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ABSTRACT

We will begin with basic definitions in the study ofdifferentiable manifolds, including

relevant definitions and properties from point set topology. After developing both the

geometric and coordinate dependent approaches to the study of tensors on a manifold,

we will investigate some of the applications of the mathematical ideas to the study of

electricity and magnetism, and to its mathematical generalization,

Yaug-Mills field theory.
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INTRODUCTION

The purpose of this thesis is to show a detailed analysis of the difficult concepts based on

differential geometry, tensor theory, and some of their applications to mathematical

physics. We are going to explain all ofthe concepts and notation in such a manner that

will lead to a readable presentation of inherently difficult material. Some of the material

appears together in a manner which is hard to find elsewhere.

First in this thesis we introduce the concept of a differentiable manifold (a knowledge of

which has become useful in an increasing number of areas ofmathematics and of its

applications) and the concept of vectors and tensors, which are the natural geometric

objects defined on the manifold. We will treat the manifold as being a space which is

locally similar to Euclidean space and will study important concepts defined by the

manifold structure which are independent of the choice of a coordinate system.

A discussion of maps of manifolds will lead to the definitions of the induced maps of

tensors. We will study the operation ofexterior differentiation, which depends only on the

manifold structure. And by imposing extra structure, the connection, we will define the

covariant derivative and the curvature tensor.

We will also give a brief discussion of fibre bundles since these are used in some

applications ofmathematical physics.

We will investigate some of the applications of the mathematical ideas to the study of

electricity and magnetism, and to its mathematical generalization, Yang-Mills field

theory.
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Some Topological Preliminaries.

Definition 1 : A subset U of ~n is defined to be an open subset of ~n if for each p EU,

there is an e > 0 such that Ne(P) cU (Ne(P) ={q E ~n: ~(P,q) < e}).

Definition 2 : The collection of all open subsets of ~n is called the topology of ~n.

A topological space is a set S equipped with a topology on it.

We refer to the pair ( S, i) as a topological space.

Definition 3: Suppose (S, i) is a topological space and A c S.

Let if = {A n0 such that 0 E i} .Then {A, if} is called the topology of A derived

from (S, i) ( or the relative topology).

Definition 4: A manifold M of dimension n, or n-manifold, is a topological space

with the properties:

i) M is Hausdorff.

ii) M is locally Euclidean of dimension n.

iii) M has a countable basis of open sets.

_M is a Hausdorff space if for any distinct points x,y E M such that x =t=y there exist U,V

E i such that x E U, YE V and U nV = 0.

_Each point p has a neighborhood U homeomorphic to an n-ball in ~n. (Example: a

manifold of dim 1 is locally homeomorphic to an open interval, a manifold of dim 2 is

locally homeomorphic to an open disk, etc.)

So \;;f X E M :3 U x E i such that XE U and U is homeomorphic to a subset of ~n ; that is,

:3 <Pu : U -+ <Pu(U) c ~n such that <Pu is one to one and continuous with continuous

inverse, <p-1 .
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Figure 1.

u M

Let (..4: i) be given, and Y~X

Define i y == {Uy : Uy == Un Y, V'U e i}.

Denote by (Y, i y), the subspace Y with relative topology.

Lemma 1: If (..4: I) is Hausdorff, then ( ~ ly) is Hausdorff.

Proof: Show V'p,q e Y 3Uy, Vysuch thatp EUy, q eVy, Uyn Vy== 0.

Letp,q e Y. Since Y~Xthen p,q eX.

Since ( ..4: i) is Hausdorffthen 3U, V E i such that p E U, q e V, un V == 0.

Then Un Y == U y ( U e I)

Vn Y == Vy (Ve I), and clearlyp E Uy, q E Vy.

Suppose that Uyn Vy* 0 . Let z E Uyn Vy, so Z E Uy andz E Vy

thenze UnYandze VnY
I

then ze Uandze Y,ze Vandze Y

then z e un V, contradicting Un V == 0.
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So Vyn Vy=0.

So ( Y, 1y) is Hausdorff.

Definition 5 :Let (8,1) be a topological space. A collection Bc 1 is a basis for the

topology 1 if every open subset in 1 is a union of elements ofB

( K E 1 => 38 c B such that UB= K).
BEll

Let B be a countable basis of (X; 1).

Lemma 2. : If (X; 1) has a countable basis then ( Y,1y) has a countable basis.

Define By = {B n Y : B E B}

Show Byis a basis for (Y,1y).

So we need to show

\iVy E 1y :3Bj c By such that Vy=UB y
BYEB~

Proof:

Let V y E 1 y. So V y = V n Y for some V E 1. Since V E 1

Then V y = V n Y =[ UB ] n Y = U [B n y]
BEB/~B BEJ3I~B

For each BE B/ , B n Y E By,

so take Bj = {B n Y : B E B/} then V y= UB y .
BYEB~By

So Vy=UBy.

:3 B/ cB such that V= UB
BEB/~B

So:3 Bj c By such thatVy = UBy .
ByEB~By

So By is a basis for (Y, 1 y). And since By is a collection of sets which is indexed by B

(which is countable), we have that By is countable.

3



Differentiable functions and Mappings.

Definition 6: let f be a function on an open set U c IRn. We shall say thatf is

n

differentiable at a E U ifthere is a (homogeneous) linear expression L bi(Xi - ai ) such
i=1

n

that the (inhomogeneous) linear function defined by j{a) +L bi(Xi - ai) approximates
i=1

j(x) near a in the following sense:

. j{x)-fia)-L bi(xCai)
hm =0x....a IIx-ali '

or equivalently, ifthere exist constants b l , ••• , bn and a: function rex, a) defined on a

neighborhood V ofa E U which satisfy the following two conditions:

j{x) = j{a) +L blxi - ai) + Ilx - a Ilr(x, a)

lim rex, a) =o.
x"'a

on V ,and

If fis differentiable for every a E U, we say it is differentiable on U.

Definition 7: A mapping F : U -10 IRm, U an open subset of IRn, is differentiable at

a E U ( or on U) ifthere exists an m x n matrix A of constants (respectively, functions on

U) and an m-tuple R(x,a) = (rl(x, a), ...,rm(x,a» of functions defined on U (on Ux U)

such that IIR(x, a) II -10 0 as x ~ a and for each x E U we have

F(x) =F(a)+A(x-a) + IIx-a IIR(x, a).

A is called the Jacobian matrix.

The Definition of a Differentiable Manifold

Each pair U, qJ ,where U is an open subset ofM and qJ is a homeomorphism of U to an

open subset of IRn , is called a coordinate neighborhood: to q E U we assign the n

coordinates xl(q), ...,xn(q) of its image qJ(q) in IRn - eachxi(q) is a real-valued function
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on U, the ith coordinate function.

Ifq lies also in a second coordinate neighborhood V, If/ , then it has coordinates

yl(q), .. .yn(q) in this neighborhood. Since rp and If/ are homeomorphisms, this defines a

homeomorphism
If/ 0 rp-l : rp(Un V) -+ If/(Un V) ,

the domain and range being the two open subsets of IRn which correspond to the points of

un Vby the two coordinate maps rp, If/, respectively. In coordinates, If/ 0 rp-l is given by

continuous functions
yi =hi(Xl, ..... , xn ) , i =1, .....n ,

giving the y-coordinates ofeach q E un V in terms ofits x -coordinates.

