012 H=3 || sg,‘tﬁ ,,____}
4(5} —¢ St
21% -
: »—Qw— 19 {23)
: = ‘
2060
5(6) —
%04
' -—Q-Hl—» 18 (21)
|
3508
6(7) —=
3652 —__J‘ I
: = o4l owme i1 17(20)
: £ 50 }
s & AN
7(9) —i= st
4312 " ]
E .2 [ oLMe gl 16(19)
; 23 = ik
A840 H= . 5&
8(10) —¢ S
4864 "'4_‘ 1
: =NURT T 15 (18)
o i 5824
8(11) —x N (T S
= 3 |
: %ﬁ* oLMc j-w 14(17)
720 2w g 53%5
10(12) +3 .
5764 SYNCHRONOUS PRESET
11013 4 3 (oML RECISTERS 13 (16)

Fig. 2.7 - Example of a macrocell PAL device (GAL22V10)



14

*
. é\ T L
. ) \, D ~g
. P a 4TQO 1
e MUX
cLK— Q
|
SpP
_‘_——7’ R S

“‘“““‘-—“'”"'-C’\'?_2T01
MUX

GAL22v10 OUTPUT LOGIC MACROCELL (OLMC)

i
~—{L~{:>

ACTIVE LOW ACTIVE HIGH

REGISTERED MODES

ACTIVE LOW ACTIVE HIGH

COMBINATORIAL MODES

Fig. 2.8 - GAL22V10 macrocell configurations



15

This only scratches the surface of the number of PLD types that are available.
Those readers who are interested in more information on which types of PLD’s exist
(including FPGA’s) and the history of their development are referred to Practical Design
Using Programmable LQgin by David Pellerin and Michael Holley. This book proved to
be an invaluable resource to the author in preparing this paper. The Data /O Logic
Diagram Packa g§4 manual (a companion to the ABEL manuals) is also a good reference.

It contains detailed schematics of over 200 PLD’s.



16

CHAPTER 111

AN OVERVIEW OF ABEL-HDL

3.1 - Program Features

ABEL-HDL is a powerful software package that allows the digital designer to
implement designs in PL.D’s using familiar techniques such as Boolean equations, truth
tables, and state diagrams. Using a text editor such as MS-DOS Edit or ABEL’s built-in
editor, the designer enters the description of the logic to be implemented. The description
can be quite specific, even to the point of defining actual fuse assignments, if the end
device for implementation is known. However, ABEL also allows the designer to describe
the design logic in very generic terms without specifying an end device. ABEL then has
the ability to determine (along with an optional set of criteria defined by the user) which
devices are capable of implementing the design logic. A variety of logic minimization
algorithms are built into the program and can be used to simplify the design logic.
Extensive simulation capabilities exist in for determining the validity of the design logic at
multiple stages of the ABEL design process. Finally, once the design logic has been
“fitted” into a particular device, a fuse data file may be created for downloading to a
device programmer unit.

The version of ABEL-HDL used by the author in this project is ABEL 4.10
(Version 4.03 was used initially, but was later upgraded to 4.10). It was released in 1991
or 1992 and runs under MS-DOS. The latest release is ABEL 6. It runs under Microsoft
Windows and offers many graphical add-on utilities such as the StateCAD Graphical

Design Entry program (allows graphical state diagram design entry) and Waveform



17

Viewer (allows simulation results to be displayed in familiar timing chart form). However,
the same program structures and command syntaxes exist as in-ABEL 4 for DOS.
Therefore, the design examples depicted in this project are still valid. In fact, the DOS
version of ABEL still exists under a new title: ABEL-PLD. Data I/O offers it as an
entry-level means of programming PLD’s. However, it is not capable of using the

graphics utilities and other advanced features of ABEL 6.

3.2 - Command Syntax

ABEL uses a set of symbols for Boolean operators that is different from those
introduced in classical digital design courses. These are used throughout this paper and in

the design examples and are summarized in Table 3.1.

TABLE 3.1
ABEL BOOLEAN OPERATORS
Symbol Description
! NOT
& AND
# OR
$ Exclusive OR
'$ Exclusive NOR

Assignment operators are used to assign values to an output. These are used
when writing equations. Separate symbols are used for combinatorial or registered
outputs. Using a registered assignment operator in describing the logic for an output
indicates that the output will take on the evaluated value of that logic at the next clock

cycle. Assignment operators are shown in Table 3.2.



18

TABLE 3.2

ABEL ASSIGNMENT OPERATORS

Symbol Description
= combinaterial output assignment

= registered output assignment

Relational operators are used for comparing two items in an expression. They
are primarily employed for conditional decision-making in state diagrams, but can also be
used in equations. These are listed in Table 3.3. They are straight-forward except for the
symbol for the ‘equal’ condition. The usage of two ‘=" symbols was necessary in order to

differentiate the condition of ‘equal’ from the combinatorial assignment operator.

TABLE 3.3

ABEL RELATIONAL OPERATORS

Symbol Description
— equal
b= not equal
less than
<= less than or equal
> greater than
>= greater than or equal

ABEL allows signals, either inputs or outputs, to be grouped into sets. This
allows some simplification for the designer in writing the design logic. An example would
be in the case of state variables. Say there are four state variables in the design, y1
through y4. If the design logic requires the comparing of state values, it would simplify
things if the state variable were grouped into a set. For example:

State Value = [y1,y2,y3,y4]
Then, instead of writing logic that compares the value of each state variable individually,
the designer may compare the value of the set as a whole. For example:

IF (State Value == 5) THEN...



19

ABEL also allows numeric values to be expressed in bases other than ten.
Base ten is assumed whenever a number is used. If the designer wishes to express a
numeric value in a different base, a base operator prefix must be used. These are shown in

Table 3.4.

TABLE 3.4

ABEL BASE OPERATOR PREFIXES

Base System Prefix
binary b
octal o
decimal d
hexadecimal ~h

Using these base prefixes, the state value in the above example could also be expressed in
another base, say binary:
IF (State Value == ~b0101) THEN...
These descriptions of command syntax that have been given are by no means
exhaustive, but are sufficient for understanding the design examples to follow in this
paper. If further syntax-related information is desired, the reader is referred to the ABEL

User Ma,m;al.3

3.3 - Source File Structures

A digital logic design that is implemented in ABEL must conform to a standard
file format. There are a number of required structures in an ABEL source file. However,
there are also a number of optional items that the designer may include to simplify or
clarify the design. A sample ABEL source file is shown in Fig. 3.1. It’s part of the
experimental circuit that will be discussed later. At the moment, it will serve to

demonstrate the structures, both required and optional, of an ABEL file.



20

module inputcon
title 'Input Conditioner, Tug-o-war Game'
declarations

inputcon device 'plév8B8as’;

CLK pin 1;
P1_IN pin 2;
P2_IN pin 3;

Y1 pin 17;
Y2 pin 16;
Y3 pin 15;
Y4 pin 14;

P1_OUT pin 19;
P2_OUT pin 18;

equations

Y1 (PL_IN & Yl.pin) # (CLK & Y2.pin);

Y2 (!CLK & P1_IN) # (P1_IN & Y2.pin) # (CLK & Y2.pin);
P1_OUT = (P1_IN & !'Y2.pin) # (!CLK & P1_IN & !'Yl.pin);
¥3 = (P2_IN & ¥3.pin) # (CLK & Y4.pin);

Y4 = (!CLK & P2_IN) # (P2_IN & Y4.pin) # (CLK & Y4.pin);
P2_OUT = (P2_IN & !'Y4.pin) # (!CLK & P2_IN & !Y3.pin);

test vectors 'Pulse catcher for P1'

( [ CLK,P1 IN ] ->
->
->
->
->
->
->
->
->

] [ P1_OUT ] )
1 [
1 [
1 [
] {
] [
] [
1 [
1 [
1 ->1
] [
] [
1 [
1 [
1 [
] [
] [
1 [
1 [
1 [

-

->
->
->
->
->
->
->
->
->
->

RPOOHRHMOOHRHOORHOORKHODO
OOHMHMMEHMRBMMOOOOHKME R H B O]
Nt Lt Mk et et et et bt e et £ o
e me e we me e e ve v e me me me e we e e e e

N m M m m N mm m e m m w m m

COO0OO0OOHMRKHOODODOOOOOOHKHO

end

Fig. 3.1 - Sample ABEL logic design source file

The first few lines at the top of the file form a Header. The Header is a
required structure, but includes optional elements as well. The ‘module’ statement is
required. It defines the beginning of the source file and gives the module a name. In this

example, the module name is ‘inputcon’. An optional title may be given to the module. It



21

is indicated with the ‘title’ statement. This statement is not acted on by the ABEL
compiler, but it does allow the title to show up in the documentation produced by ABEL.

Next comes the Declarations structure. This area of the file is reserved for
indicating details such as device type, signal-to-pin assignments, signal attributes, and
user-defined constants and sets. The ‘declarations’ statement is not a required element.
ABEL assumes that any statements following the Header and preceding the Logic
Structure(s) (equations, truth_table, and state_diagram) are indeed declarations. In this
example, the ‘device’ statement is used to declare the PLD intended to be used and the
‘pin’ statement is used to declare signal-to-pin assignments. If a generic approach is being
taken in the design process, the device line and the pin numbers may be eliminated. ABEL
can be made to find devices that the module will ‘fit” into and automatically assign pin
numbers to the defined input/output signals.

Following the Declarations are the Logic Structures. These portions of the
source file define the design logic. The descriptions may be equations, truth tables, or
state diagrams. At least one of these Logic Structures are required in a module, but it’s
also valid in many situations to have more than one type in the same source file. A Logic
Structure begins with a required keyword. These keywords are ‘equations’, ‘truth_table’,
and ‘state _diagram’. The Logic Structure used in the example source file is equations.

After the Logic Structures, the designer may include a set of Test Vectors.
This structure is optional, but it is highly advisable that it be used. It allows the designer
to verify that the design logic functions as intended. This structure begins with the
‘test_vectors’ keyword. The designer then writes a set of vectors that tell ABEL how
particular outputs behave when subjected to certain input stimuli. Using these test
vectors, it is possible to describe all of the functional behavior of the design logic. Once
the ABEL source file has been compiled, the resulting compiled logic may be simulated
through the use of the test vectors. The input portion of the vectors are used to stimulate

the compiled logic and the results are compared to the output portion of the vectors.



22

ABEL alerts the designer to any discrepancies between the expected output values and the
values determined by the simulation. This is a great aid to the designer in debugging a
logic design.

Finally, the module is terminated with the ‘end’ keyword. This is a required
structure. It’s optional for the module name to follow the ‘end’ keyword, but it’s rarely

used in practice.

3.4 - ABEL Design Flow

All processing of an ABEL source file takes place in the ABEL Design
Environment. Upon typing ‘ABEL4’ at the DOS prompt, the ABEL Design Environment

screen appears. A sample screen is shown in Fig. 3.2.

N Bait Jieu [ormpile [Jptinize Eﬂru’ut [artMap [efaults Belp

Fl

Save k...

int...
Shell
Save and [xit
Bt

A

SR Sk

AR

Insert 0081:081

Mj;*}ﬁw‘&ﬁ‘

Fig. 3.2 - A sample ABEL Design Environment screen

The ABEL source file may be created in the built-in screen editor or created
externally. Either way, once it is loaded into the ABEL Design Environment, it then may
be compiled via commands in the ‘Compile’ pull-down menu. If the source file includes

test vectors, they then may be simulated (also from the ‘Compile’ menu). If errors occur



23

in the compilation or simulation processes, they may be seen using commands from the
‘View’ menu. The ‘View’ menu also allows the designer to view documentation
produced by other ABEL processes.

Having been compiled, the source file then is optimized. There are a number
of logic minimization options available in the ‘Optimize’ menu. The optimized source file
may then be simulated (also in the ‘Optimize’ menu).

The optimized file is then ‘fitted’ into a device. This is accomplished from the
‘SmartPart’ menu. If the design is generic in nature, the Device Database may be searched
for PLD’s in which the design is capable of being implemented. If a device-specific design
is being used, the device is already known. Either way, the source file may be fitted into
the device and the results simulated. The signal-to-pin assignments may also be calculated
by ABEL at this time, if they have not already been assigned in the source file.

Once the source file is fitted into a device, a JEDEC fuse file is created. The
options for doing this are found in the ‘PartMap’ menu. This fuse file may then also be
simulated. The resulting <filename> jed file should then be copied onto a 3-1/2” disk to
be read by the Unisite programmer. This JEDEC file contains the actual fuse data for the
physical process of programming the PLD with the design logic.

The above directions are meant to be only an introduction into the ABEL
design process. For further information, the reader is again referred to the ABEL User

Manual. 3



24

CHAPTER IV

ORIGINAL EXPERIMENTAL DESIGN IMPLEMENTATION

4.1 - Design Concept

The ABEL design examples that will be discussed are derived from a digital
circuit designed and built by the author in a graduate digital logic design course during the
summer of 1992. 7400-series devices were used in the design implementation. Every
effort was made to limit the total chip count, but in spite of these efforts, the final tally
came to 31 chips.

The circuit was designed to be a ‘Tug of War’ game. The concept is depicted
in Fig. 4.1. The ‘rope’ consisted of nine red LED’s arranged in a row. A lit LED
indicated the ‘knot’ position on the rope. A green LED on either end of the rope
indicated the respective winner of the game. A game was started by pressing the RESET
button. A time delay of about 1.5 seconds occurred and then a piezo buzzer sounded to
signal both players to begin pushing their respective buttons. They would continue to
push their buttons until the knot was ‘pulled’ to their respective winner LED. The piezo
buzzer would then sound three times to indicate that a win condition occurred. The game
then waited in this state until the RESET button was pressed again and another game
would start. In addition, there were two more features. First, all LED’s would be lit at
power up to test that they were functioning. Also, if a player would push his button prior
to the ‘GO’ signal from the buzzer, it was considered cheating and the other player would

automatically win. The final circuit was tested and functioned as intended.



A block diagram of the system design is shown in Fig. 4.2. The system
consisted of four main circuits: the Game Controller, Output Controller, Timing

Controller, and Input Conditioner.

TUG-0-WwWAR

1
QO O0QOOCe0Oo0 O
WIN L] wiN

ON

- . -
Y B ane 7y

5 seses »
b A - sse

A
PLAYER] oFf Reser . PLAYER2

Fig. 4.1 - Tug of War game concept

cLK
£=27H:
START
Pt znpuT NG
1M
Py ey DNDITIONER GAME WINNER,
CONTROLLER
RsET ——s] CONTROLLER | oK
SPKR
o pEREHHE
= 7 kife N ] 2

QUTPUT CONTROLLER

T

WL W L3 LY LS L6 LY LR LY wa

Fig. 4.2 - Block diagram of original system design implementation

25



26

4.2 - Game Controller

The Game Controller managed all of the game rules and course of play. It
would issue signals to the OQutput Controller shift registers to dictate LED ‘movement’
and to the Timing Controller to indicate that a time delay or a winner signal should be
started. Communications with the Output Controller were handled synchronously.
However, because the Timing Controller operated at a much slower clock frequency than
the Game Controller, communications with it were-accomplished through asynchronous
handshaking. The Game Controller design itself was implemented as a Moore-type
sequential circuit. The state diagram is shown in Fig. 4.3 and the circuit schematic is
depicted in Fig. 4.4. It may also be interesting to note that the 7400-series circuit seen in

Fig. 1.1 is the actual original Game Controller circuit.

SR

Fig. 4.3 - State diagram of Game Controller circuit



—

il

Yo

Pl o) RSET(HY  OK(H) Win (1)
i | -
} ? g; %; INPUTS
P P PL P2 RSET RSET OK OK wiN
PR RET B GET N4 R3ET %
}, - win Yy PT P2 ®Y . oK %
A
[ 1 [T+ [ ] 1T+ L
& 5 4 a1 8 S 4 3 2 1 @ 7 & 5§ ¥ 3 1 i ©
[ e — c
74151 B —% T74Hi51 — Y= 74151 [
Ab—Ys = ¥3 A
w w w Y
T [~ [=]
[ I T 1
¢ | cLK
ST R OT
¥ ot Y. Y Y3 Vo Ve
Y Y3 % %
[ 1 |
A B < D
G
THIEH G2 q
S 13 B w0 G B 7 6 § w 3 i 1 ¢ =
o T T Lo D & R & & R LSRR IR I & S v} T
Y
L { ) . l
\‘\{ s / \( / /
Si(r) So(H) WINNER (#) START (L) LR(H)  LEDIH) LEDAMH)

Fig. 4.4 - Schematic of original Game Controller design

4.3 - Output Controller

27

The Output Controller was in charge of controlling the status of the LED’s and

alerting the Game Controller when a win condition had occurred. The circuit (see Fig.
4.5) was composed primarily of three 4-bit universal shift registers connected in series.

The LED signals came directly from the shift register outputs. The shift and broadside



28

load signals and data bits came from the Game Controller. In order to get win status
information back to the Game Controller in a synchronous manner, the shift registers were
made to clock on the falling edge of the system clock pulse (note inverter on clock signal).

This ensured that no signal lag occurred.

SiM) Sel#) LRG) LEDIGY 1€D2GH)

INPUTS
S, Se R IEDI LEDA
LR 515 LEDH ny LED2 LR
-+ 1P 11| P11
h %% ABRCD S 5 A BcD 5 5 ARCD
R alhh L (R 74194 - HR 79194 L
GK Q) Qs Qe Qs [ K Q Qg B.Qp [- CIX QR Qe Qp

LK
£+ 1k

R RE R R R R R
I V. > i 2 K
! ‘ . . . . . +5
w! L L2 13 12 Ly Lb L7 Lg L3 wa

Fig. 4.5 - Schematic for original Output Controller circuit



29

4.4 - Timing Controller

The Timing Controller took care of all timing routine and sound effect duties.
The circuit was built around a 4-bit binary counter clocked at a very slow pace
(approximately 5-10 Hz). This difference in clock speeds (the system clock frequency was
set to about 1-5 kHz) mandated that the timing functions be relegated to a separate circuit
and that communications between it and the Game Controller be asynchronous in nature.
The Timing Controller design was implemented as a Mealy-type synchronous circuit,
using the counter outputs as state registers. The state diagram is shown in Fig. 4.6 and

the circuit schematic is depicted in Fig. 4.7.

START « WINNER, / ﬁ, oK State As:;'qnmen'fS
(Reset) a - oooo
b -~ ocoog
3 -~ pofo
. START/ 3PIR, OK T eoh
START /3R TR (Reset) € - olee
WINER / SPKR, BK £ - olo
(Count) 3 - oilo
)} - oiHl
N - o
STaRT /SRR, BR START/ SRR, 5K ; - I':Zl
wmﬁm/s’ﬁ&)o& (Coun"’) k- loto
(Cow.}) £ - 1o1t
m= 100
START/ PR, BR START [5PKR 0K
WINNER / Sk, BE (Covnt)
(Court)
STRRT [ 5PR TR
WINNER / 5Pg K
(COun"')
START/ SPRR, 5% START/ SARR, TR
WINNER /SPKR | OK { Comd)’
(Couh'f') \
L )
T/ SpkR, BR START/3PKR R
WINNER / $PKR, SR (Coun’f)
( Cpun'f)

3
WINNER /3KR, o—(\—/ START /$PkR, OK
(Reset) (Count)

Fig. 4.6 - State diagram for original Timing Controller design



30

START(L) WINNER (H) |

| INPUTS
f
START  WNR WNR [ c
_______ - ST e we] B p €
CLK -
=T He 1
XEM®
7493
D ¢ A

ak(#)
L0 o —
Q% @ g + SPKR

4

+5

CLK
,c:‘m;‘——b

Fig. 4.7 - Schematic of original Timing Controller circuit

The 7493 4-bit counter counts when its control inputs (R1 and R2) are held
low and asynchronously resets the count outputs to zero when the control inputs are high.
This feature was used in the design to enable the START time delay to be interrupted
upon a player cheating. The counter would then immediately (i.e. asynchronously) reset

to state ‘a’ and the WINNER routine could be performed.



31
4.5 - Input Conditioner

The Input Conditioner was needed due to the asynchronous nature of the
signals from the player pushbuttons. The pulses from the pushbuttons needed to be
captured and synchronized with the system clock so that they could be serviced by the
Game Controller. It was also desired that the pulses be turned into one-shots in order to
prevent a player from being lazy and simply hold his button down. These conditions made
it a logical choice to implement the design as an asynchronous sequential circuit that had
the system clock signal as one of its inputs. Some cross-coupled NAND’s and pull-up
resistors were also employed to debounce the pushbuttons. The timing and state diagrams

are shown in Fig. 4.8 and the circuit schematic in Fig. 4.9.

CLK (1)
i i t ! H 1 H
S N A N T R
i y + + ; 7 f -
M i ! i f |
AR 7 R B . | TIMING DIAGRAM
T
¢ t N f
wre) Co _] :
! t t 1 i [ 1 | |
Cik-iN/ouT
@ - iN/5ov
— STATE DIAGRAM
Tk N [ ovT
CLKs B/60T .,
c’[‘x-w//o'&‘r Gk~ N /657

_C—L:K—- ]N/OUT

CLK IN /50T

Fig. 4.8 - Timing and state diagrams for original Input Conditioner circuit



32

+5

+5
47K g g YTk Y7k H7k
P P
2 Lo— 2 o

o O o ; < &
’ 1 ﬁ
ax  TK

un
z
W
~
X
£
gl
b3
z
=

RSET
R

ouT ot
Py {H) RET () %1 (H)

Fig. 4.9 - Schematic of original Input Conditioner circuit



33

CHAPTER V

ABEL EXPERIMENTAL DESIGN IMPLEMENTATION

5.1 - Design Concept

The main objective for the ABEL implementation of the Tug of War game
circuit was to maintain the functionality of the original circuit while only using one PLD
for each of the four system components (i.e. Game Controller, Output Controller, Timing
Controller, and Input Conditioner). Two deviations from this plan were made, however.
First, it was necessary to make some changes in the signals between the Game Controller
and the Output Controller. This was due to device limitations and will be discussed in
more detail. Secondly, the decision was made to separate the debouncing circuitry from
the Input Conditioner and the LED output inverters from the Output Controller. The
reasoning for this was to isolate the logic portions (i.e. the PLD’s) from the input/output
circuits and protect them from any possible harm. Quad NAND and hex inverter chips are
cheap and plentiful and can be replaced easily if damaged. PLD’s are more expensive and
generally are not stocked at consumer electronics stores, necessitating ordering from
catalogs.

ABEL 4, being DOS-based, only supports up to eight character length
filenames. Therefore, the filenames (and module names) for the Game Controller, Output
Controller, Timing Controller, and Input Conditioner became GAMECON, OUTCON,
TIMECON, and INPUTCON, respectively.

Macrocell-type PAL devices were used for all four of the system components.
This resulted in great flexibility in terms of the availability of equivalent device

architectures because of the configurable nature of the macrocells. In particular GAL



34

devices from Lattice Semiconductor Corporation were used. These are CMOS devices
and are electrically erasable and reprogrammable. This feature reduced the number of
chips needed for experimentation since they could be reused if the logic programmed into
them did not function as intended. Manufacturer data sheets for these devices are

included in Appendix B.

5.2 - GAMECON

The GAMECON module (see Fig. 5.1) was programmed as a Moore-type
sequential circuit just as the original Game Controller had been designed. The state
assignments and state transitions remain true to the original design specifications. Three
separate modifications were made to the input/output signals, though. The LED1 and
LED2 outputs from the original circuit were combined into one named LED. LED1 and
LED?2 are identical logically and were only separated in the first place because of fanout
concerns. These concerns don’t exist inside the PLD. Secondly, the WIN input to the
original circuit was eliminated and both W1 and W2 from the Output Controller were
brought in instead. Therefore, the win status determination would be made in the logic of
the GAMECON module rather than in the OUTCON module. This was done because of
resource restrictions in the device used for the OUTCON design that will be explained
later. Finally, an output named CLOCK was created. This signal consists only of an
inversion of the CLK input. It was also necessary for use in the OUTCON design for
reasons that will be explained later.

There are a number of items in the GAMECON file that need to be introduced.
First, in the Declarations section, the reader will notice the use of the ‘istype’ statement.
This statement is used to tell ABEL what type of attribute should be assigned to a given
output. For example, S1 is defined to have the output attribute of a ‘buffer’ (i.e. positive

logic). Register output attributes were assigned to y1 through y4. If this had not been



Module gamecon
Title 'Game Controller, Tug-o-war Game'

Declarations

gamecon device 'p26cvl2’;

CLK pin 1;

Pl pin 2;

P2 pin 3;

RSET pin 4;

OK pin 8;

Wi pin 9;

W2 pin 10;

sl pin 27 istype 'buffer';
80 pin 26 istype 'buffer';
WINNER pin 17 istype ‘'buffer’';
START pin 18 istype 'buffer’';
IR pin 25 istype 'buffer';
LED pin 24 istype 'buffer’';
yvl,y2,y3,v4 pin 23,22,20,19 istype 'reg’';
CLOCK pin 16 istype 'buffer’';

Stval = [yl,y2,y3,v4]1:;
= [0101010];
[0,1,0,01;
[0,1,0,11;
(1,1,0,11;
[0,1,1,1};
f1,1,1,11;
f1,1,1,0];
= [1,1,0,0]:
[0,1,1,0];

QMO Q0D
|

Equations

Stval.clk = CLK;
CLOCK = !ICLK;

State_ Diagram Stval

state a: 81 = 1;
S0 = 1.
LED = 1;
If RSET then b else a;

state b: S1 = 1;
S0 = 1;

LED = O;

START = 1;

If (Pl & !P2) then h

Else

If ('Pl1 & P2) then i

Else

If OK then c

Else b;

state c¢: S1 = 0O,
S = 0;
If (P1 & 'P2) then d
Else
If ('P1 & P2) then e
Else
If RSET then b
Else c;

Fig. 5.1 - GAMECON source file



state

state

state

state

state

state

Test vectors

(

e

C

LK
0
1

Test vectors

( [C
[.
[.
{.
[.
[.

LK,

naaoaan

Test_vectors

( [ CIK
[ .c.
[ .c.
[ .c.
[ .c.
[ .c.
[ .c.
[ .c.
Test vectors
( [ CLK
[ .c.
[ .c.
[ .c.
[ .c.
[ .c.

s1 = 1;
S0 = 0;
LR = 0;

If W1 then f else c;

S1 = 0;
s0 = 1;
LR = 0;

If W2 then f else c;

Sl = 0;

S0 = O;

WINNER = 1;

If OK then g else f;

s1 = 0;
80 = O;
If RSET then b else g’

sl =1;
S0 = 0;
LR = 1;
Gote £
Sl = 0;
SO = 1;
LR = 1;
Goto f£;

'Test 'CLOCK'

1 -> [ CLOCK 1 )
1->0 1 1;
1->0 0o 1

’

'power-up and reset/start routine'

P1,P2,RSET,0K ] -> [ Stval,sl,s0,LED,START
.X.,.Xx., 0 ,.x.1 -> [ a,1,1, 1, O
.X.,.x., 0 ,.x.1 > [ a, 1,31, 1, O
i JURN S Y T A | b,1,1, 0o, 1
0,0 ,.x.,01 ->1 b,1,1, 0, 1
0o, 0 ,.x 11 ->1 c 0o, O X o]

T N

. w =~

-7 r

'Player 1 cheat routine!

P1,P2,RSET,OK ] ~> [ stval,sl,s0,LR,WINNER
o, 0, 1 ,.x.1->1 b, 1, 1,.x., 0
1,0, .x.,.x.] =>1 h,1, 0,1, O
X, XK., WX, x0] > [ £, 0, 0,.x., 1
.X.,.X.,.%., 01 > [ £, 0, 0,.x., 1
X.,.X.,.%., 11 > g, 0, 0,.x., 0
JX.,.x., 0 ,.x.] -> [ g, 0, 0,.x., O
Xo,.x.0, 1 ,.0x.1 > [ b i, 1,.x., O

'Player 2 cheat routine!'

P1,P2,RSET,O0K ] -> [ Stval,sSl,S0,LR,WINNER
0,0, .x., 01 > [ b,1,1,.x., O
o, 1, .x.,.x.1] > [ i,o, 1,1, O
XK., WX, WX, %] > £, 0, 0,.x., 1
SX.,.X.,.%., 11 > g, 0, 0,.x., O
JX.,.x., 1 ,.x.1 > b 1, 1,.x 0

’

Fig. 5.1 (cont’d.) - GAMECON source file

— e d e bt

~e

~

36



37

Test vectors 'Normal competition'

(

8

1,P2,RSET,
¥ ol

ks

Stval,si,s
I ol

’

’

-7

-~

MM MMM KM MM ONNON

S e m m M e M e s m m s s

FH MM ONOMNONMBMNDN NS
AR S S S I I
1
v

P
0
o}
0
0
1
1
x
0
x
1
x
x
x
0
[
x

Mob oKX RN N MMM NKEKN RO
o%%k%u%oko%%%#kkﬁ

MoMkuhoxokokuhkhb

nnoaobnOONORONDOGDO

[
[
[
[
{
[
[
[
[
[
[
[
{
[
{
[
[

krokkkONHNOrROOO
mOOTQMANDNARAOT AN
OCO0OO0OHOOROOOKODOKO

D N T T T

end

Fig. 5.1 (cont’d.) - GAMECON source file

done, ABEL may have assumed y1 through y4 to be combinatorial outputs. Also, in the
Declarations section, notice the use of a set named ‘Stval’ that includes all four of the
state variables. Below that is a list of defined set constants ‘a’ through ‘i’ that cover all of
the state values in the circuit. The set and set constants were useful in simplifying the
writing of the state diagram section of the source file.