Similarly rp 0 If/-l gives the inverse mapping which expresses the x -coordinates as

functions ofthe y -coordinates

Xi =g(yl, .....,yn) , i = 1, .....n .

The fact that rp 0 If/-l and If/ 0 rp-l are homeomorphisms and are inverse to each other is

equivalent to the continuity of hi(x) and gi(y) , i,j = 1, .....n together with the identities

hi(gI(y), .....,gn(y)) == yi , i = 1, .....n ,

and
gJ{hl(x), .....,hn(x)) == xj ,j= 1, .....n .

These two mappings rp 0 If/-l and If/ 0 rp-l are called transition functions.

Thus every point ofa n-manifoldMlies in a very large collection ofcoordinate

neighborhoods, but whenever two neighborhoods overlap we have the formulas just given

for a change ofcoordinates. The basic idea that leads to differentiable manifolds is to try

to select a family or subcollection ofneighborhoods so that the change ofcoordinates

hi and gi are always given by differentiable functions.
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Figure 2.

M
peunv

cp: U -10 cp(U) ~ jRn

cp(P) = (Xl, ......xn )

IfI : V -10 1fI(V) c IRn

1fI(P) = (yl, .....yn)

qJ and IfI are homeomorphisms

Definition 8: U, qJ and V, 'II are (;«l -compatible if un V:/::0 implies that the change

ofcoordinates is always given by C~ functions; this is equivalent to requiring

cp 0 'II-I and 'II 0 cp-Ito be differentiable from IfI(Un V) to cp(Un V) in IRn and cp(un V)

to lfI(un V) in jRn, respectively.

Defmition 9: A differentiable or (;«l structure on a topological manifold M is a

family to = {Ua, qJa} ofcoordinates neighborhoods such that:
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1) the Ua cover M (M = UUa ),

2) for any a,p the neighborhoods Ua, qJa and Up, qJp are Coo-compatible,

3) any coordinate neighborhood V, IfI compatible with every Ua, qJa E tJ is itself in tJ.

A Coo manifold is a topological manifold together with a Coo -differentiable structure.

Theorem 1. Let Mbe a Hausdorff space with a countable basis of open sets. If

V = {Vp, IfIP} is a covering ofMby Coo-compatible coordinate neighborhoods, then there

is a unique Coo structure on M containing these coordinate neighborhoods.

The reason this Theorem is important is that using the Theorem, we only need to produce

a specific covering ofM (a Hausdorff space with countble basis of an open sets) which

consists of COO_ compatible coordinate neighborhoods. Then all 3 conditions of the

definition of Coo structure will be satisfied. In particular the Theorem gives an alternate

way establishing condition 3, which generally would be too difficult to verify.

The following is an example ofdifferentiable manifold and we will show that all

properties of a definition COO structure are satisfied. Consider a sphere S2 in 1R3 •

We will now discuss how we can think of S2 as a cross-section ofwhat we will call

a light cone at a point in 4-dimention spacetime by which we will mean a set ofpoints of

a form (t, x, y, z), where the concept of distance will be replaced by what we will call an

interval.

These concepts will be further elucidated as this thesis progresses.

First consider a three-dimensional coordinate system. Consider point P in a spacetime as

being on earth.

7



Figure 3.

ct

y

Suppose you see a star which is very far away. That means when you see the light from

that star you see the light that was emitted several years ago. You are seeing this from

the past. The light is coming in from ,the past. Future is where you are headed, so after

you leave that point you imagine yourselfmoving along the ct-ray. You are still in the

same point but you are moving in a sense ofadvancing time. You are moving to a future,

light moves on the cone. That way is called a light cone. The cross-section ofthat light

cone is a circle. The entire cone could be generated by taking a single ray and rotating it

around the ct-axis, so as to form a circular cross-section. So the way of describing a
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direction that light can travel in a three-dimensional system is in anyone of the directions

on that circle.

But in reality we are in a 4-dimensional system, where the light-cone still exists but its

cross-section is a sphere. So the direction the light can travel from the past or into a future

is a sphere.

It is important to anybody studying the universe to be able to describe the various

paths that light might travel. Since light is going to play such a major role in study of the

universe, it would be nice to have a coordinate system that somehow incorporates this

traveling light as part ofa coordinate system. It becomes important to be able to

coordinatize a sphere, because a sphere is representative of how light travels. There are a

lot of ways to put the coordinates on a sphere. We are going to use a spherical coordinate

system. We are going to use the xy-plane as a basis of our coordinate system where

instead of thinking ofpoints in the xy-plane as being labeled with a pair (x,y), you think

of it as being labeled with a single complex number a + bi, where i 2=-1. Making a

coordinate system based on a complex number allows easier study on that sphere.

SoP(8,rjJ)--ZEC, whereZ=x+iy, i 2 =-1

=d(cos 8 + i sin 8) = d ei(} (exponential form).

Define N and S to be the north pole and the south pole respectively.

We will show that all properties of the definition C'Ostructure ar satisfied.

9



Figure 4.

z

N

s

1) Consider Ul = S2 \ {N}

U2 =S2 \ {S}

S2 = Ul U U2.

So the first condition of the definition is satisfied.

2) Using stereographic projection from the north pole N detennine a coordinate

neighborhood U1, ffJ 1. In the same way determine by projection from the south pole S a

neighborhood U2, If/2. We need to show that these two neighborhoods determine a Coo

structure on Sl.

Note VI nU2 *' 0 .

Let p eUI n U2 with (J -coordinate (Jo.
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We will consider the plane (J = (Jo and the geometry ofrayN; in this plane.

p = 0, (Jo, ¢).

~

Np n (xy - plane) = Q(d, (Jo) = lfIl (P),

We are going to look for some relationships between (d/, (J/) and (d, (J) . So we try to find

transition function such that (d/, (J/) =F[(d, (J)].

First we need to find d and d/.

Consider tNOP: ON= OP= 1 =$ LNOP= LNPO, so 2p = 180° -¢ =$ p =90° - f
tNOQ: LNOQ = 90°, ON = 1 , LONQ = 90° - f

( ° rP) OQ dtan 90 -"2 = ON = T =$ d = tan(900 - f) = cot f
Now consider t::.SOP: OB = OP = 1,

¢ oQ' ¢ rP
tan "2 = -1- =$ OQ/ = tan "2 =$ d/ = tan "2

So we have shown that d = cot f and d/ = tan f ,
we can see that d/ = tan f = ~ .

d and d/ =~ are functions of two variables and they are differentiable functions.

So Fis COO .

Thus the coordinate neighborhoods VI, lfIl and Vz, lfIz are Coo compatible.

3) property number 3 can be checked by using the Theorem: we have a covering by Coo

compatible neighborhoods VI and Vz ,and SZ is Hausdorff and has a countable basis

11



(by Lemma 1 and Lemma 2), therefore there is a unique CaJ structure on Sl .