Secondly, in the Equations section, the reader will notice the use of a ‘dot
extension’ in describing the clock source for the ‘Stval’ registers. Dot extensions are used
to accurately describe register and feedback signals and clear up any potential ambiguities.
For example, the registers used for ‘Stval’ have attributes such as register input (.D),
register output (.Q), register clock input (.clk), asynchronous reset (.AR), synchronous
preset (.SP), etc. Without specifying a dot extension for ‘Stval’ in an equation involving
it, ABEL would be clueless in many cases as to which part of the registers it should be
addressing with that equation.

Next, the reader is for the first time introduced to an example of a
State Diagram structure. Immediately following the State Diagram keyword are the state
variables for the state diagram. In this case, the set ‘Stval’ is used as a shortcut. The set

constants that were defined previously are also used in the individual state definitions in



38

the state diagram. It’s also interesting to note that the syntax for the branching logic is
strikingly similar to BASIC or FORTRAN.

Lastly, the Test_Vectors section deserves some attention. When writing test
vectors to simulate the actions of a state machine, it is necessary to write them such that
the simulation begins in the power-up or initial state. The following vectors should then
step the state machine through its states just as the normal operational flow will occur. It
is not possible to skip states while doing this. At this time, also note the use of the special
constants ‘.c.” (clocked input; low-high-low) and “.x.” (don’t care) in the vectors.

ABEL generates reports at every step of the design process. These include
simulation results, compiled equations, device resource allocations, etc. These are

included for GAMECON and the other system component designs in Appendix A.

5.3 - OUTCON

In programming the OUTCON module (see Fig. 5.2), a different approach was
taken. Since this was not a state machine, the state diagram method of description was of
no use. In addition, a truth table description would be highly impractical. The only
recourse was to use equations to describe the design logic.

A couple of set definitions were made in the Declarations section that are
worth noting prior to discussing the equations. First, the two shift register control signals
were put in a set named ‘Select’. Second, all of the LED outputs were grouped into a set
named ‘OutLED’. The ‘OutLED’ set was created to simplify the equations that had to do
with broadside load conditions since all of the LED outputs could be set properly in the
same equation.

Also of note in the Declarations section is the CLOCK input signal. This signal
is the inverted system clock pulse output from the GAMECON module. Referring back to

the original Output Controller design, the shift registers needed to be clocked on the



39

Module Outcon
Title 'Output Contreoller, Tug-o-war Game'
Declarations

Outcon device 'P26CV12';

CLOCK pin 1;

s1,80 pin 2,3;

LR pin 4;

LED pin 5;

wi,Ll,L2,L3,L4,L5,L6,L7,L8,L9,W2 pin 27,26,25,24,23,22,20,19,18,17,16 istype

'‘buffer’ ;

Select = [81,80];
OCutLED = [W1,Ll1l..LS,W2];

Equations

OutLED.CLK = CLOCK;

When (Select =— 0) then OutLED := OutLED.fb;

When (Select == 1) & (LR == 0) then W2 := L9.fb;

When (Select == 1) & (LR = 0) then L9 := 1L8.fb;

When (Select == 1) & (LR == 0) then L8 := L7.fb;

When (Select == 1) & (LR == 0) then L7 := L6.fb;

When (Select == 1) & (LR = 0) then L6 := L5.fb;

When (Select == 1) & (LR == 0) then L5 := L4.fb;

When (Select == 1) & (LR == 0) then L4 := L3.fb;

When (Select = 1) & (LR == 0) then L3 := L2.£fb;

When (Select =— 1) & (LR == 0) then L2 := Ll1.fb;

When (Select == 1) & (LR == 0) then L1 := Wl.£fb;

When (Select = 1) & (LR == 0) then W1 := 0;

When (Select = 2) & (LR == 0) then W1 := L1l.fb;

When (Select == 2) & (LR == 0) then L1 := L2.fb;

When (Select =— 2) & (LR = 0) then L2 := L3.fb;

When (Select == 2) & (LR == 0) then L3 := 1L4.fb;

When (Select == 2) & (LR == 0) then L4 := L5.fb;

When (Select = 2) & (LR = 0) then L5 := L6.fb;

When (Select == 2) & (LR == Q) then L6 := L7.fb;

When (Select == 2) & (LR = 0) then L7 := L8.fb;

When (Select = 2) & (LR — 0) then L8 := 1L9.fb;

When (8elect == 2) & (LR == 0) then L9 := W2.fb;

When (Select = 2) & (LR — 0) then W2 := 0;

When (Select = 3) then OutLED := [LED,LED,LED,LED,LED,1,LED,LED,LED,LED,LED];

When (Select =— 1) & (LR == 1) then OutLED := [1,0,0,0,0,0,1,0,0,0,0];

When (Select =— 2) & (LR =— 1) then OutLED := [0,0,0,0,1,0,0,0,0,0,1];
Test_vectors 'Broadside load and hold operation’

( [CLOCK,Ss1,80, LR,LED] -> [ W1,Ll1,L2,L3,L4,L5,L6,L7,1.8, L9, W2 ] )
{.c. , 1, 1,.%X.,11~->( %, 1, 1,1, 1,1, 1,1, 1,1, 117];
[.c. ,0,0,.X.,11>1 i,1,1,1,1,1,1,1,1,1,1];
[.c. ,1,1,.x., 01 ->1[ o0,0, O 0O, 0O,1, O, 0, O, O, O1;

Fig. 5.2 - OUTCON source file

falling-edge of the system clock pulse in order to return the win status results to the Game
Controller by the next rising-edge of the clock. Unfortunately, the GAL26CV12 (and
most PLD’s for that matter) does not allow signal inversion on the signal lines leading to

the clock inputs on the registers. This necessitated feeding the clock input pin on the



40

Test vectors 'Shift zeros right and then left’
( [CLOCK,S1,80, LR,LED] -> [ W1,L11,L2,L3,L4,L5,L6,L7,L8,L9,W2 ] )
[.c. ,1,1,%x.,01->{( 0,0,0,0,0,1,0,0,0,0,01};
{.c. ,0,1,0,X.]->[ 00,0,0,0,0,1,0,0,0,07];
[.c. ,0,1190,.X.]~->[ 0,0,0,0,0,0,0,1, 0,0, 01];
[.c.. ,0,1,0,Xx.]->{( 00o0,0,0,0,0,0,0,1, 0,01},
[.c. ,0,10,X.]1~-> oO0,0,0,0,0,0,0,0,0,1, 01];
f.c. ,0,1,60,Xx.}~->{ 00,000, 0 0,0,0,0,11];
{.c. ,1, 0,0 ,.Xx.1]->([ 0,0,0,0,0,0,0,0,0,1, 01};
[.c. ,1, 0,0 ,x.1->[ 0,0,0,0,0,0,0,0,1,0,01};
[.c. ,1, 0,0 ,.X.1]~>1[ 0,0,0,0,0,0,0,1,0,0,01];
[.c. ,1, 0,0 ,%X.}->1[ 00,0, 00,01 0,0,0,0]1];
f.c. ,1,0,0,Xx.1->{[ 0,0,0,0,0,1,0,0,0,0,01};
[.¢c. ,1,0,0,Xx.]1~->([ 0,0,0,0,1, 0,0,0,0,0,01];
[.c. ,1,0,0,X]1->( 0,0,60,1,0,0,0,0,0,0,01];
{.¢c. ,1, 0,0 ,Xx.] > 0,0,1,0, 0,0,0,06, 0,0, 01];
[.c. ,1,0,0 ,.X.]1]->[ 0,1, 0,0,0,0,0,0,0,0,01];
[.c. ,1,90,0,%X.1->[ 1,0,0,0,0,0,0,0,0,0,01:
Test_vectors 'sShift 1 left’
( [CLOCK,S1,s0, LR,LED] -> [ W1,L1,L2,L3,14,L5,L6,L7,L8,L9, W2 ] )
{.c. ,1,1,.%x.,0]1->1[ o0,0,0,0,0,1,0,0,0,0,01;
[.c. , 10,1 ,X]->¢{ 00,0,0,1,0,0,0, 0, 0,11];
Test_vectors 'Shift 1 right'

( [CLOCK,S1,80, LR,LED] -> [ W1,L1,L2,L3,L4,L5,L6,L7,L8,L9,W2 ]
{.c. ,1,1,.X.,01 ->{ 0,0,0,0,0,1, 0, 0,0, 0, 0]
[.c. ,0,1,1 ,.X.1->[ 1,0, 0,0,0,0,1,0, 0,0, 0]

End

Fig. 5.2 (cont’d.) - OUTCON source file

26CV12 with the defined CLOCK output from the GAMECON device in order to
simulate a falling-edge clock trigger.

The Equations section includes a rather large number of equations. Since
ABEL doesn’t have a mathematical or logical operator for shifting bits in a defined set
such as ‘OutLED’, it was necessary to write an equation for each LED output in the set
for both the left and right shift operations. This was a rather inelegant, brute-force
method of accomplishing shift operations, but it worked. On a side note, the “.fb’ dot
extension probably was not necessary in the LED outputs. The use of the registered
assignment operator in the equations probably should have indicated to ABEL that the
LED signals involved in the equation logic were registered feedbacks (it never hurts to be

prepared, though).



41

With regards to the previously mentioned elimination of the WIN output and
subsequent usage of both W1 and W2 as signals back to GAMECON, this was not the
intent in the first attempt at the OUTCON module design. WIN had been defined as an

output of OUTCON and used the same logic as in the Output Controller design:

WIN = W1 $ W2
However, while attempting to ‘fit’ the OUTCON module into the 26CV12 device, ABEL
indicated that this logic could not be assigned due to the fact that the 26CV12 has no
resources available for exclusive-OR functions. The logical alternative would have been

to use the SOP equivalent of the equation:

WIN = (W1 & 'W2) # (IW1 & W2)
Unfortunately, adding this equation to the design logic resulted in a “too many feedbacks
used” error message for the W1 and W2 outputs. This was due to feedback resource
limitations in the 26CV12 device. In the end, the W1 and W2 outputs were each routed

to the GAMECON module as inputs and both designs interacted fine.

5.4 - TIMECON

The design for the TIMECON module differs from the original Timing
Controller design, yet the functionality remains the same. TIMECON is implemented as a
Moore-type sequential design (see Fig. 5.3), whereas the Timing Controller was a
Mealy-type design. The decision to use a Mealy implementation in the Timing Controller
was forced by the fact that the 4-bit binary counter used as state variables could not be

branched. States could only be sequenced in numerical order. This necessitated the



42

START » WINNER
/k
P POWER -~ UP
-
SRR, R

Fig. 5.3 - TIMECON state diagram

sharing of states for differing output conditions, thus a Mealy design was needed. This
constraint does not exist in PLD’s, so more flexibility was available in the design for
TIMECON. Using a Moore design enabled the START and WINNER routines to be
separated, thus eliminating the need for an asynchronous reset of the registers upon an
interruption of the START time delay routine (i.e. when a player cheats) as was used in
the Timing Controller design. In the TIMECON design, when an START routine
interruption occurred, the next state transition was a synchronous one to state ‘a’. This
situation made it much easier to write test vectors that accurately described the behavior

of the design. The ABEL source file for TIMECON is shown in Fig. 5.4.



Module timecon
Title 'Timing Controller - Tug-o-War Game’

Declarations

timecon device 'p22v10';

CLK pin 1;

START pin 2;

WINNER pin 3;

vl,y2,y3,v4,y5 pin 21,20,19,18,17 istype 'reg';
OK pin 22 istype 'buffer';

SPKR pin 16 istype 'buffer’';

Stval = [y1,y2,y3,v4,y5];

= [0,0,
[OIOI
[0’0,
[o,0,
{o,0,

mun {2 T I I

—— - Jo—

ocoo = o

Raftagiy .~

PR e
AR G S

[}
——
[« =]
= O

QUWOBHMEFUREDNQHDOAOUDY
I n
‘s
[=Y

o]
o]
o]
0
1
1
1
o]
0
(o]
o]
0
1
1
1
1
o}

O0O0O0OO0OO0OORFRFPFPRFHFHPFHROO

OCO0OO0O0OO0OO0ORKFPROOOOODORHO
et it e e e e e e e e At b et 2 e bt

= [1,0,

Equations
Stval.clk = CLK;
State Diagram Stval

state a: SPKR = O

OK = 0;

If START then b
Else

If WINNER then m
Else a;

state b: SPKR = 0;
OK = 0;
If START then c
Else a;

state ¢: SPKR = O;
OK = 0;
If START then d
Else a;

state d: SPKR = O;
OK = 0;
If START then e
Else a;

state e: SPKR = 0O;
OK = 0;
If START then f
Else a;

Fig. 5.4 - TIMECON source file



state f£:

state

state

state i:

state j

state

state

state

state

state

state

state

The source file is rather straightforward and follows the state diagram in Fig.