So we can say that 82 is a differentiable manifold.

Diffeomorphism.

Let f be a real-valued function defined on an open set WI of a CaJ manifold M.

U, (J is a coordinate neighborhood such that win U'* 0, and if xl, .....,xn denotes the

/\
local coordinates, thenfcorresponds to a function f(x l , .....,xn ) on (J(U'fn U) defined

/\ /\ /\
by f=fo (J-l , that is, so that flp) =f (Xl (P), .....,xn(p» =f(¢J(P».

Dermition 10: f: WI -+ IR is a CaJ function if eachp E U'f lies in a coordinate

[Clearly, a ('a:Jfunction is continuous.]

Figure 5.

(J : U -+ ¢J(U) c IRn

(J-l : (J(U) -+ U
(J-I(XI, .....,xn ) E U
f : WI-+IR

j[(J-I(xl, .....,xn )] E IR

f

12
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A
f= (fa </J-I )(Xl, .•••.,Xn) e IR

A . ' .
f(x l , •••••,Xn ) e R such thatlo </J-I : </J(UnWj)-1R

f: 9~) - IR is differentiable.

It is a consequence ofthe defuiition that if fis (;<rJ on Wand V c W is an open set, then

f I V is Ca:. on V. Moreover, if Wis a union ofopen sets on each ofwhich a real-valued

functionfis (;<rJ, thenlis (;<rJ on W.

Figure 6.
f: W-IR
II V: V-IR, Vc W
(f I V)(x) =fi;c) Vx e V

Suppose that M and N are (;<rJ manifolds, We M is an open subset and F: W - N is a

mapping, then we have the following definition.

'Figure 7.

M N



Definition 11: F is a CrJ mapping of W into N if for everypEW there exist coordinate

neighborhoods U, <PI ofp and V, <P2 ofF(P) with

F(U) c V such that <P2 0 F 0 <PII : <PI (U) --+ <P2(V) is Coo .

Definition 12: A Coo mapping F : M --+ N between Coo manifolds is a diffeomorphism

if it is a homeomorphism and F-I is Coo . M and N are diffeomorphic if there exists a

diffeomorphism F : M --+ N.

For example, the transition functions rp 0 If/-I and If/ 0 rp-I which were discussed in the

section, the definition of a differentiable manifold, are diffeomorphisms of open subsets

in ~n.

Dual Vector Space.

Definition 13: Let Vbe a finite dimensional vector space over F . The dual vector

space V* of V is defined to be the vector space oflinear transformations from (L(V, F) )

where F is identified with the vector space overitself. The elements of V* are simply

functions f from V into F such that j(YI +V2) =j{Vd+j{V2) \lVI, V2 E Vand

j{av) = aj{v) , a E F , V E V. Elements of V* are called linear functions on V.

Lemma 3: Let {VI, ..... , vn } be a basis for V over F . Then there exist linear functions

{fl, ..... ,fn} such that for-each i, ji(vJ =I, ji(Vj) =0, j =1= i .

The linear functions {fl, .....,fn} form a basis for V* over F , called the dual basis to

{VI, ....• , vn }.

Proof. See [3].

14



Tangent space.

We begin with a discussion of the tangent space at a point a of ~n.

Let us denote by C"(a) the collection of all C" functions whose domain includes a ,

n

since we are only interested in their derivatives at a. Let X a=L a i E ia be an expression
i=1

for a vector of TaClRn) in the canonical basis; we define the directional derivative !1foff

n

at a in the "direction ofXa" by !1f=L a i -if; evaluated at a = (a 1, ... , an). This is a
i=1

slight extension ofthe usual definition in that we do not require X a to be a unit vector.

Since !1fdepends onf,a, and X a we shall write it as X:f. Thus

We may take the directional derivative in the "direction ofXa" of any C" function

defined in a neighborhood ofa. Hence f --X: f defines a mapping assigning to each

fE C"(a) a real number; X: : Coo(a) --IR.

n

It is reasonable to denote this mapping by X: =L a{aa j ), where we must remember that
i=1 x

the derivatives are to be evaluated at a. We remark that X: rei =ai, i = 1, ... ,n.

~
n ] n . n

Indeed, X: rei = L fi a~ Ia rei = ~ fi ~~ Ia=~ fib) = a i . Since X a is completely
=1 ;=1 1=1

determined by the ai, we now see that X a is determined by what it does to each of the

coordinate functions rei, 1 ~ i ~ n. In other words, the vectors which comprise TaClRn) are

defined by the above discussion.

Now we will define the tangent space Tp(M) to a more general manifold, M,

at p to be the set of all mappings Xp : Coo(P) -- IR satisfying for

15



Va, pE IR , ;;g E coo(P) the two conditions

i) Xp(af+ pg) =a(Xpj) +P(Xpg) (linearity)

ii) Xifg) =(Xpj)g(p) +fip )(Xpg) (Leibniz rule)

with the vector space operations in Tp(M) defmed by

(Xp+Yp)j=Xpf+Ypf

(aXp)j=a(Xpj)

A tangent vector to Mat p is any Xp ETP(M).

We see that Tp(M) is a vector space over IR for if

X Ip, X2p : coo(P) -- IR and a, P E IR , then we define

(aX Ip + {3X2p)j=a(X Ipj) +P(X2pj) , where the operations on the right are in IR . This

defines in TP(M) both vector addition and multiplication by real numbers a, p.

Theorem 2. Let F : M -- N be a Coo map ofmanifolds. Then for p E M the map

F* : Coo(F(P» -- coo(P) defined by F*(fJ =f 0 F is a homomorphism ( linear

transformation) of algebras and induces a dual vector space homomorphism

F* :Tp(M) --TRp)(N) , defined by F*(Xp)j=Xp(F*j) , whichgivesF*(Xp ) as a map of

Coo(F(P» to IR .

16



Figure 8.

M

...
R

N'

Define F* :Tp(M) --TF(p)(N) by F*(Xp) =XF(p).

Xp : C«>(p) --+ IR ,

XF(p) : C«J(F(p» --IR.

What does F*(Xp) do tof E CaJ(F(p»?

[F*(Xp)](j) =XF(pl!=Xp(foF) = [Xp](F*(I).

Corollary 1. IfF: M -- N is a diffeomorphism ofM onto an open set U eNand p EM,

thenF* :Tp(M) --TF(piN) is an isomorphism.

Remembering that any open subset ofa manifold is a (sub)manifold of the same

dimension, we see that if U, t/J is a coordinate neighborhood on M , then the coordinate

map t/J induces an isomorphism t/J* :Tp<.M) --T;jI(p)(lRn ) ofthe tangent space at each point

p EU onto Taor~n), a =t/J(P) . The map ¢;l on the other hand , maps Ta(lRn)

isomorphicallyonto Tp(M) .¢;l is a linear transformation which is one-to-one and onto,

17



so it takes a basis for Ta(lRn) into a basis for Tp(M) . A basis for Tp(M) is this iff;I Ca~I) .

The images Ep =¢;l (~i)' i =1, ..., n ofthe basis ~1' ••••• , ~n at each a e ¢(U) c lRn

determine at p = ¢-l(a) eM a basis Elp, .....,Enp ofTp(M); we call these bases the

coordinate frames.