5.3. Asin GAMECON, the state variables are grouped into a set named Stval’ and set

SPKR = 0;
OK = 0;
If START then
Else a;

SPKR = O;

OK = 0;

If START then
Else a;

SPKR = O;
OK = 0;

If START then i

Else a;

SPKR = 07
OK = 0;

If START then jJ

Else a;

SPKR = 0;

OK = 0;

If START then
Else a;

SPKR = 0;

OK = 0;

If START then
Else a;

SPKR
OK =
Goto

1;

|

SPKR
OK =
Goto

s ol

SPKR
OK =
Goto

ool

SPKR
OK =
Goto

ol

SPKR
OK =
Goto

Q ol

e

SPKR
OK =
Goto

[Tl |

Fig. 5.4 (cont’d.) - TIMECON source file

44

constants are defined for the individual state values. The test vectors are perhaps the most

interesting feature of the TIMECON source file. The vectors for the ‘Interruptions of

start loop’ are quite large in number. This was necessary due to the fact that the vectors



45

'power—-up, normal start loop’

Test_Vectors

-~
R g i gl
m 0000000000 O0OOHO
m 0O000QOO0O0O0OOOOHO
@

R I
m T Q0T oOHDOOANMAA
e e s e
AANANAANAANANNANNANAN
| AN R I I I A A R I
e
& .
W Oooo0o00O0OOOOOCOOXN
H

B LDl
3}

m COHAmrrd e %
]

CLK

CUUUOVOUUOOLOUUU

[
[
[
[
{
[
L
[
[
{
[
[
[
[
[

(

'Normal winner loop'

Test_Vectors

1
0
1
0
1
0

’
’
’
’
’
’
2

=-> [8twval, SP
m
n
o
P
dq
a

1
1
1
1
1
]

1
X
X
X,
x
X

!
’
’
4
’
’
'

START ,WINNER]

'Interruptions of start loop’

Test Vectors

)
RS s
m00000000000000000000000000000000000
e
m00000000000000000000000000000000000
9

T T
Mbabcabcdabcdeabcdefabcdefgabcdefgha
G e e L L e L L e e e e e e e e e e e
AAAAAAAAAAAAAAAAAAAAAAANAAAANAAANANAA
| T T A A N I I A A R 2 D D D e e R S T R R D R |
T e e
g : : : : : : :
I e et e et e e e s N
m1011..01,_11011110111110111111011111110
(0]

CLK

VUUOUUUUUUUUUOUUOUUUUUUOOUUOULUUUUUY
LA A A L AP A

~

Fig. 5.4 (cont’d.) - TIMECON source file



46

LR N T L T ST T T L T N LN TNIR TN

e R e R R B I i e e R R e R I e I e e B e B B e B B B T B B B B R T W B R R W

COO00O0O0DO0OO0DOOCO0OO0OO0OODOOODOOOONDOODO0OODO0OODOLOOOOOO WO

llllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllll

YUUOUUOUUUUOUUUUUOOVUUUOVUUUDUUOUUOUOUUOOOU U U O

T N S S T e e

end

Fig. 5.4 (cont’d.) - TIMECON source file

must step through all of the states leading up to the target state. Since the START routine

can possibly be interrupted in any state from ‘b’ to ‘k’, it was necessary to simulate a reset

from each of these states. Every time an interruption occurred and the circuit reset to

state ‘a’, it was necessary to begin stepping through all of the preceding states in order to

reach the next state to be simulated as being interrupted. This is a prime example of how

tedious writing test vectors can sometimes be. This set of vectors (nearly 100 in number)

probably took longer to write than the logic portion of the file.



5.5 - INPUTCON

functionality of the original Input Conditioner circuit. Not only were the inputs and
outputs identical to the original circuit, but the equations used to describe the logic in the
ABEL source file (see Fig. 5.5) were exactly the same as those that made up the
asynchronous sequential logic in the original circuit.

module
title

declarations

inputcon device

CLK
P1_IN
P2_IN

Y1l
Y2
Y3
Y4

P1_OUT
P2_OUT

equations

Y1
Y2

P1_OUT

Y3
Y4

p2_ouT

pin
pin
pin
pin
pin
pin
pin
pin
pin

(P1__

(P2_.

test vectors

I
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

end

RPOOFrRPROORPRHLOOFPKHLOORLrKHOO

S M m m m m m m m s m m m m m mmw

IN

OOHBRMEHEEGOOOOHMMMK MR O

The design for the INPUTCON module followed exactly the design and

inputcon
'Input Conditioner, Tug-o-war Game'

1;
2;
3;
17;
16;
15;
14;
18;
18;

(PI_IN & Yl.pin) # (CILK
('CIK & P1_IN) # (P1_IN
IN & '¥2.pin) #
(P2_IN & Y3.pin) # (CLK
(!CLK & P2_IN) # (P2_IN
IN & !Y4.pin) #

'Pulse catcher for Pl1°'

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

1
]
1
]
1
1
]
1
1
1
]
1
1
]
]
]
]
]
1
1 >

'plévBas’;

& Y2.pin) # (CLK & Y2.pin);
(!CLK & P1_IN & !Yl.pin);

& Y4.pin) # (CLK & Y4.pin);
(!CLK & P2_IN & !'Y3.pin);

e e
et s e et e et Bt e et it e et b 1t et 1|
e Ne e me e ve e me e ne e ne e we e we e Ne s

COO0O0OOHFHPKFHRLROOODOOODODOOKR O

Fig. 5.5 - INPUTCON source file



48

Equations were used to describe the logic instead of a state diagram structure
due to the asynchronous sequential behavior of the design. During the course of the
author’s research, no evidence was found that ABEL will allow a state diagram structure
to describe an asynchronous design. It apparently assumes a registered design when a
state diagram logic structure is used in a source file. In any event, combinatorial feedback
equations were used to describe the sequential logic of the design, as is evident from the
usage of the combinatorial output assignment operator ‘=" and the ‘.pin’ feedback dot
extension.

The reader will also notice that test vectors only exist for the player 1
(P1_OUT) equations. The equations that determine P2 _OUT are identical to those for
P1_OUT except for the substitution of P2_IN for P1_IN. Therefore, it was easier to
simply change the test vector heading signals for P1 to P2 and re-simulate the vectors

rather than typing an additional set of them.

5.6 - Additional Notes

Truth tables were considered for describing design logic at various points in
the design process of each of the four modules. However, in each case, it was eventually
decided that this was too inefficient 2 method. In the GAMECON and TIMECON
modules synchronous sequential designs were used. Although these may be implemented
in truth table form, the state diagram method of description is more intuitive since the
sequential design process basically begins by drawing a state diagram. In the case of
OUTCON, there were a large number of inputs involved (including feedback signals) and
the truth table would soon have become unwieldy. Finally, in the case of INPUTCON, the
equation method of logic description made so much sense in that the equations already
existed from the original 7400-series design. It would have required more effort to

investigate using a truth table implementation.



49

In addition, Mealy-type synchronous sequential design methods were not used
in any of the four module designs. However, the state diagram structure in ABEL does
support the Mealy form of state machine logic. The overall format of a Mealy state
diagram in ABEL is similar to that of a Moore design with one exception. The fact that
outputs are assigned during the state transition rather than upon arriving in a state (asin a
Moore design) is accommodated with the ‘with...endwith’ statements. For example:

If START then ¢ with [SPKR,0K} = [0,0]; endwith;
The ‘with...endwith’ statements ensure that the outputs-are decoded at the proper time
and do not lag by a clock cycle.

If the reader is interested in using truth tables or Mealy-type sequential logic in
his design, he is referred again to the ABEL User Manual® and Practical Design Using
Programmable ngjg.z These references have numerous design examples of both

techniques.



50

CHAPTER VI

CONCLUSION

6.1 - Project Results

The circuit schematic for the PLD implementation of the Tug of War game is
shown in Fig. 6.1. Now, go back and compare this to Fig. 4.2. The reader will notice a
striking similarity between the block diagram of the original 7400-series system design and
the schematic of the PLD system design. Each system component (block) corresponds to
a single PLD, as was the project intent. This graphically demonstrates one of the
strongest advantages of using PLD’s in a digital circuit design: the conceptual design in
many cases may be directly translated into a hardware design.

Once assembled and tested, it was determined by the author that the entire
system, with all of its components, was functioning properly. The author even went as far
as to drag a couple of students from an adjacent laboratory to witness this fact. They
played a few rounds of the game and were satisfied with its operations.

The final device count, including the Quad-NAND and Hex-Inverter chips, was
7. This is versus a total chip count of 31 in the original 7400-series design. That equates
to a reduction factor of over 4 to 1. If the input debouncing and output buffering logic
had been implemented in their respective PLD’s, the total device count would stand at 4,
for a reduction of nearly 8 to 1. This would probably be the effective limit for least chip
count while using these types of devices (PAL’s) in implementing this design. While the
individual module designs could have been more complex and still fit into their respective
PLD’s (many product terms went unused on all 4 devices), only one module may be

programmed into a particular device. Also, the small number of outputs on a given PLD



effectively limit the logic that can be assigned to a module and still fit into the device.
Therefore, a 1 to 1 correspondence between each of the system components and PLD

would appear to be the practical limit for device count limitation in this design.

/"-’_—“ AAS + S‘ AAAAA ALY e o 5
i, ’31 N Pi
— ] ____,_i_] ,

:
L]
a(}m«
)
T
g

p A SR W, V'Y N—
\\“ © Y ‘»..,.,.fg
S GALAAVIO
- < -
| 7 Hg ekt 3
JOkHa L e 2 23
3 33,
" ey T
IR S | Y
GALIGYE GALIGCVIZ 5 m 20
3 A4 0 Clr ~ iy & E 14

Pl | 9 Fr_ 2 a7 7 c ”

L B 1 PA 3 26 oo 7
“op o rser sl 6 las 9 N
sy s spOA o <
B e M in “ i 5
3 ~ 1y v E ESY I = g
3 a i3 oK 3 c a R
k] N ) wi g @ 20 ;r E;

i n
1”0 mn w2 N 13 e
i 13 LS
I} (1
J21 “
RSET
#
ol ¥ Iy
$ 5 ey Gt
i iL i3 E
= Elrlafifo
£
L SURE SR R A S A S O O I J L% )
cuTCON { GALeLvia
o ;jn % r Ze af jax Fay lay ;zfr, 117 kT4
L
Lr L i
TMY S N/ .\_.Mi[—;v—\{j/ \/\\ Y{T\‘ kkkkk ;
SC00AGRAES
l 1 f 3

S R
)

.
LIS

| e

o oy

0 Saw

3o T
e
[

H o

o

T

o

Srame |

BN
o ¢
T
e

Y
i
Py &

Fig. 6.1 - Schematic of PLD implementation of Tug of War



52

6.2 - Summary

Programmable Logic Devices are a valuable resource to the digital system
designer. When they made their appearance in the 1970’s, they finally enabled the
designer to implement efficient and practical digital designs without the need to rely on the
response time of a chip manufacturer in designing a mask-programmed device. Design
and debug times, as well as physical circuit dimensions, were drastically reduced.

With the advent of the PC in the early to mid 1980’s, universal PLD
programming software became widely available. Sophisticated programming languages
such as ABEL-HDL, along with commercially available universal programmer units,
allowed the designer to design, program, and test PLD-based digital designs at his desk,
enjoying previously unknown levels of flexibility in the design process.

Using ABEL-HDL, the digital designer is capable of turning design concepts
such as Boolean equations, truth tables, and state diagrams directly into hardware
implementations. A specific target device does not even need to be identified when the
design process is begun. ABEL has the ability to take a generic design and determine
which device architectures it will fit into. However, the designer may also use
hardware-specific terms in the logic descriptions to tailor a design to a particular device, if
so desired.

In order to demonstrate the concepts above, an example of the process of
designing a digital system with PLD’s was conducted by the author. Using ABEL design
techniques, the logic of a previously constructed 7400-series digital circuit was

implemented more efficiently using a smaller number of chips.



53

6.3 - Ideas for Future Research

There are a number of related topics that the author came upon during the
course of this project that may be worthy of further study. First is the writing of test
vectors. A properly written set of test vectors is crucial to the success of a PLD program.
They must be written to accurately simulate all logical behavior in a design, including such
things as asynchronous inputs. Often, this is a difficult task. Perhaps a more systematic
approach to writing test vectors could be developed.

Also, the proper use of tools such as dot extensions and signal attributes could
be investigated. To this day, despite all the work performed on this project, the author is
still often confused as to when it is necessary to use these tools and when it is not. Most
of the time, ABEL is capable of determining the proper signal attributes and device
resource usage from the logic descriptions in the source file. However, this is not always
the case. Learning when to use dot extensions and signal attributes and when not to could
be an interesting area of study.

Finally, ABEL has FPGA programming capabilities (ABEL-FPGA). Also, the
Data I/O Unisite programmer can program such devices with the proper adapter modules.
Both of these currently exist at the YSU Electrical Engineering department. While the
author chose not to research FPGA's, the reader is encouraged to look into them as

possible target devices for digital designs.



APPENDIX A

ABEL DESIGN PROCESS DOCUMENTATION

A.1 - GAMECON Documentation

Simulate ABEL 4.@3 Date Thu Jun 1 15:26:41 1995

Fuse file: ’gamecon. jed’ Vector file: ’gamecon.tmv’ Part:

ABEL. 4.83 Data I/0 Corp. JEDEC file for: P26CV1Z V9.0
Created on: Thu Jun 1 15:26:35 1995

Game Controller, Tug-o-war Game

voeal
Va2

EERER

VoRs
vaowva7

Test 'CLOCK %xxxx

ACO
ROOMFO

L, =

power-up and reset/start routine *%xxxx

R
E p P g 0 S
K 1 2 T K i 3 2 1
Plavyer 1 cheat routine %%%xx
R
P P E 0 S
1 2 T K [ 2 1

T ~e

|
LI o

'P26CV12’
L

S E

%] D

S L

%) R

54

— )

AMEZZ—E



Player 2 cheat routine %xxxx

P P

L

—Mwnao

T 7re

Normal competition ®xx%x

R
S
P P E
1 T

C

k 2
—

= | G
=
=

—

|-

| -

—

|-
of 35 vectors passed.