When we do calculus on M we can essentially treat it as though we are doing calculus in

IRn
( locally M is IRn

). So when we do calculus on a manifold it is often customery to

drop the notation ofthe ¢;} as though ~i fonn a basis for the tangent space at a point

of a manifold.

Figure 9.

M

T~Cp)(Rn)
Tp(M) U

;;,1

Bp..

;.
~

CQrollary 2. To each coordinate neighborhood U on lvf there corresponds a natural

basis E Ip, ....., Enp ofTp(M) for every p e U; in particular, dimTP(M) =dim M . Let

fbe a Coo function defined in a neighborhood ofp , and f = fa ¢-I its expression in local

coordinates relative to U, ¢ . Then Epf= (~);(p) .

18



Figure 10.

Tangent Covectors.

Suppose V is a finite-dimensional vector space over IR and let V* denote its dual space.

Then V* is the space whose elements are linear functions from V to IR ,and we

call them covectors.

If 0' e V* ,then 0': V-. IR and for 'Vve V we denote the value of

0' on v by O'(v) or by (v, 0') •

The vector addition and multiplication by scalars in V* are defined by the equations :

(0'1 +0'2)(V) = O'} (v) + 0'2(v)

(aa)(v) = a(o{v»,

giving the values of0'1 + 0'2 and aO' , a e IR , on an arbitrary v e V, the right hand

operations taking place in IR .

19



1) IfF* : V -+ W is a linear map ofvector spaces, then it uniquely determines a dual

When F* is injective (surjective) , then F* is surjective (injective).

Figure 11.

'K.
~:C) ~p

Vand V* , Wand W* are dual ofeach other

F* : W* -+ V* if v E W*, then F*(v) E V* (so there exists an element,u of
I1:W-1R

V* such that f.l = F*(v) : V -+ IR)
VE V

is given by F*(v)(v) = v(F*(v».

2) If eI, ....., en is a basis of V, then there exists a unique dual basis wI, ....., wn of V*

(
o~ = 0 if i:/= j J

such that wi(ej) =0; ~~ '- 1 'f . _ .
Uj - 1 l-J

(each element of the basis is a linear function on V)

Ifv E V, then w1(v), ..... , wn(v) are exactly the components ofv with respect to the basis

20



el, .....,en •

n
In other words v = L wi(v)ej.

j=l

n
Proof. Let {el, . .. ,en} be a basis for V. Then v =j~ ajej.

io = 1, .. . ,n ; and since io is a dummy letter, we can replace it by}.

n
So V = L wi(v)ej.

j=l

3) There is a natural isomorphism of V onto (V*)* given by v -- (v, .); that is, v IS

mapped to the linear function on V* whose value on any (j E V* is (v, (j) . Note that (v, (j)

is linear in each variable separately (with the other fixed).

Covectors on Manifolds.

LetMbe a C~) manifold ,p EM. T;(M) is the dual space to TP(M); thus (jp ET;(M) is a

linear mapping (jp :Tp(M) -- IR and its value on X p ETp(M) is denoted by

Given a basis E 1p, .....Enp ofTP(M), there is a uniquely determined dual basis w;, ....., w~

satisfying by defmition, w~(Ejp)=15) . The components of (jp relative to this basis w~ are

equal to the values (jp on the basis vectors Elp, .....Enp , that is

(jp =L (jp(Eip )w~ ,i =1, ..., n. And now we are going to prove it.
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·( ) . {o, i =1= j
w~ Ejp = t5j = 1, i = j

n

then L[a;w~(Ejp)] = aj.
j=1

Then up = L up(Ejp)w~ , i= 1, ... ,n.

T; is a set of linear mappings from Tp to IR , and we can view elements of Tp as

linear mappings from T; to IR.

From the space Tp ofvectors at p and the space T; which consists of elements we call

one-forms atp, we can·form the Cartesian product,

II : =T; x ..... x T; x Tp x ..... x Tp ,
r factors s factors
~ ~

i.e. the ordered set of one-forms and vectors (17 1, ... ,1(, Y1, :..Y s ) where the Y's and 17'S

are arbitrary vectors and one-forms respectively.

Example .II} =T; xTp

A tensor of type (r, s) at p is a function on II : which is linear in each argument.

If T is a tensor of type (r, s) at p , we write the real number into which T maps the

(we write T(17, y) when r = l,s = 1).

For example, for Va, bE IR, p, V E r; :

and for Va,b E IR, X,YE Tp :
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The space of all such tensors is called the tensor product

In particular ,

T~(P) =Tp ® ..... ® Tp ® T; ® ..... ® T; .
r factors s factors
~ ~

TA(P) =Tp,

T?(P) = T;.

Addition of tensors of type (r, s) is defined by the rule:

(T+T') is the tensor of type (r, s) at p such that for VYi E Tp , 17j E T; :

Similarly, multiplication of a tensor by a scalar a E IR is defined by the rule:

(aT) is the tensor such that VYi ETp ,rl ET; :

With these rules of addition and scalar multiplication, the tensor product space T~(P) is

a vector space of dimension nr+s over IR, since each factor of Tp(M) and T;(M) is of

dimension n.

Let Xi ETp Ci = 1, ..., r) , cd ET; , (j = 1, ... , s) . We denote by

Xl ® ..... ®Xr ® Wi ® ..... ® W
S that element of T~(P) which maps the element

Let (j) ET;(M) ,and let {dx l , ..... , dxn } be a basis for T;(M)

n

So (j) = L Wi dx i , where Wi = w(EJ.
i=l



n

We are going to introduce the Einstein summation convention: OJ = OJidxi == ~ OJidxi •
i=I

Now, suppose we have a different basis for T;(M) : {dxI
!, ••. , dxn'} ; then OJ = OJi! dxi'

(like two different basis from two different neighborhoods U and V)

What is the relationship between dxi and dxl ,OJi and OJi! ?

Figure 12.

• t/J.lp)

We know r/Ju : U -+ r/J(U) , fjI~l : fjI(U) -+ U

By Theorem3 we have (fjlu)* :Tp(U) -+T¢(P)(r/J(U»

Now since a~ is a basis for T ;u(P)(II~n) and T ;u<p) (IJ~n) is isomotphic to Tp(M) , then

basis ~ is a basis for Tp(M).
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;(v)

So, a basis for Tp(u~) is technically given by

and technically a basis for T;(U) is

So we say that {(</I;1 )* a~i I ;u(P) } is a basis for Tp(U)

That is, a basis for Tp(U) is identified with and written as {:Xi Ip }, i = 1, ..<' n

and a basis for T;(U) is identified with and written as {dxi Ip }, i = 1, ..., n.

Consider a vector 0) which has two different coordinate representations Xi and xl with

respect to old and new coordinates .

Then we have transition functions: Xii = xl(Xi) (1)

Xi =xi(xt) (2) ,i,il = 1, .."n
Figure 13.

(3 .......4~~-:-:~__·t)
ex'

Before we going further let us consider the following: if/is a eX> function on M, then we

can define df by the formula

As p varies we obtain d,f, the differential ofp. In the case of an open set U c Rn, the

coordinates Xi of a point of U are functions on U and, by our definition, dx i assigns to

each vector X at p E U a number XpXi, its ith component in the natural basis of Rn.
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In paricular (o~'dxi
) = :; =oj so we see that dx1, ••• , dxn is exactly the field of

coframes dual to O~l' ..• , o~n. Now ifjis a eX) function on U, then we may express df

as a linear combination of dx1
, •.• , dxn• We know that the coefficients in this

combinations, that is the components ofdj; are given by dJCo~J = -if;. Thus we have

dlf- ..2Ldxl ..2Ldxn- ox l + ... + fun •

Now using the above result we have

·1·1 ·1
l _ 2E.... 1 .fu:.- 2 2E.... ndx - ox l dx + fu2 dx + ..... + oxn dx

il ax;! i '. . .jSo dx = &i I¢lp) dx (recall summatIon on 1) 1,1 = 1, ..., n

(this dx il is expressed in terms of a linear combination ofthe dx i ) .

.2L _ ~ -2L ax;!
we have oxi - t:t axil oxi •

a ~ ax;! a I a ax;! a .. .
So oxi I¢(p) = ~ &i axil 1fI(P) ~ oxi ~ &i I¢(P) axil 11fI(P) (Emstem SummatIon

1=1

Convention).

(3)

(4)

Consider a covector OJ = OJi dx i = OJ~ dx l (same covector with different basis)

Consider un V and p E un V.

The function </J takes pinto </J(U) c IRn
, the function If/ takes pinto If/(V) c IRn •



Figure 14.

(;<p}=~») 1-.r-P--l-P--++(\V(P)=(x'»)

Ttf(p)(;(Un Y» T~)(VJ(Un Y»

F= 1/1 0 (J-l (J(Un V) - I/I(Un V),

F-1 = (J 01/1-1: I/I(un V) - (J(Un V)

By the Theorem2 we can define linear transfonnations

F* :T;(p)«(J(Un V» -TIf/(p)(lf/(un V»

F* :T;(p)(lf/(Un V» -T~(p)«(J(Un V»

We would like to answer several questions :

- what happens to a basis for T ;(p)«(J(Un V» under F* ;

- what happens to a basis for T;(p)(lf/(Un V» under F* ;

- what happens to the coordinates ofa general tangent vector under F* ;

- what happens to the coordinates of a general covector under F* .



We have a vector in TP(M) ( z and zl are coordinate representations ofthis vector) and

a covector in T;(M) ( OJ and OJI are coordinate representations of this vector).

Consider a covector OJ =OJi dx i , OJi E IR

I ·1a covector OJ = OJ il dx'

. a
a vector z = Z' ax; I¢(P)

We have

I ·1 a
a vector z = Z' axil 11f/(p)

* ·1 ax;!
F (dx' ) =a;i I¢(P) dx i by (3)

( a ) ax;! a
F * axi I¢(P) =a;i I¢(P) axil 11f/(p) by (4)

( a~i is a basis for T¢(p)(¢(Un V))

• ·1
Given a covector ( or vector) at p , we can express it in terms of x' or x' :

dx i F*( dxi') F*(dxi') by (3) ax;! I dx i
Wi =OJ = Wil =Wil = OJil a;i ¢(P)

Since {dx i } form a basis it follows that

·1

OJi =Wil 0;:; I¢(P) (i l represents the column of a matrix, i represents the row of a

matrix).

The (i, il) entry of the matrix corresponding to the linear transformation F* with respect

to the bases {dxi'} in the domain and {dx i } in the codomain of F* is given by

ax;!
a;i I¢(p)=(x;) •

Next zi' a:il =zl =F*(z) =F*(Zi a~; I¢(P») =Zi F*Ca~; I¢(P)) =Zi 0;:: I¢(P) a:;1 11f/(p)'

Since {-S} form a basis, we have that
ax'

·1 . ax;! I
Z' =Zl axi I¢(P) , i, i = 1, ..., n



(if, i) entry of the matrix corresponding to the linear transformation F* with respect to

the basis {~ } in the domain and {~II }in the codomain of F* is given by 0;:: I¢(P) •

Thus the matrices representing F* and F* with respect to the bases given are the

transposes of each other.

We have defined earlier that qip) =(d, (]); If/(P) =(dl , (]I) , and we found a relationship

between d and dl , (] and (]I ; i.e. dl = ~, (]I = (] .

At p define the tangent space Tp(S2) . At ¢(P) define T;(piIR2)

And ¢* :Tp(S2) -+T;(p)(1R2)

Detemline two neighborhoods

Consider a sphere. p e sphere but p *'N ,P *' S .

F
;(P) ..

",(P)- F-l
Ttf(p)(R2) T¥t<P)(R2)

1R2
T~)(R2) T;(p)(~2) R2

¢:p -+ 1J(P)

1fJ :P -+ 1fJ(P)

Example:

Figure 15.



Also we have a tangent space T 1fI(P)(1R2) with

By the Theorem (2) we can define

the basis for T¢(p)(1R2) is {:d I¢{p} ,:e I¢{p} }, and

and we can define
F* :T;(p)(1R2) _T;(p)(1R2)

Find the matrix corresponding to F* - linear transfonnation with respect to the basis

{:d I¢{p} ,:e I¢{p} } in the domain and {a~1 IIfI{p} , a~1 IIfI{p} } in the codomain .

This is going to be a 2x2 matrix since we are in 1R2.

Since dl =~, 81 =8 we will have

(
.::L OJSO we have ~ 1 for our transfonnation matrix

ael
00= I

Since the matrix is diagonal then we have the special case when the matrix corresponding

to F* with respect to the basis {ddl 11fI(P) ,d81 11fI(p) } in the domain and

(
.::L OJ{dd I¢(P) ,d8 I¢(P) } in the codomain is the same as before, i.e. ~ 1 . So
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Now take an element T of T~, the tensor product. We want to write down the

form that T takes with respect to a basis for this tensor product:

T =Til ....ir. . _0_ 101 101 _0_ IOIdxJi 101 IOIdxisll··.J< axil '01 ••••• '01 oxir '01 '01 ••••• '01

(implying r + s summation symbols)

That is for each iI, ..., i r take a basis vector from Tp ;

for each iI, ...,is take a basis vector from T;;

iI, ..., i r ,iI, ...,is range from 1 to n where n is the dimension of the our manifold.

T is a mapping from II; into IR:

What does it do to a general element of set II; ?

Given XeII; , define T(X).

We also know that T is a multilinear mapping by definition, which means that it is linear

in each factor, which means that just like a linear transformation what T does to an

arbitrary element of our vector space is completely determined by what T does to a basis.

Thus it is sufficient to find T on a basis for II;.

T ((dxkl dxkr _a _0))-
, ••••• , , aXel' ••••• , axes -

( kl, ...,kr , el, ... , es = 1, ..., n ; dim(II;) = ns+r )

(take each corresponding operator and operate on the corresponding argument)

= Til .....ir. . _a_ (d.xkl). . _0 (dxkr). dxil (_0_) . . dxis (_a)
It····Js axil ••••• axir axet ..... axes

(a~ and dxkl are dual of each other)x I



b d .>:kl _ { 0, kl *- i I
num ers an Vi - 1 k .