AO

Q
K

-~

e

NE

S

S

L

b

I =
U uut

=

oW

5

AMZZ—ET

5

Aar




ABEL 4.@3
Game Controller, Tug-o-war Game
==== P26CV12 Programmed Logic =

|} H]

] ]
~ e~ e~

RN

WP HRR

HHHREER

(
#
(

#

56

p
Device Utilization Chart Thu Jun 1 15:26:35 1958°° 1

o2/

tyl. FB & y2, FBB& y3
B
B

= e
- Qo Q0 R THTIT]
o~
V2N Re
fee]- 8]
RO -
~
ﬂﬂhﬂ
'n
w

N-

B
B

e N s
TITH < <
mWWNHN
whmﬂﬂﬂ

<

g

= NWseReRe
-]

<

N <
hbhww
DT <
mmaw-a

-

& 'y3.FB ); " ISTYPE 'BUFFER’

AVEI =<

O
N
~

.FB
RSET & 'yl1.FB & !'y3.FB & ty4.FB ); * ISTYPE ’BUFFER’

tyl. FB & v2. FB & y3 FB & 'v4.FB
tv4.FB
3.FB

N

e
< ¢
TN R R
N"I1"n<~<~<

Y
5 tEBs +,3.FB ); » ISTYPE 'BUFFER’

- 0
~

HHWKHW [rare
o RTIR

-

i
T--
= NTQ=ZI<

VsV UNICO< T]
T NNDOUNSN

L, ) [P | R

F 4.FB
3.FB & {y4.FB ); " ISTYPE ’BUFFER’

[eTare
[

CLK J;
¢ 'CLK J;

y1 FB & y2 FB & 'y3.FB
yl.FB' & 'y3.FB & 'y4.FB );

'yl FB & !'y3.FB & ty4.FB
H FB & v2.FB & y3.FB );

!yl.FB & 'y2.FB & ty3.FB & 'y4.FB J;
( 'y1.FB & y2.FB & 'v3.FB & 'v4.FB );

tyl.FB & v2.FB & v3.FB & !'vy4.F
yl.FB & y2.FB & fy3. FB & ’¥4 FB );

( yl.FB & y2.FB & y3.FB & y4.FB );



57

P
ABEL 4.83 - Device Utilization Chart Thu Jun 1 15:26:36 19982° 2

Game Controller, Tug-o-war Game
==== P26CV12 Chip Diagram ====

P26CV12
o —————— \ fmmmm e ———— +
N /
ok | 1 28
PL | 2 27 | st
P2 | 3 26 | s@
RSET | 4 25 | LR
5 24 | LED
6 23 vyl
Vee 7 22 y2
oK | 8 21 | GND
Wil 9 20 | y3
Wz | 10 19 | y4
11 18 | START
12 17 | WINNER
13 16 | CLOCK
14 15

SIGNATURE: N-/A



ABEL 4.@3

Game Controller,

Tug-o-war Game

Device Utilization Chart

==== P26CV12Z Resource Allocations

Device
Resources

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
Bidirectional pins
Combinatorial outputs
Registered outputs
Reg/Com outputs
Two-input XOR

Buried nodes

Buried registers
Buried combinatorials

ABEL 4.03

Game Controller,

Resource

Available

Tug-o-war Game
==== P26CV12 Product Terms Distribution

Device Utilization Chart

Design
Requirement

OO O .LANOK O~

Pin Terms Terms
Assigned Used Max
23 7 10
22 2 12
20 7 12
19 9 1@
16 1 8
27 2 8
26 2 8
24 1 8
i8 1 8
25 2 8
17 i 8
Pin Pin Type
1 CLK/IN
2 INPUT
3 INPUT
4 INPUT
8 INPUT
9 INPUT
ie INPUT

Page
Thu Jun 1 15:26:36 1995

o)
Thu Jun 1 15:26:36 1995

OO UIEW

58

3

Unused

T2t 1

age 4



ABEL 4.3 - Device Utilization Chart
Game Controller, Tug-o-war Game
==== P26CV12 Unused Resources ====

Pin Pin Product Flip-flop
Number | Type | T erms .. Type __
s ) INPUT L T -

6 INPUT - -
11 INPUT - -
12 INPUT - -
13 INPUT - -
14 INPUT - -
15 BIDIR NORMAL 8 D
28 INPUT - -
ABEL 4.83 - Device Utilization Chart
Game Controller, Tug-o-war Game
==== /0 Files ====

Mcdule: °'gamecon’

Input files

ABEL PLA file: gamecon.tt3
Vector file: gamecon.tmv
Device library: P26CV12.dev

Output files

Report file: gamecon.doc
Programmer load file: gamecon. jed

59

Page S
Thu Jun 1 15:26:36 1995

Page 6
Thu Jun 1 15:26:36 1995



A.2 - OUTCON Documentation

Simulate ABEL 4.93 Date Wed May 31 18:83:35 1995

Fuse file: ’outcon.jed’ Uector file: ‘outcon.tmy’ Part: *P26CU12°

ABEL 4.83 Data 1/0 Corp. JEDEC file for: P26CU12 V9.8
Created on: Ued May 31 18:63:30 1995

Output Controller, Tug—o-war Game

s Bpoadside load and hold operation s

Edel=12ls]

L
L E U L L L L L L L L L Y
1 1 2 3 4 5 6 7 8 9 2

EBS] T 93333733337

woooe Shift zeros right and then left seeeee

I
o
T
oy
N
Wi
)
e
LY
o
=
<

u—qr
U

1L

2
AT =ee=e

LLer

wmens Shift 1 left swscee

L
S s L E 14 L L
[} D 2

veazt = IILLaII [ I = A I =

s Shift 1 right seoexs

=mOOHO
wr
3o
i
=
o)
-]
ol
=

=mOOED

L
S g L E W L L L
1 8 D 2 3

wezs = A M5 | LIt r=ai e

23 out of 23 vectors passed.

60



61
Page 1

Wed May 31 18:03:30 1995

Device Utilization Chart

ABEL 4.@3

Tug-o-war Game

Output Controller,

W1.D

'BUFFER’

* ISTYPE

L1.D

L2.D

L3.D

% @ o
L L ui
™ TR [T
L [ [
s 2 =2
[a1] m [a1]
Ll Ll L
o Qo a
> > >~
— - e
[¢3) w w
= - —
oo = [sa]aa H
[THTS [TRTH
N~ My~ <N~
P 4 |
[a1] o [an]
ool LT C-1L-1TH
oo omN oo
. .& l.i..& . .&
[TTE-1 ] [TV T
] ] (]
QW [T ] Om
- SEI - SN ="
Q)  o¥odem %&&&) 0  odode
vy i vl
SHHUNNY WO «-HNUNO
(7, e S NeeO e

'BUFFER’

" ISTYPE

'BUFFER’

ISTYPE

'BUFFER’

* ISTYPE

L7.D

*BUFFER’

" ISTYPE



ABEL 4.83 -

Output Controller,
==== P26CV12 Programmed Logic

L8.D = ( 81 &

# S1

# -]

# 'S

L8.C = € CLOC

Le.D = ( 51 &

# 81

# )

# 'S

Ls.C = ( CLOC

HW2.D = ( S1 &

Si

# 1S

# 'S

W2.C = ( CLOC
ABEL 4.3 -

Qutput Controller,
==== P26CV12 Chip Diagram ===

CLOCK
S1
=1
LR

LED

Veeo

p e Abbb
(N - 31} =

Abshs

Device Utilization Chart

Tug-o-war Game

= (NN
0Nae
-
oReT]
[w}
I
[so 8y s)

o
o]
f

-
=R

0o
-
RoRe[T]
[w)

I
A
Tieoge

: " ISTYPE

Q
2
r

-

e o fT]

(w]
-
o)

neRe
(SJ@
[ad

=
N

wRege D weRe § wee O
= (IR

Device Utilization Chart

Tug-o-war Game

P26CV12

28
27
26
25
24
23
22
21
20
19
18
12 17
13 16
14 15

W e doUDhWN

=
= ®

SIGNATURE: N-/A

62

Page 2
WHed May 31 18:83:3@ 1995

'BUFFER’

& L9.FB
.FB ); ™ ISTYPE ’'BUFFER’

Page 3
Hed May 31 18:83:3@ 1995

W1
L1
L2
L3
L4
LS
GND
Lé
L7
L8
LS
W2



ABEL 4.3 -~
Qutput Controller,

==== P26CV12 Resource Allocations

Device
Resources

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
idirectional pins
Combinatorial outputs
Registered outputs
Reg/Com outputs
Two-input XOR

Buried nodes

Buried registers
Buried combinatorials

ABEL 4.03 -

Qutput Controller,

Tug-o-war Game

Resource
Available

Tug-o-war Game
== P26CV12 Product Terms Distribution

Device Utilization Chart

Device Utilization Chart

Pin

Assigned

P
Hed May 31 18:93:30 1995

63

age 4

Design Par
Requirement Utilization Unused
S S 9 { 64 x)
S ) 9 ( 64 )
9 = z
11 - -
Q@ 11 1 80
B - -
11 - -
- 11 1( 8:
7} - e
a - -
7] - -
9 - -

Page S
Wed May 31 18:03:30 1995

o
OROENNSO®EOD

Terms
Unused

HDADOIOULEB DD



ABEL 4.3 - Device Utilization Chart
Output Controller, Tug-o-war Game
==== P26CV12 Unused Resources ====

Pin Pin Product Flip-flop
Number_1__Ivee__|..- Terms Type
6 I INPUT I T -

8 INPUT - -
S INPUT - -
1@ INPUT - -
11 INPUT - -
12 INPUT - -
13 INPUT - -
14 INPUT - -
15 BIDIR NORMAL 8 D
28 INPUT - -
ABEL 4.03 - Device Utilization Chart
Qutput Controller, Tug-o-war Game
==== /0 Files ====

Module: ‘outcon’

Input files

ABEL PLA file: outcon.tt3
ector file: outcon.tmv
Device library: P26CV12.dev

Output files

Report file: outcon.doc
Programmer load file: outcon. jed

64

P
Wed May 31 18:83:30 1992°° ©

Page 7
KHed May 31 18:83:3Q 1995



A.3 - TIMECON Documentation

Simulate ABEL 4.18 Date Wed May 7 23:56:38 1997

Fuse file: ’timecon. jed’ Vector file: ’timecon.tmv’ Part:

ABEL 4.10 Data I/0 Corp. JEDEC file for: P22Vi0 v9.0
Created on: Wed May 7 23:56:25 1997

Timing Controller - Tug-o-War Game

X%%%% power-up, normal start loop %xxxx

65

'P22vie’

W
s 1
T N S
¢ g ) :
K T R Yy 5 % 2 & R K
vego1 l=
VORO3
Vo004 :]
Vooas
VRS :]
V009 — :]
VOR10
veo11
Vool ﬂ
Vooi4 - =
xxxxx%x Normal winner loop ¥%%xx
W
S 1
T N S
c & U kK o
K T R i % 5 3 & R K
VOR15
Vools [—
VOR17
VoR18
VOg19
V0020
xx%%% Interruptions of start loop xxxxx
W
S I
T N S
c & G K o
K T R { % 53 42 & R K
VOO21 [
e Ed 5
Vep24 |[—
VOR25 =
V0026
Veez7
vog29 |— —)
VER30
Vooss
Vo33 |— -




=
-
L A
L 4

]
—

]
=

]
=

]

Ly
of 97 vect o_r:'s passed.

U

|

f

L L 1

| I . SN SN D T .

[ I ) B W

66



ABEL 4.108

67

1
Device Utilization Chart Wed May 7 23:56:25 1995°°

Timing Controller - Tug-o-Har Game

¥y1.D

v1.C
y2.D

y2.C
vy3.D

y3.C
v4.D

y4.C
y2.D
¥y5.C
SPKR

oK

==== P22V1Q Programmed Logic ====

y2.FB & y3.FB & 'v4.FB & !YS.FB
él.FB & v3.FB & !§4.FB & .é
CLKT%RT & vy2.FB & y3.FB & 'y FB ); " ISTYPE 'BUFFER’
START & y2.FB & v4.FB & !yS FB
START & 'v1.FB & ¥3 FB & {5 FB
!¥1.FB & v3.FB & 4.FB FB
CLE %RT & 'yl.FB & yé FB & ‘yé FB & y5.FB ); " ISTYPE ’'BUFFER’
tSTART & WINNER & ’¥1 FB & t'v2.FB & 'vy4.FB & !'vy5.FB
START & 'él FB & 'y2.FB & v4.FB & tyS.FB
§2.FB & { .FB_ & 'vy4.FB & ’YS FB
TART & 'v1.FB & {3 & ¥
CLéy}:FB & v3.FB & *v4.FB & yS FB ); " ISTYPE 'BUFFER’
START & 'v1.FB & tvy2. FB & y3 FB & yS.FB
START & {2 FB & v4.FB & ’{
CLETéeT & i1.FB & vy4. FB & 1y5. FB ); » ISTYPE ’BUFFER’
START & 'v1.FB & 'v2.FB & '¥3 FB & tvy4.FB
CLETégT & Yy1.FB & y2.FB & 'y3.FB & y4.FB ); " ISTYPE ’'BUFFER’
vyl1.FB & 'v2.FB & 'v3.FB & 'v4.FB & 'vy5.FB
# tyl1.FB & ¥2.FB & 'y3.FB & 'v4.FB & 'v5.FB
# tyl.FB & 'v2.FB & vy3.FB & 'v4.FB & !v5.FB
# vyl.FB & v2.FB & y3.FB & Yvy4.FB & 'vyS.FB );
y1.FB & 'v2.FB & !'y3.FB & 'v4.FB & 'v5.FB
‘vyl.FB & y2.FB & 'vy3.FB & *v4.FB & 'y5.FB );



ABEL 4.180 - Device Utilization Chart

Timing Controller - Tug-o-Har Game

CLK
START
WINNER

GND

==== P22V10 Chip Diagram =

P22vie
Fmmmm————— N
N /7
. T
2
3
4
5
6
7
8
9
1o
11
12

SIGNATURE: N-ZA

24
23
22
21
20
19
18
17
16
15
14
13

68

p
Wed May 7 23:56:25 1955°° 2

Vece

oK
vyl
y2
y3
v4
yS
SPKR



ABEL 4.10 -

Device Utilization Chart

Timing Controller - Tug-o-WHar Game
==== P22V10 Resource Allocations

Device
Resources

Dedicated input pins
Combinatorial inputs
Registered inputs

Dedicated output pins
idirectional pins
Combinatorial outputs
egistered outputs
Reg/Com outputs
Two-input XOR

Buried nodes

uried registers
Buried combinatorials

ABEL 4.1 -

Timing Controller - Tug-eo-KHar Game
==== P22V10 Product Terms Distribution

Resource
Available

Device Utilization Chart

Design
Requirement

QO OI1 UING~ SWW

Pin Terms Terms
I Assigned | Used | Max _
TV 21 1 - 3 | 12
20 4 14
19 S 16
18 3 16
17 2 14
16 q 12
22 2 10
________ | Pin oo Pin Type
R 1 | CLK/IN
| 2 | INPUT
| 3 | INPUT

bk b ek
OONWHSO\D

69

Page 3
Wed May 7 23:56:25 1997
ar
_Utilization | Unused _
3 9 ( 75 %)
3 9 (75 %
7 3 (30 0
7 3 (30

Page 4
Wed May 7 23:56:25 1997



ABEL 4.18 -

Device Utilization Chart

Timing Controller - Tug-o-Har Game

WULRW - Q000N

NS S ok b

ABEL 4.1
Timing C

Module:

Input fi

ABEL PLA
Vector
Device 1

Qutput f

Report f
Programm

P22V1@ Unused Resources ====

Pin Product Flip-flop
Type erms Type
INPUT - -
INPUT - -
INPUT - -
INPUT - -
INPUT - -
INPUT - -
INPUT - -
INPUT - -
INPUT - -
BIDIR NORMAL 8 D
BIDIR NORMAL 10 D
BIDIR NORMAL 8 D

®@ - Device Utilization Chart

ontroller - Tug-o-Har Game
I/0 Files ====

't imecon’

les

file: timecon.tt3

file: timecon.tmv

ibrary: P22V10.dev

iles

ile: timecon.doc
er load file: timecon. jed

Hed May

Wed May

70

Page S
7 23:56:26 1997

Page 6
7 23:56:26 1997



A.4 - INPUTCON Documentation

Simulate ABEL 4.83 Date Thu Jun 1 16:38:35 1995

Fuse file: ’inputcon. jed’ Vector file:

ABEL 4.03 Data I/0 Corp. JEDEC file for:

Created on: Thu Jun 1 16:38:15 1995

Input Conditioner, Tug-o-war Game

=
q 1
C 0
L T U
K N T
Vel
Vo2 L= %:I
Voea3

<
ONUT

ot
SIS
SO
000~

]

t of 19 vectors passed.