1 , I =II

(where "." denotes ordinary multiplication of real

and so on).

So the only terms surviving will be when il = kl , ..., ir= kr ,il = el, .~.,is = es

=> T ((dxkl dxkr _8_ _8)) -Tkl .....kr, ....., ,axel' ....., 8xes - el· ....es

Example 1). T(dxl dx2 ....£.... ....£....) -T12
, , 8x' '8x2 - 12

(we are not saying how big the dimension of our manifold is )

Example 2). Suppose T= ;1 ® ..... ® a~1 ® dxl ® ...... ® dx l
.

~ ~

all other components of T are zero.

Find T(X) 'VXE IT: (IT: is the domain ).

1. Find T on a basis for IT: .
2. Write X in terms of a basis for IT: and apply T.

In other words Tl..... 1 = 1, 1. .... 1 ,

1. T(dxkl dxkr _a_ _a_) _, ....., , ax'!' ....., axes -

- TI ... I ....£.... (dxkl) • • ....£.... (dxkr) • dxl (_a). • dx l (_8)- 1.. ·1 axl .... axl aXel .... axes

_ T I... I .>:k l .>:kr.>:1 .>:1
- 1..·1 VI ..... VI 'v el ..... v es

=TI... I - 11·..1 -

(everything will go away unless

kl = 1, ... ,kr = 1, el = 1, ..., es = 1 )

So T(dxkl , ....., dxkr , a;e1' ....., a;es) = 1 .

2. Consider XErr: : X= (COl, ... , cor , Zl, ... , zJ

T=a~1 ® ..... ® a~1 ® dxl ® ...... ®dxl .
rtimes ~-----.....-.

_....£....( I dxil). .....£....( r dxir) • dxl(_h _a). . dxl(-is _a)- axl COil ... axl CO ir Z'I axh'" Zs axis
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- (f)l (-L d il). • (J)r (-L dxir) • _h(dx1 _0). • J'(dx1 ..2-.)- i, axl X.... I, Oxl Z"l ail ... Z;s" iJxf.

- 1 s:il r s:lr JI s:l J.s:l (th n1 .. '11 b ·th- (f)ilul ..... (J)i,ul • Z"l uh ••••• 'Ls Uj. eo y tenus survIVIng WI e WI

= (f)l. • (J)r • Zl. • Zl E II1l1'" 1 1'" s 11"\\.

Now we have a question: what happens to the components of a general tensor when we

change the coordinates?

Suppose we have a tensor TET~(P) . Geometrically, this means that we have a point p on

the manifold, and we have a space attached to that point p .

This space is Tp ® ..... ® Tp ® T; ® ..... ® T; , which is a vector space with dim M = n;
r factors s factors..........----. ---.-

hence the dimension of this vector space is nr+s.

Figure 16.

M

Rn'--------'

Tp ® ..... <8lTp ® T; ® ...,. ®T;
£ta~, ,fiIe;tors,

For a point p in the intersection of two coordinate neighborhoods, (U, ¢J) and (V, lfI),

we have two mappings tP and lfI: ¢ produces coordinates tP(p)

lfI produces coordinates lfI(P) .
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And we have transition functions: xl =Xii (Xi) and

We know how tangent vectors change in their coordinate representations and how

covectors change in their coordinate representations. Now we are going to do this for a

general tensor.

The tensor T is the same object regardless of what coordinate system we use, but has two

different representations; one representation, with respect to the old coordinates:

(*) T =Til ....ir. . _0_ 10. 10. _0_ 1O.~ ••h 10. IO.~.-is
il ... Js oxil 'CI ••••• 'CI oxir 'CIlU.' 'CI ••••• 'CIlU: ,

and a second representation with respect to the new coordinates:

·1·1 0 0.1 ·1
(**) T=T'I····1r.1 ·1 - ® ® - ®dxlJ ® ®dxlslJ ...Js oxi~ ..... oxi~ ..... .

Suppose we know (*). So we can replace each of the factors in (**) individually in terms

. I 0 . h oxit 0of factors III (*). So we rep ace -.1 WIt -.1 -ait and so on. Thus we have (with all
ox'l ax'i x

partial derivatives evaluated at ''p'')

·1·1 0 0.1 ·1T=T'I····lr I I - 10. 10. - ®dxlJ ® ®dxls
il·.·Js oxi~ 'CI ..... 'CI OXi~ .....

·1·1 oxil _0_ OXir ...2...-. oxi~ J'I oxj~ J's
=T'l····1r i'/I"'J'~ ·1 ail ® ... ® a;l ox'r ® a h dx ® ... ® oxh dxox'l x X r X

. .1

but ox~: , .•. , aax~s are just numbers, so they can be pulled out in front.
ox'i x s

·1·1 OXil • axir • oy!~. • oA • _0_ _0_ ~--jl ~ ••is
=T'I····'r.I.1 .1' •...• ·1 a JI ..... ai_is ail ® ..... ® axir ® lU.' ® ..... ® lU.'lJ ... Js ox' I Ox'r X N X

Now setting this equal to the right-hand side of (*) and using the fact that these two

expressions for T are now with respect to the same basis, and coordinates are unique,

yields
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.. ././ aXil axlr aA a j~TII ....lr. ·=TII····lr./ ./.-. •-. _ • • _%-
fl···J, 1] ...J, ax/~ .. ... ax/~ axh .. ... axis'

which is called the Tensor Transformation Law.

But the important fact is that the tensor itself as an object does not change. Since we

want physical laws ofthe universe to not depend on which coordinate system we use, we

do not want what happens to us in the universe to depend on how we label where we are.

This is called the covariance of the laws ofphysics, which basically means that we want

our basic physical principles to remain unchanged when we change our coordinate

system.

For example, let us consider an arbitrary element TeTp(M) given by

T=T i a~i (in unprime coordinates) and T/ =T/ a:
l
/ (in prime coordinates).

We need to show that T=T/.

./ .ax/ "
We know that Tl =Tlfui (by the TransformatIOn Law) and

a aaxl aaXj(h ."")-a./ = -8I -a./ = 8,_i -8'/ C angmg 1 to} .
~l X X' ~ ~

.. a-TI'iU-
- Ui axi

. a . a
=TJ axi =Tl axl =T (change) to i)

Thus T/ =T (tensors are independent of coordinate system).

(
dxQ I8i dxb

- dxb I8i dxQ)Now consider a special kind of tensor : F=Fab 2 ,a, b = 0,1,2,3.

T;(M) has a basis {dxa }, so {dx a ® dxb } is an element of T; ®T;, and
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dim(T; ® T;)=16 ( 4 elements for a, 4 elements for b).

Also note that dxa ®dxb is not the same as dxb ®dxa .

Example: for a = 0, b = 1 consider dx° ®dx 1 versus dx 1 ®dx°.

These are different mappings in T; ®T;.

Remember that T; ®T; acts on Tp ®Tp where the first covector acts on the first vector

in our pair and the second covector acts on the second vector. But ifwe switch the

mappings then acting on the first vector with dx° and acting on the second vector

with dx1 is not necessarily the same thing as acting on the first vector with dx1

and acting on the second vector with dx° .( e.g. dx 1(a~o) =0, but dx°Ca~o) = 1 ).

Thus dx° ®dx 1 is not the same as dx1 ®dx° . Of course if a =b then they are the same.

In fact if a =b, then dxa ®dxa -dxa ®dxa =°.
Later in this thesis, we will describe how the F given above can be interpreted as the

electromagnetic field tensor in physics.

So let us look at Fab more closely: Fab will be a skew-symmetric 4 x 4 matrix.

When a =b, it is going to be 0: Faa =0, a =0, 1,2,3.

Next compare Fab and Fba . We have Fab= -Fba .

Now Fab =-Fba and Faa =°are properties which define a skew-symmetric matrix:

that is FT = -F,

Fab =

a=O
a=l
a=2
a=3

°° *
- * °

°b=O b=1 b=2 b=3

Maxwell was able to write down equations that show how E's (electric) and B's

(magnetic) fields are related to each other. And those relationships became known as
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Maxwell's equations, which describe the behavior between electric and magnetic fields.

F ab will consist ofentries giving the various components ofE and B.

(
dxa ~ dxb +dxb ~ dxa

)Next suppose g =gab 2 ' a, b=O,1,2,3.

Ifwe change a and b , we will get the same matrix .

gab becomes as a matrix

and

g is symmetric; that is gT = g.

We would like to prove that every element of T; ®T; (dim M =n ) can be uniquely

written as the sum of a symmetric and skew symmetric tensor.

and define Slab] = t (Sab - Sba) .

Show Sab =SCab) + Slab] .

Show SCab) is symmetric. ( That is, show SCab) =SCba) )

Show Slab] is skew-symmetric ( that is, show Slab] = -S[ba])·

. S[ba] = t(Sba - Sab) =-t(Sab - Sba) =-Slab]'

Show Sab =SCab) +Slab]

SCab) + Slab] =t(Sab + Sba) + t(Sab - Sba)

IS IS IS IS=2 ab + 2 ba + 2 ab - 2 ba
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_IS IS-2" ab +2" ab

=Sab

So every element of T; ®T; can be written as the sum of a symmetric and

skew-symmetric tensor.

Finally, show that this decomposition is unique.

Let A be n x n matrix; A=B+C such that BT=B and CT= -C .

Then AT = (B + C)T =BT+CT =B-C, A=B+C, and 2C=A-AT.

So C=±(A - AT)

and B= ±(A+AT)

and these are unique solutions for B and C, with B symmetric and

C skew-symmetric.

Thus we have shown that every element ofT; ®T; can be uniquely written as the

sum ofa symmetric and skew-symmetric tensor. And the components ofB and C

are as given above.

Now we wi11look at /\r -skew-symmetric elements of T; ® ... ® T; .
rtimes
-----...----.'

Suppose we have a tensor T=T a1 .....ar dxal ® ..... ®dxar
•

We want to define what we mean by T[al .....ar] :

T [a\ .....a
r
]= ;! (alternating sum over all permutations of Q 1, ... , Q r )

Example: T [abed] =

[

Tabed - Tbaed + T cabd - Tdabc - Tacbd + Tadbe - Tabed + Tacdb ]

2~ - Tadcb + Tbead - Tbdac - Tbcda + Tbdca + Tbade - Tcadb - Tcbad

.+T cbda + Tcdab - T cdba + Tdacb + Tdbac - Tdbca - Tdcab + Tdcba

/\ r cr; ® ..... ® T;
r times-----.-.---
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A basis for I\.T is dxal /\dx az /\ ....• /\dx ar (we call /\ a wedge product)

Example: Consider I\.2C T; ~T; ;

A typical element of I\.2
with n=4 can be represented by

o a 13 y
-a 0 t5 E

-13 -J 0 ¢J
-y - E -¢J 0

Example. Consider a skew-symmetric matrix

o 1 2 3
-1 0 4 5
-2 -4 0 7
-3 -5 -7 0

and the entries above the main diagonal will have the property that the row number is less

than the column number (e.g. (a, b) = 0,2): b > a).

So consider {dxa /\ dxb : a, b =0, 1,2, 3 such that b > a} . Then since dxa /\dxb =-

dxb /\dx a , this set will form a basis for I\.2
.

-find the dimension of this space:

when dim(M) = 4, the dimension of this space is 6 ,

-write out a basis for I\.2
(M) when dim M =4 :

Now find dim(1\.2(M)) if dimM =n.

Then we have 1+2+3+.....+n-l= Sn-l independent entries in our n X n skew-symmetric
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matrix.

S S n(n-I) W "II tho b . d "o n-l = -2- . e WI prove IS y m uctlOn:

2) suppose Sn-l = n(n;I) is true for some n - 1 ( n ~ 3 ).

1) for n = 2 , 1 - 2(2-1) - 1
- 2 -

3) show it is true for (n -0 + 1 (for n) .

1 () n(n-I) n(n+I)
+2+3+ ... + n-l +n=-2-+n=-2-=Sn.

By the principle ofmathematical induction, we conclude that Sn-l = n(n;I) is true

for all positive integers n - 1 .

We want to define a differentiation operation, d, on this set /\ r (M), which is

known as the exterior derivative. (d operates on /\ r (M) )

Theorem 3. Let Mbe any Coo manifold and let /\(M) be the algebra of.

skew-symmetric forms on M. Then there exists a unique R-linear map

dm : /\(M) ~ /\(M) such that

1) if f E /\
0(M) = coo(M) , then d"J=df , the differential of f;

2)if ()E/\r(M) and aE/\S(M),then dm(();\a)=dm();\a+(-lY();\dma;

3) d~ =O.

Explanations :

1) If r = 0 , then /\ 0 (M) = C~ functions from Minto IR.

If r = 1 we use {dxa } as a basis for /\ 1(M).

If r = 2 we use {dxa ;\ dxb , b > a } as a basis for /\
2
(M) .

Let f E Coo . How does d act on it ?

4f=~dxi (from calculus), i=l, ... ,n , n=dimofM.
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Since dx i is a basis for T; then df=1ft dxi is an element of T;

2) take BE /\.r(M) B=adx il A A dx ir

(J E I\.S(M) (J =bl.uh A A dxis

dM(B A (J) =dM[ (adx il A ... A dx ir ) A (bdxil A ..... Adxis )]

=dM(ab) A (dxil A ..... A dx ir ) A (dxil A ..... A dxis )

=((dMa)b + a(dMb)) A (dx il A ..... A dx ir ) A (dxil A ..... Adxis )

= (dMa A dxil A Adx ir ) A (bdxil A ..... A dxis ) +

+ (-1r (adx i
I A A dx ir ) A (dMb A dxil A ..... A dxis ) , where we can

explain this last step by the following:

we are going use the fact that db = t; dxe .

Now we have a t; dxeA (dxil A ..... Adx ir ) A (dxit A ..... Adxis ).