G§<§g<<<<<< e
333333335838888

O bbb A b b b b ek b Q

C 00~ UTARWNF SO0

ABEL 4.10 -~ Device Utilization Chart
Input Conditioner, Tug-o-war Game
==== P16VBAS Programmed Logic ====

Y1 = ( CLK & Y2.PIN
# P1_IN & Y1.PIN );
Y2 = t( ‘CLK & 'P1_IN
# CLK & 1Y2.PIN );
P1_ouTt = ( tCLK & P1_IN & !Y1.,PIN
# P1_IN & 'Y2.PIN );
Y3 = ( CLK & Y4.PIN
# P2_IN & Y3.PIN );
Y4 = $( 1CLK & tP2_IN
# CLK & 'Y4.PIN );
P2_ouTt = ( YCLK & PZ_IN & !'Y3,PIN
# P2_IN & 'Y4.PIN );

inputcon. jed’ Part: *P16V8C’
P16V8C V9.0

Page
Tue Mar 18 18:39:26 1997

71

1



72

P
ABEL 4.1@ - Device Utilization Chart Tue Mar 18 18:39:27 1955°° 2

Input Conditioner, Tug-o-war Game
==== P16VBAS Chip Diagram ====

P16VBAS
o N\ S ————— +
\ Vs
ki 1T 20 | Vee
PLIN | 2 19 | P1_ouT
P2_IN | 3 18 | P2_0UT
a 17 | v1
5 16
6 15
7 14 | Y4
8 13 | v3
9 12 | Y2
GND | 1@ 11

SIGNATURE: N-A



73

p
ABEL 4.1@ - Device Utilization Chart Tue Mar 18 18:39:27 1955°° °

Input Conditioner, Tug-o-war Game

==== P1l6VBAS Resource Allocations ====

Device Resource Design Part
Resources Available Requirement Utilization Unused

Dedicated input pins 1@
Combinatorial inputs 18
Registered inputs -

Dedicated output pins 2
Bidirectional pins )
ombinatorial outputs 8
Registered outputs -
Two-input XOR -

Buried nodes
Buried registers
Buried combinatorials

OO0 OONLN OWW

P q
ABEL 4.1@ - Device Utilization Chart Tue Mar 18 18:39:27 1997
Input Conditioner, Tug-o-war Game
==== P1l6V8AS Product Terms Distribution ====

Signal Pin Terms | Terms | Terms
Name @ @ ceeeele Assigned | Used | Max | Unused
Y 2 | 8 | 6
Y2 12 2 | 8 ] 6
P1_0OUT 19 2 | 8 | 6
¥3 13 2 | 8 | 6
Y4 14 2 | 8 | 6
P2_0UT i8 2 | 8 | ()
==== List of Inputs-/Feedbacks ====
Signal Name o ccecmmccccae- = L Pin Iype
cLk_ T U INeur
P1_IN 2 INPUT
PZ_IN 3 INPUT
Y1.PIN 17 COMB FB
YZ.PIN 12 COMB FB
Y3.PIN 13 COMB FB
Y4.PIN 14 COMB FB



ABEL 4.186 -

Input Conditioner,

==== P1l6V8BAS Unused Resources

Device Utilization Chart

Tug-o-war Game

Pin Pin Product Flip-flop
Number _!_.1YPe__l.-- LS Tyee
T4 ) INPUT L - -
S INPUT - -
6 INPUT - -
7 INPUT - -
8 INPUT - -
9 INPUT - -
11 INPUT - -
1S QUTPUT NORMAL 8 -
16 QUTPUT NORMAL. 8 -

ABEL 4.1@ - Device Utilization Chart Tue Mar 18

Input Conditioner, Tug-o-war Game
==== /0 Files ====

Module: ’'inputcon’

Input files

ABEL PLA file: inputcon.tt3
Vector file: inputcon.tmv
Device library: P1l6V8AS.dev

Qutput files

Report file: inputcon.doc
Programmer load file:

inputcon.

jed

Page
Tue Mar 18 18:39:27 1997

74

S

Page 6
18:39:27 1997



APPENDIX B

MANUFACTURER DATA SHEET EXCERPTS

(Used with permission from Lattice Semiconductor Corp. - see below)

Date: Tue, 3 Jun 97 09:34:37 PDT

To: "Rick Alcorn" <ralcorn@cisnet.com™> (by way of Travis Illig <tillig@latticesemi.com>)
From: steve stark <steve stark@latticesemi.com>

Subject: Re:

You have our permission to use these pages. Would you be willing to send me
a copy of your thesis when completed?

Regards,

Steve Stark

At 08:20 AM 6/3/97 0600, you wrote:

>Dear Sir or Madam:

>

>] downloaded Data Sheets (1996 Data Book) for the GAL16VS8, GAL22V10, and
>GAL26CV12 from your web site during the course of my Master's Thesis work
>at Youngstown State University. I would like to include some of these Data
>Sheet pages in my Thesis paper. The pages that I wish to include are:

>

>GAL16VS8: 1,3,4,5,6,7,8,9,19

>GAL22V10: 1,3,4,5.13

>GAL26CV12: 1,3,4,5,13

>

>May I have permission to include these in my paper?

>

>Rick Alcorn

>ralcorn@cisnet.com
>
2k 3 3k 3k ok o 3k 3k ok ok ok ok sk ok sk ok sk ok e skt sk sk sk sk ok skeok sk sk ok sk sk sk sk sk skeoskok skoke ok skeoske sk sk skeosk sk skokosk ok

Steve Stark

Lattice Semiconductor Corporation
5555 N.E. Moore Ct.

Hillsboro, OR 97124-6421
503-693-0279 (Ph.)

503-681-3037 (Fax)

steve_stark@latticesemi.com
3K o 3¢ 3k e sk 3k ok ok sk s s sk skl e sk 3R 3 ok sk ok sk sk sk sk ok sk sk sk skl skoak ok ok ok s kol ook ok sk kR ko sk ok

* ¥ ¥ ¥ ¥ ¥ %
* Kk K X ¥ X *

75



B.1 - Lattice GAL16V8 Data Sheet Excerpts

i iro GAL16V8
:::Lattl c e High Performance E°CMOS PLD

s P 5o Semiconductor
===sss Corporation Generic Array Logic™

FEATURES FUNCTIONAL BLOCK DIAGRAM

« HIGH PERFORMANCE E2CMOS® TECHNOLOGY
- 3.5 ns Maximum Propagation Delay
-~ Fmax =250 MHz
— 3.0 ns Maximum from Ciock input to Data Output
— UtraMOS® Advanced CMOS Technology

* 50% to 75% REDUCTION IN POWER FROM BIPOLAR S
— 7SmA Typ icc on Low Power Device Chmernee e
— 45mA Typ lcc on Quarter Power Davice o i bt
* ACTIVE PULL-UPS ON ALL PINS .

* E? CELL TECHNOLOGY
— Reconfigurable Logic i
- Reprogrammable Cells B i
— 100% Tested/Guaranteed 100% Yields
— High Speed Electrical Erasure (<100ms) )
- 20 Year Data Retention | g

* EIGHT OUTPUT LOGIC MACROCELLS
-~ Maximum Flexibility for Complex Logic Designs y
~— Programmable Output Polarity [
— Also Emulates 20-pin PAL® Devices with Full :
Function/Fuse Map/Parametric Compatibility

« PRELOAD AND POWER-ON RESET OF ALL REGISTERS | e
— 100% Functional Testability

* APPLICATIONS INCLUDE: i
— DMA Control | —eed
- State Machine Controt :
— High Speed Graphics Processing
— Standard Logic Speed Upgrade

* ELECTRONIC SIGNATURE FOR IDENTIFICATION

17

AND-ARRAY
 (eax3)

PROGRAMMABLE

DESCRIPTION PIN CONFIGURATION

The GAL16V8ED, at 3.5 ns maximum propagation delay time, com-

bines a high performance CMOS process with Electrically Eras- DiP

able (E?) floating gate technology to provide the highest speed <
performance avaliabio in the PLD market. High speed erase times PLCC vex 11 20 [] vor
{<100ms) aliow the devices to be reprogrammed quickly and ef- V[ N v
ficiently.

The generic architecture provides maximum design flexibility by (Rt GAL 1 vom
allowing the Output Logic Macrocelt (OLMC) to be configured by ' [ ] voro
the user. Animportant subset of the many architecture configu- 16V8

rafions possible with the GAL16V8 are the PAL architectures I [ o
listed in the table of the macrocell description section. GAL16V8 1] 13 [] vova
devices are capable of emulating any of these PAL archilectures

with full function/fuse map/parametric compatibility. 0 [} vo
Unigue test circuitry and reprogrammabie celis allow complete v [} vora
AC, DC, and functional testing during manufacture. As a result, 1 [ ] vora
Lattice Semiconductor guarantees 100% field programmability

and functionality of all GAL products. In addition, 100 erase/write onp [} 10 11 [] voE
cycles and data retention in excess of 20 years are guaranieed.

Copyright © 1986 Lattice Semisonductor Camp. Alt brand or product names sre or their resp holders. The and i herein i
1o change without notice.

LATTICE SEMICONDUCTOR CORP,, 5556 Northeast Moare Gt., Hillsbaro, Oregon 87124, U.S.A. 1996 Data Book

Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http:/fwww.latlicesemi.com

18v8_02 1

76



= attice

s ansas Semiconductor
s » uuw « Corporation

Specifications GAL16V8

OUTPUT LOGIC MACROCELL (OLMC)

The following discussion pertains to configuring the output logic
macrocell. 1t should be noted that actual implementation is ac-
complished by development software/hardware and is completely
transparent to the user.

There are three global OLMC configuration modes possible:
simple, complex, and registered. Details of each of these
modes are i#lustrated in the following pages. Two global bits, SYN
and ACO, controf the mode configuration for all macrocelis. The
XOR bit of each macrocel controls the polarity of the output in any
of the three modes, while the AC1 bit of each of the macrocells
controls the input/output configuration. These two global and 16
individual architecture bits define ali possible configurations ina
GAL16V8 . The information given on these architecture bits is
only to give & better understanding of the device. Compiler soft-
ware will transparently set these architecture bits from the pin
definitions, so the user should not need to directly manipulate
these architecture bits.

The following is a fist of the PAL architectures that the GAL16V8
can emulate. It also shows the OLMC mods under which the
GAL16V8 emulates the PAL architecture.

PAL Architectures GAL16VS
Emulated by GAL16VS Globul OLMC Mode

16R8 Registered
16R6 Ragistered
168R4 Registered
16RP8 Registered
16RPE Regiletared
16RP4 Registered
16L8 Complex
16H8 Complex
16P8 Complex
10L8 Simple
1218 Simple
14L4 Simple
16L2 Simple
10H8 Simple
12H6 Simple
14H4 Simple
16H2 Simple
10P8 Simple
12P8 Simple
14P4 Simple
16P2 Simple

COMPILER SUPPORT FOR OLMC

Software compilers support the three different global OLMC
modes as different device types. These device types are listed
in the table below. Most compiiers have the ability to automati-
cally select the device type, generally based on the register usage
and output enable (OE) usage. Register usage on the device
forces the software to choose the registered mode. All combina-
torial outputs with OE controlled by the product tenn will force the
software to choose the complex mode. The software will choose
the simple mode only when all cutputs are dedicated combinatorial
without OE control. The different device types listed in the table
can be used to override the automatic device selection by the
software. For further details, refer to the compiler software
manuals.

When using compiler software to configure the device, the user
must pay special attention to the following restrictions in each
mode.

n registered mode pin 1 and pin 11 are permanently configured
as clock and output enable, respectively. These pins cannot be
configured as dedicated inputs in the registered mode.

In complex mode pin 1 and pin 11 become dedicated inputs and
use the feedback paths of pin 19 and pin 12 respectively. Because
of this feedback path usage, pin 19 and pin 12 do not have the
feedback option in this mode.

in simple mode all feedback paths of the output pins are routed
via the adjacent pins. In doing so, the two inner most pins ( pins
15 and 16) will not have the feedback option as these pins are
always configured as dedicated combinatorial output.

Registered Complex Simple Auto Mode Select

ABEL P16VER P16vV8C P16VBAS P16Ve
CUPL G16VaMS G16VBMA G16V8AS G16vs
LOG/C GAL16VE R GAL16V8_C7 GAL16VS_C8 GAL16VS
OrCAD-PLD “Registered™ "Complex™ "Simple™ GAL1BVBA
PLDesligner P16VER? P16vVac: P16V8C? P16VBA
TANGO-PLD G16VER G16V8C G16VBAS? G16vV8

1) Used with Configuration keyword.

2} Prior to Version 2.0 support.

3) Supported on Version 1.20 or later.

3 1996 Data Book



Specifications GAL16V8

REGISTERED MODE

In the Registered mode, macrocelis are configured as dedicated
registared outputs or as VO functions.

Architecture configurations available in this mode are similar to
the common 16R8 and 16RP4 devices with various permutations
of polarity, YO and register placement.

All registered macrocelis share common dock and output enable
control pins. Any macroceli can be configured as registered or
¥Q. Upto eight registers or up to eight I/0's are possible in this

mode. Dedicated input or output functions can be implemented
as subsets of the /O function.

Registered outputs have sight product terms per output. 1/O's
have seven product terms per output.

The JEDEC fuse numbers, including the User Electronic Signature
(UES) fuses and the Product Term Disable (PTD) fuses, are
shown on the logic diagram on the following page.

CE

Registered Configuration for Registered Mode

- SYN=0.

- ACO=1.

- XOR=0 defines Active Low Output.

- XOR=1 defines Active High Output.

- AC1=0 defines this output configuration.

- Pin 1 controls common CLK for the registered outputs.

- Pin 11 controls common OE for the registered outputs.

- Pin 1 & Pin 11 are permanently configured as CLK &
OE.

Combinatorial Configuration for Registered Mode

- BYN=0.

-ACO=1,

- XOR=0 defines Active Low Output.

- XOR=1 defines Active High Output.

- AC1=1 defines this output configuration.

- gié\j & Pin 11 are permanently configured as CLK &

Note: The development software configures all of the architecture control bits and checks for proper pin usage automatically.

1986 Data Book

78



I—Q,,,t.ct.!ﬁ,g Specifications GAL16V8

=ewass Corporation

REGISTERED MODE LOGIC DIAGRAM

DIP & PLCC Package Pinouts
1> 2128
6 4 12 18 20 24 W PTB} B
0000 - -
OLMC Po-—E 319
o224 - XOR-2048
213 AC1-2120
oo o )
| oM fe e
480 -l
5 XOR-2049
BH p ¥} -+ AC1-2121 e
o512 344 ;
5 %:: oLMC too- K317
ovas EEn
: XOR-2050
Ao—T - s AC1-2122 |rrrd
ores o -
5:::.: oLMC & 3116
ey o4
XOR-2051
s—13 B AC1-2123 |
1024 L] {1
%g; oLMC oK 315
1248 = Sis XOR-2052
6L0——{3 =ty AC1-2124
1280 o4 |
: oLMC oo K314
1804 XOR-2053
T AC1-2125 |
1538 7
OMC  [forg13
; 1780 = XOR-2054
so— g AC1-2126
1792 Lt 1
§IRIEE = g_—;——. oLMC “(J;’O—T—Gm
oo o 2 !
fa : XOR-2055 |
93 TiL 543 AC1-2127 |
a1t o981
84-LISER ELECTRONIC SIGNATURE FUSES
Fgc;zosm - 2116,2119 SYN-2182
Byte 7]Eye 8 . . Byt 115ye 0 | ACO-2193
ML
85 3
B B

5 1996 Data Book



)
=
o
@

Specifications GAL16V8

COMPLEX MODE

in the Complex mode, macrocelis are configured as output only
or YO functions.

Architecture configurations available in this mode are similar to
the common 16L8 and 18P8 devices with programmable polarity
in sach macrocell.

Up to six 1/0's are possible in this mode. Dedicated inputs or
outpuls can be implemented as subsets of the VO function. The
wo outer most macrocelis (pins 12 & 19) do not have input ca-

pability. Designs requiring eight I/O's can be implemented in the
Registered mode.

All macrocedls have seven product terms per output. One product
term is used for programmable output enabie control. Pins 1 and
11 are always available as data inputs into the AND array.

The JEDEC fuse numbers indluding the UES fuses and PTD fuses
are shown on the logic diagram on the following page.

K3

Combinatorial /0 Configuration for Complex Mode

-8YN=1.

- ACO=1,

- XOR=0 defines Active Low Output.

- XOR=1 defines Active High Output.

-ACt=1,

- Pin 13 through Pin 18 are configured to this function.

Combinatorial OQutput Configuration for Complex Mode

- SYN=1.

- ACO=1.

- XOR=0 defines Active Low Cutput.

- XOR=1 defines Active High Output.

-ACi=1,

- Pin 12 and Pin 19 are configured to this function.

Note: The development software configures all of the architecture controt bits and checks for proper pin usage automatically.

1996 Data Book

80



Lé,mﬂmldeg Specifications GAL16V8

DIP & PLCC Package Pinouts
P>
28
5] 4 1z € 20 24 28 PR
(] T — L
—] OLMC »—-{£«>~~—D19
224 = XOR-2048
20> £y AC1-2120
0288 | SOR—,
OLMC 4& 18
0480 XOR-2048
< g - ACT-2121 |
612 S
oLmC ~—{;—T—K317
ores XOR-2050 ;
A AC1-2122 |
ores S
oLMC —{;0'“?{:316
o2 XOR-2051 !
s—A3 AC1-2128 fovd
1024 —
OLMC __‘_&),«G 15
1240 XOR-2052 ,
e[ >—3 AG1-2124 |l
1280 Bt
oLmC ~—5*-—H§]14
1504 XOR-2053 |
{3 2125 boond
15y oy
OLMC | . 13
1780 XOR-2054 JO
o S— AC1-2126 |
1792 e :
—| OLMC | Po—g 312
e e XOR-2055
o> Ly : w4 AG1-2127
: [ ; ‘et
Feii2d
84IGER ELECTRONIC SIGNATURE FUSES
2056, 2057, .. e g SYN-2182
Byw7[Bye¢ .. . Bywei]Bywe0] ACG-2183
ML
s s
B B

7 1996 Data Book

81



Lgmtet,!dgag Specifications GAL16V8

susums CQrporalion
SIMPLE MODE LOGIC DIAGRAM
DIP & PLCC Package Pinouts
o>
128
o 4 slzmmzazsmj
o000 = OLMC [
,,,,, XOR-20489 $° K19
L AC1-2120
A1y 51
e oLMe | }
XOR-2049 o 18
oss0 AC1-2121
3> {3
il oLMC _{io
xoR-2050 —De-1i317
o738 AC1-2122
Az
oree OLMC [}
XOR-2os1 [—1To—+K316
0wz AC1-2123
S>——{3
s oLMC
XOR-2052 [T s
AC1-2124
6>——ix
50 oLmMc |
' XOR-2053 [-Doo——E 314
1804 AC1-2125
7o—1x
8 OoLMC *]‘
XOR-2084 | ~Lo—+K313
780 AC1-2126
8>y
e ome |
XOR-2055 ~-4$°——D12
018 AC1-2127
9L <111
Falh
B84-USER ELECTROMIC SIGNATURE FUSES
{2088, 2087, ... 218 2119 SYN-2192
{Brte7iey® .. . Byto 1/Bym 0 | ACO-2183
ML
$ s
B 8

9 1996 Data Book



ann -
Ll G
] attice T~
22227 Semiconductor Specifications GAL16V8
...---Corporation
SIMPLE MODE LOGIC DIAGRAM
DIP & PLCC Package Pinouts
1D
2128
° 431215202:25?70%
oo0a OoLMC [
xOR-2048 |-Doir-E319
a2 AC1-2120
214y
025 o1 OLMC |
==} XOR-2048 "g‘ 18
o480 == AC1-2121
kT . o
o2 oLme {;
x0R-2050 [—Do-1E317
aras AC1-2122
AP
ares OLMC ‘”{
xoR-2051 [-Do—E316
om0z B AC1-2123
5D.~ ,,,,, _.{)*' - 0 A
ome [
XOR-2052 o5
AC1-2124
.
0 oLmMe [
x0R-2053 [—{o—-E 314
90 AC1-2125
H >-——~Lz
1508 OLMC [L
XOR-2054 - Do-K313
V780 AC1-2126
S
e oLmC 1
XOR-2055 ~—$°~~E312
18 AC1-2127
9oO>—{3 <111
Falll
84-AISER ELECTRONIC SIGNATURE FUSES
2066, 2067, ... ..zZns.ze SYN-2192
imzﬁmL_WA_m_ﬁmg ACO-2183

g 1996 Data Book



Lgmt!!ﬁg Specifications GAL16V8

s 2n " Corporation
POWER-UP RESET
Voo V(N

INTERNAL REGISTER Intarnal Hegister
Q-OUTPUT Flosat o Logic *0°
FEEDBACK/EXTERNAL Davice Pin
OUTPUT REGISTER Reset to Lagk "1

Circuitry within the GAL18V8 provides a reset signal to all reg- conditions must be met to guarantee a valid power-up reset of the
isters during power-up. Al internal registers will have their Q device. First, the Voc rise must be monotonic. Second, the dlock
outputs set low after a specified time (lpr, 1us MAX). As a result, input must be at static TTL level as shown in the diagram during
the state on the registered output pins (if they are enabled) will power up. The registers will reset within a maximum of tor time.
always be high on power-up, regardiess of the programmed As in normal system operation, avoid clocking the device until aft
polarity of the oulput pins. This featurs can greatly simplify state input and feedback path setup times have been met. The clock
machine design by providing a known state on power-up. Be- must aiso meet the minimum pulse width requirements.

cause of the asynchronous nature of system power-up, some

INPUT/OQUTPUT EQUIVALENT SCHEMATICS

E— g

Feedback ¢———
T Active Pull
éfr?:vu?t Pull-up C? r&l;% ull-up
T T ves ome Y g
: Control ) :

Lofod Data Lol
PIN
Ot K Pw

‘ESD

Protection | |
: Circuit :
L 4
+7  Feedback
Typ. Vref = 3,2V Typ. Vref=3.2V (To Input Butfer)
Typlcal input Typical Output

19 1996 Data Book

84



] attice

s=nsss Semiconductor

= = u uu s CoOrporation

B.2 - Lattice GAL22V10 Data Sheet Excerpts

GAL22V10

High Performance E2CMOS PLD
Generic Array Logic™

FEATURES

» HIGH PERFORMANCE E*CMOS® TECHNOLOGY
— § ng Maximum Propagation Delay
~ Fmax =200 MHz
— 4 ns Maximum from Clock input to Data Output
— UltraMOS® Ad d CMOS Technology

* ACTIVE PULL-UPS ON ALL PINS

» COMPATIBLE WITH STANDARD 22V10 DEVICES
- Fully Function/Fuse-Map/Parametric Compatible
with Bipolar and UVCMOS 22V10 Devices
* 50% to 76% REDUCTION IN POWER VERSUS BIPOLAR
- 90mA Typical lcc on Low Power Device
— 45mA Typical lcc on Quarter Power Device

* £2 CELL TECHNOLOGY
— Reconfigurable Logic
- Rsprogrammable Cells
~- 100% Tested/Guaranteed 100% Yields
- High Speed Electrical Erasure (<100ms)
- 20 Yoar Data Retention

* TEN OUTPUT LOGIC MACROCELLS
— Maximum Flexibility for Compiex Logic Designs

* PRELOAD AND POWER-ON RESET OF REGISTERS
— 100% Functional Testability

* APPLICATIONS INCLUDE:
- DMA Control
- State Machine Control
— High Speed Graphics Processing
— Standard Loglc Speed Upgrade

* ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL22V10C, at Sns maximum propagation delay time, com-
bines a high performance CMOS process with Electrically Eras-
able (E?) ficating gate technology to provide the highest perform-
ance available of any 22V 10 device on the market. CMOS cir-
cuitry aflows the GAL22V10 to consume much less power when
compared to bipolar 22V10 devices. E? technology offers high
speed (<100ms) erase times, providing the ability to reprogram
or reconfigure the device quickly and efficiently.

The generic architecture provides maximurn design flexibility by
allowing the Output Logic Macrocell (OLMC) o be configured by
the user. The GAL22V10 is fully function/fuse map/parametric
compatible with standard bipolar and CMOS 22V10 devices.

Unique lest circuitry and reprogrammable cells allow complete
AC, DC, and functional testing during manufacture. As a result,
Lattice Semiconductor guarantees 100% field programmability
and functionality of all GAL products. In addition, 100 erase/write
cycles and data retention in excess of 20 years are guaranteed,

FUNCTIONAL BLOCK DIAGRAM

1§ iy ;

It

PO
e
umst

s

 PROGRAMMABLE
AND-ARRAY
o (ax49)

- ﬁt i

O

PIN CONFIGURATION

ow

T 2a]] vee
[ voiq
1 voie
1 von

ek 1

g 1
g 10

148 TS wva 0
4 ;; ‘E ] Vo
GAL22Vi0 | ige v

i 1811
e Top View zl[bwlo 1 [} vora
[ 1 vore 1 i} vore
1 e 155 v 1{
12 )

GAL
22V10

1 vore
18

e 14 1 o

g 5 14 [l vora

GND {12 1a{l4

G 1996 Latt

of their

Com. Altbrand of product names are of
to change without notice,

LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 87124, U.S.A.

hoiders. The specifications and information herein are subject

1996 Data Book

Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; hitp://www.latticesemi.com

22v10_01

85



Specifications GAL22V10

OUTPUT LOGIC MACROCELL (OLMC)

The GAL22V10 has a variable number of product terms per
OLMC. Of the ter avallable OLMCs, two OLMCs have access fo
eight product terms (pins 14 and 23, DIP pinout), two have ten
product terms (pins 16 and 22), two have twelve product terms
{pins 16 and 21), two have fourteen product terms (pins 17 and
20), and two OLMCs have sixteen product tems (pins 18 and 19).
in addition to the product terms available for Jogic, each OLMG
has an additional product-term dedicated to output enable control.

The output polarity of each OLMC can be individually programmed
to be true or inverting, in either combinatorial or registered mode.
This allows each output {0 be individually configured as sither
active high or active low.

The GAL22V10 has a product temm for Asynchronous Reset (AR)
and a product term for Synchronous Preset (SP). These two
product terms are common to all registered OLMCs. The Asyn-
chronous Reset sets ali registers to zero any time this dedicated
product term is asserted. The Synchronous Proset sets all reg-
isters to a logic one on the rising edge of the next clock pulse after
this product term is asserted.

NOTE: The AR and SP product terms will force the Q output of
the flip-flop into the same state regardiess of the polarity of the
output. Therefore, a reset operation, which sets the register output
to a zero, may result in either a high or low at the output pin,
depending on the pin polarity chosen.

4 TO

[ 7 »]

MU X

MUX

2701

GAL22V10 QUTPUT LOGIC MACROCELL (OLMC)

OUTPUT LOGIC MACROCELL CONFIGURATIONS

Each of the Macrocells of the GAL22V10 has two primary func-
tional modes: registered, and combinatorial Q. The modes and
the output polarity are set by two bits (SO and $1), which are nor-
matfly controlled by the logic compiler, Each of these two primary
modes, and the bit settings required to enable them, are described
below and on the following page.

REGISTERED

in registered mode the output pin associated with an individual
OLMC is driven by the Q output of that OLMC's D-type ffip-flop.
Logic polarity of the output signa! at the pin may be selected by
specifying that the output buffer drive either true (active high) or
inverted (active low). Output tri-state controlis available as an in-
dividual product-term for each OLMC, and can therefore be de-
fined by a logic equation. The D flip-flop's A output is fed back
into the AND array, with both the true and complement of the
feedback available as inputs to the AND array.

NOTE: in registered mode, the feedback is from the /Q output of
the register, and not from the pin; therefore, a pin defined as
registered is an output only, and cannot be used for dynamic
/Q, as can the combinatorial pins.

COMBINATORIAL VO

in combinatorial mode the pin associated with an individual OLMC
is driven by the output of the sum term gate. Logic polarity of the
output signal at the pin may be selected by specifying that the
output buffer drive either true {active high) or inverted (active low),
Qutput tri-state control is available as an individual product-term
for each output, and may be individually set by the compiler as
either “on” (dedicated output), “off” {(dedicated input), or “product-
term driven” (dynamic /0). Feedback into the AND array is from
the pin side of the output enable buffer, Both polarities (true and
inverted) of the pin are fed back into the AND array.

1996 Data Book

86



Specifications GAL26CV12

REGISTERED MODE

S r"% . |
RO o S N
o r—« \ i
) AR i
s L A !
: \\ \\\ i ’\EL
\ | I - B I
e L I S
. ‘iw :
W] ee—p op
N o ——
sSP
et T -
S
ACTIVE LOW ACTIVE HIGH
$,=0 S,=1
$,=0 $,=0
COMBINATORIAL MODE
— Ay
1 et
I e
| i
. ,—/
] .« L I
L . e . J—
—*xlT o E . } /1 . ‘L . e
. ! o
« T -
D]
LA
s} |
- S
ACTIVE LOW ACTIVE HIGH
S° =0 Su =%
8 =1 $,=1

1996 Data Book

87



IIIL u- -
ESE:::Qmico!dgtg Specifications GAL22V10
auwnus Corporation
GAL22V10 LOGIC DIAGRAM / JEDEC FUSE MAP
DIP (PLCC) Package Pinouts
1) +&
[ 4 8 12 18 20 24 28 32 36 40
Tm i ULl . ABYNCHAONOUS RESET
! oee & [HEi b {TO ALL AECHSTERS)
: ot 1 vawer ””rjﬁ o i’:ﬁ}g&—— OLMC ,.__,;_1 g D (2

0;}):0 —«.:LT» 22 (26)
.

T oMe ok 218

2(3) -

56810 R

3@ - 4T
i =i e
—iebe | owe :Jj*zom
= SR T s o+ S 5814
RS Fowent on s e 3= X St
eSS % =8 || owmMe DL 103

(3) i

§{B) il et

1
15 1 oLme ~——~£5»—T~—- 18 (2Y)

() —

6(7) — |

»»»»» g 17 (20)

WJ e 16 (18)

&:_j; = ~>-r—- 15 (18)
e ]

79 -

8(10) -

) 51
9 (11) - o
= e *’g S £ Y e ———
S e it e e (1 T S ogc - 14017
10(12) <= s N S
o i ; SYNGHRONOUS PRESET
11 {13) -tx : (O ALL REGISTERS} 13 (16)

{58285829 Electronic Signature ... 5890, 5801 |
{Byn7 [Pyt 8Byw5iBym 4] By 3[Bpazope 1 [Byso |
WL

5 8
B B

5 1996 Data Book

88



L attice

BEssER Samiconductor
=== aas Corporation

Specifications GAL22V10

POWER-UP RESET

vee Vee (min) f

P NRARULRRRN S S

et 50—}

[t O ]

INTERANAL REGISTER internal Flogister
Q- QUTPUT Raset 1o Logic "0*

ACTIVE LOW Deavice Pin
OQUTPUT REGISTER Ressttotogic™t Y

ACTIVE HIGH ><><><><><><><><><><><><) Device Pin B
QUTPUT REGISTER Reset 1 Logic 0"

Circuitry within the GAL22V10 provides a reset signal to all reg-
isters during power-up. All intemal registers will have their Q out-
puts set low after a specified time (tpr, 1ps MAX). As a result, the
state on the registered output pins (if they are enabled) will be
either high or low on power-up, depending on the programmed
polarity of the output pins. This feature can greatly simplify state
machine design by providing a known state on power-up. The
timing diagram for power-up is shown below. Because of the asyn-

INPUT/QUTPUT EQUIVALENT SCHEMATICS

chronous nature of system power-up, some conditions mustbe
met to guarantee a valid power-up reset of the GAL22V10. First,
the Vec rise must be monotonic. Second, the clock input must
e at static TTL level as shown in the diagram during power up.
The registers will reset within a maximum of tpr time. As in nor-
mal system operation, avoid clocking the device until all input and
feedback path setup times have been met. The clock must also
meet the minimum pulse width requirements.

Vee

Typical Input

e

Foedback

Active Pult-up
Clrey

{¥rst Typical = 8.2v)

Tri-State
Controt

Data

Qutput PIN

<~ Feedback
{To input Buffer}
Typical Output

1996 Data Book

89



B.3 - Lattice GAL26CV12 Data Sheet Excerpts

HE irp GAL26CV12
1 Lattl ce High Performance E:CMOS PLD

nEEREN
S25E1iEomoraon Generic Array Logic™

FEATURES FUNCTIONAL BLOCK DIAGRAM

» HIGH PERFORMANCE ECMOS* TECHNOLOGY
- 7.5 ns Maximum Propagation Delay
~ Fmax =142.8 MHz

i

3 o/
— 4.5ns Maximum from Clock input to Data Output 10 <3
— TTL Compatible 16 mA Outputs g Th
— UltraMOS® Advanced CMOS Tachnology oo H‘W von
« ACTIVE PULL-UPS ON ALL PINS T oo
» LOW POWER CMOS 1 -ﬁ_m
~— 90 mA Typical icc IS Sy
Y S oo}
» E? CELL TECHNOLOGY U &m
- Reconfigurable Logic g LU vora
~ Reprogrammable Ceils o !{Im

-~ 100% Tested/Guarantead 100% Yields
— High Speed Electricai Erasure (<100ms)

Ei5k
Iﬂf

— 20 Yoar Data Retention o e
.W
« TWELVE OUTPUT LOGIC MACROCELLS “W 5 YOQ
— Uses Standard 22V10 Macrocelis U= =~

~ Maximum Flexibility for Complex Logic Designs 7 vor
+ PRELOAD AND POWER-ON RESET OF REGISTERS > Pl

- 100% Functional Testability E:ﬁ o
+ APPLICATIONS INCLUDE: = Bt

— DMA Control “ roQ

— State Machine Control [y mm

— High Spesd Graphics Processing gl

-~ Standard Logic Speed Upgrade au gm 3 von

» ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION
The GAL26CV12, at 7.5 ns maximum propagation delay time, PIN CONFIGURATION

combines a high performance CMOS process with Electrically
Erasable (E?) floating gate technology to provide the highest DIP
performance 28-pin PLD available on the market. E? technology

3 Vo

5
o
;

4

offers high speed (<100ms) erase times, providing the ability to
reprogram or reconfigure the device quickly and efficiently. vox [t 0
von

Expanding upon the industry standard 22V10 architecture, the : g 3 vora
GALZ6CV12 eliminates the learning curve typically associated !
with using a new device architecture. The generic architecture 'l gaL fwoe
provides maximurm design flexibility by aflowing the Output Logic i 26CV12 Hwon
Macrocell (OLMC) to be configured by the user. The GAL26CV12 i hvoa
OLMC is fully compatible with the OLMC in standard bipolar and v {7 1 vora
CMOS 22V10 devices. 1 21 [Janp
Unique test circuitry and reprogrammable cells allow complete 1 ] vora
AC, DG, and functional testing during manufacture. As a result, ' 1 vora
Lattice Serniconductor guarantees 100% field programmability i [ vo
and functionality of all GAL products. In addition, 100 erase/write 1 hvo
cycles and data retention in excess of 20 years are guaranteed. i hvoa

1{]14 18{] /0
Topyright © 1996 Lattica Semiconductor Corp. All brand or product names are o regh of their hoidars. Tha and herein are subject
fo change without notice.
LATTICE SEMICONDUCTOR CORP., 5655 Northeast Moore Ct., Hilisboro, Oregon 97124, U.S.A. 1996 Data Book

Tel. (503) 681-0118; 1-888-{SP-PLDS; FAX (503) 681-3037; hitp://www.latticesemi.com

26cvi2 01 1

90



Specifications GAL26CV12

OUTPUT LOGIC MACROCELL (OLMC)

The GAL26CV 12 has a variable number of product terms per
CLMC, Of the twelve available OLMGCs, two OLMCs have access
to twelve product terms (pins 20 and 22), two have access to ten
product terms (pins 19 and 23), and the other eight OLMCs have
eight product terms each. In addition 6 the product terms available
for logic, each OLMC has an additional product term dedicated
to output enable control.

The output polarity of each OLMC can be individually programmed
to be true or inverting, in either combinatorial or registered mode.
This allows sach output to be individually configured as either
active high or active low.

The GAL26GV12 has a product term for Asynchronous Reset
{AR) and a product term for Synchronous Preset (SP). These two
product terms are common to all registered OLMCs. The Asyn-
chronous Reset sets all registered outputs to zero any time this
dedicated product term is asserted. The Synchronous Preset sets
alt registers to a logic one on the rising edge of the next clock
pulse after this product term is asserted.

NOTE: The AR and SP product terms will force the Q output of
the flip-flop into the same state regardiess of the polarity of the
output. Therefore, a reset operation, which sets the register output
to a zero, may result in either a high or low at the output pin,
depending on the pin polarity chosen.

AR
|

4701

MUX

27101
MUX

GAL26CV12 OUTPUT LOGIC MACROCELL (OLMC)

OUTPUT LOGIC MACROCELL CONFIGURATIONS

Each of the Macrocells of the GAL26CV 12 has two primary
functional modes: registered, and combinatorial /0. The modes
and the output polarity are sat by two bits (SO and §1), which are
normally controlled by the logic campiler. Each of these two
primary modes, and the bit settings required to enable them, are
described below and on the the following page.

REGISTERED

In registered mode the output pin associated with an individual
OLMC is driven by the Q output of that OLMC's D-type flip-flop.
Logic polarity of the output signal at the pin may be selected by
specifying that the output buffer drive either true (active high) or
inveried (active low). Output tri-state control is available as an
individual product term for each OLMC, and can therefore be
defined by a logic equation. The D flip-flop’s /Q output is fed back
into the AND array, with both the true and complement of the
feedback available as inputs to the AND array.

NOTE: In registered mode, the feedback is from the /Q output of
the register, and not from the pin; therefore, a pin defined as
registered is an output only, and cannot be used for dynamic
10, as can the combinatorial pins.

COMBINATORIAL 110

In combinatorial mode the pin associated with an individual OLMC
is driven by the output of the sum tenm gate. Logic polarity of the
output signal at the pin may be selected by specifying that the
autput buffer drive either true (active high) or inverted (active low).
Qutput tri-state control is available as an individual product term
for each output, and may be individually set by the compiler as
either “on” {dedicated output), “off” (dedicated input), or “product
term driven” {dynamic 1/Q). Feedback into the AND array is from
the pin side of the output enable buffer. Both polarities (true and
inverted) of the pin are fed back into the AND array.

1996 Data Book

91



B momon ™!

Specifications GAL26CV12

REGISTERED MODE

ACTIVE LOW

ACTIVE HIGH

COMBINATORIAL MODE

ACTIVE LOW

ACTIVE HIGH

1996 Data Book

92



LQM,QQ Specifications GAL26CV12

== s nsn Corporation

DIP & PLCC Package Pinouts
1 &
%naanxsmzuaaazzswuw
» ASYNCHRONOUS RESET
{TO ALL REGISTERS)
OLMC 27
S X
2 LS T
LTOLMC |
3 - ,;},‘ fo vk
4
+eb® - = — =
182 =
5 o it
1924

- 20
19
18
ey 17
e e e L,
5772 ] : = . 8'5“
13 —p J{} "
8
i i S oMc || 4
Lo !
14—tz . = |
8292 YNCHRONOUS PRESET
{T0 ALL REGIITERS)

{6368, 5369 ... Electronic Signature ... 6430, 84311
gayun;mmu{ams'gwu{ma]smz}sm1§m0j

¥4

8 B

5 1996 Data Book

93



Eaanasseml

esaase COrporation

Specifications GAL26CV12

POWER-UP RESET

Voo Vvec (m')/

e AN \‘r~tw'—_}‘

INTERNAL REGISTER
Q- OUTPUT

ot tpr——»]

KXXOOHKKXNN e /
Reaet to Logic "0"

ACTIVE LOW Davice Pin N
o aaisten KXQQQOOOQCOKY Beiieioes \
acasren JOUQQOUOCRKN Festitogeror/
OUTPUT REGISTER Reset to Loglc "0

Gircuitry within the GAL26CV12 provides a reset signal to ali reg-
isters during power-up. All internal registers will have their Q
outputs set low after a specified time (tpr, 1us MAX]). As a result,
the state on the registered output pins {if they are enabled) will
be either high or ow on power-up, depending on the programmed
polarity of the output pins. This featurs can greatly simpiify state
machine design by providing a known state on power-up. Be-
cause of the asynchronous nature of system power-up, some

conditions must be metto guaraniee a valid power-up reset of the
device. First, the Voo rise must be monotonic. Second, the clock
input must be at static TTL level as shown in the diagram during
power up. The registers will reset within a maximum of tpr tims.
As in normal systern operation, avoid clocking the device until all
input and feedback path setup times have been met. The clock
must also meet the minimum pulse width requirements.

INPUT/QUTPUT EQUIVALENT SCHEMATICS

Vee
- Active Pull-y
Vst Typicss = 32V} G p
; Voo: | vret: Voo
1 ESD : [
i Pratection :

; Gircuit

™

PIN

{ESD
: Protection
: Circuit

Typical input

Foodback #-—e—’

Active Pull-up
Circutt
' B {Mrad Typical = 3.2V}
Tosae  YE ver
Control } :

Data
Output

v  Feedback
{To input Buffar)

Typical Output

1996 Data Book

94



[1]

(2]

[3]
[4]
[3]
[6]

REFERENCES
Fletcher, William I. An Engineering Approach to Digital Design. New Jersey:
Prentice-Hall, Inc., 1980.

Pellerin, David and Holley, Michael. Practical Design Using Programmable L.
New Jersey: Prentice-Hall, Inc., 1991.

ABEL User Manual. Data 1/0 Corporation, 1990.

Logic Diagram Package Data I/O Corporation, 1990.

Data I/O Corporation Web Site: http://www.data-io.com

Lattice Semiconductor Corporation Web Site: http://www latticesemi.com

95



	Digital_Circuit_Design_Implementation_using_ABEL-HDL_Programmable_Logic_Devices006
	Digital_Circuit_Design_Implementation_using_ABEL-HDL_Programmable_Logic_Devices007