We are going to interchange the dxe factor with each ofthe dxik factors (where

k=I, ... ,r) . And we are going to have r interchanges.

(-0 dxil AdxeA.......

(_02 dxil Adx iz AdxeA ........

(_0 3 dxil Adx iz Adxi3 AdxeA .........

(-1r (dxil A ..... Adx ir ) A db

The exterior differentiation operator d maps r -form fields linearly to (r + 1) -form

fields:

Let B=Bil ...ir dxil A ... A dx ir • What does dB belong to?

41



aB· .
B 1) dO· . =~ dxey '1··· l r ax'

we can see that we have extra factor in our wedge product, so dO E 1\ r+ I (M) .

So d: I\r(M) _l\r+1 (M) .

Now we give an example of the calculation of an exterior derivative in the case that

we have a I-form covector in 3 dimensions.

Let Y E 1\ I (M) : Y = Ya dxa , a = 1,2,3 or(x,y,z).

We will write out in detail what dy looks like ( dy E 1\2(M)) and give a

"calculus/vector analysis" interpretation to this.

Now we are going to show that Ya,bdxb /\dxa =Y[a,bjdxb/\dxa.

First consider an example. Suppose a = 1,2 and b = 1,2 then

=t(YI,2 + Y2,1 + Y1,2 - Y2,1 )dx2 /\dx l + t(Y2,1 + YI,2 + Y2,1 - Y1,2)dx l /\dx2
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=tYI,zdxz I\dxl + tyz,ldxZI\dx l + tYI,zdx
Z

I\dx
l

+ tYz,ldx
l

I\dx
z

-tyz,ldxZ I\dx l - tYI,zdxZI\dx l - tYZ,ldxZl\dx
l

- tYI,zdx
l

I\dx
z

In general we have

=t(Ya,b + Yb,a + Ya,b - Yb,a )dx
b

I\dx
a

Each t Ya,bdxb t\dxa will be canceled with each t Yb,adxb t\dx
a

and
a<b a>b

t Yb,adxb I\dxa with t Ya,bdxb I\dxa (since dxb I\dx
a=_dx

a
I\dx

b
).

a<b a>b

Each t Ya,bdxb I\dxa will be combined with t Ya,bdxb t\dx
a

= -t Ya,bdxa I\dx
b

and
a<b a>b a>b

-t Yb,adxb I\dxa = t Yb,adxa t\dxb with -t Yb,adxb t\dx
a
,

a<b a<b a>b

so we would have Y[a,bJdxbI\dx
a
.

=t(YI,Z-YZ,I)dxZ I\dx l +t(YI,3-Y3,I)dx3 I\dx
l

+ t(YZ,3-Y3,Z)dx
3

t\dx
z

=t(yx,y - Yy,x)dy I\dx + t(yx,z - Yz,x)dz I\dx + t(yy,z - Yz,y)dz t\dy

=t(yy,x - Yx,y)dx t\dy + t(yz,x - Yx,z)dx I\dz + t(yz,y - Yy,z)dy t\dz

=tC:: - a~ ) dx t\dy + tC ~; - a;;) dx t\dz + t(t - ~:) dy t\dz
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the transition functions. We have (using properties 2 and 3 on pg38 )

fdx Ady corresponds to k.

fdx Adz corresponds to -j

where fdy Adz corresponds to i

= I = .(Byz _ OYY)_ . (ayz _ OYx) k(OYY OYx)
cur y l By oz J ax oz + ax - By! ]

Yz
[

i j
o 0
ox By

Yx yy

the exterior differentiation operator is covariant ( the coordinates might change but the

same answer as ifwe take dA using the unprimed coordinates. That way we can say that

and next we are going to take dA using the primed coordinates and show that we get the

The question is how the components of dA transform under a change of coordinates using

In this case y = (yx, yy, Yz), and we have from calculus/vector analysis that

basic form of the rule should not change).

So consider another set of coordinates {x i /} . Then A=Ai~ ... i~ dxi~ A .., Adxi~ , where the

components Ai~ ... i~ are given by
axil axi2 axir

Al l = -./ -./ -./ Ail ir
I'" r ax'l ax'2 ax'r

Thus the (r + 1) -form, dA, defined by these coordinates is

( ./ l) d (aXil axir )./ ./dA=d A,'/ ,./dx'i A ... Adx r = -./ ... -./ Ail ...ir A dx'i A ... A dx'r
I'" r ax'i ax'r

(using the fact that d2 = 0 )

(
axi I oxir ) dxl dx i /= -./ ... -/ dAil ...ir A I A ... A r
Ox'i ox'r
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. y_yb..2-
• - aXb '

+ axil aZxiz axir A. . dxi~ Adxel Adxii A dx'
lr

.1 .1 I'" ./ 1\,..lr 1\ 1\ 1\ ••• A I + ..... +
ax' l ax'zax' ax'r

Now let yeTp(M)

For example, suppose i~ = l,e l =2 and then

change coordinates.

We will show that the components y~c do not transform as a tensor should when we

Consider. y~c == :: (partial derivative of yb with respect to XC )

involving second order mixed partial derivatives.

At each point ofM select a tangent vector in such a way that we now have a function
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on M where the function's codomain is the tangent space associated with each point

ofM. They connect up in a nice way that we can differentiate them, but the problem is

when we do that the components ofwhat we get are not going to transform in a way that

a tensor should transform when we change coordinates.

. (yb/) _ (axbl b) _ [L. (axbl b)] axe _ [a
2
x

bl
b iJyb oX

bl
] oX<

SpecIfically, ,cl - axb Y ,c' - axe oxb Y oxel - axeaxbY + ox
e

ox
b

ox
el

bl b axbl axe
and we can see that Y,cl '*Y,c oxb axel .

Thus the conclusion would be that Y~c are not the components of the tensor, and hence

are not covariant. That is going to motivate us looking at another kind of derivative, the

covariant derivative.

Covariant differentiation.

Definition 14 : A connection "V ( del) at a point p ofM is a rule which assigns to

each vector field X a differential operator "Vx which maps any C r (r continuous

derivatives) vector field Y into a vector field "Vx Y where:

1) "Vx Y is a tensor in X, i.e.

for all functions.f.g and vectors X,Y,Z - C
1

vector fields,

"VjX+gY Z= f"Vx Z+g "Vy Z .

2) "Vx Y is linear in Y (usual derivative rules)

"Vx (aY + [3Z) = a "Vx Y +[3 "Vx Z

3) for any C1 functionfand C1 vector field Y,

"Vx (jY) =X{j)Y+f"Vx Y .
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Then we call 'Vx "'Y the covariant derivative ofY with respect to 'V in the direction of the

vector field X. 'Vx"'Y is a vector field, which is a tensor field of type (1,0).

We can define 'VY, the covariant derivative ofY, as a tensor of type (1,1), which means

it is a tensor of a vector field and covector field. When the covector field part acts

on the vector field X, we call this contraction of 'VY with X.

Now define 'VY, the covariant derivative ofY, as a tensor of type (1,1) which, when

contracted with X, produces the vector 'Vx "'Y. Then we have that

(3) holds if and only if 'V{jY) =dfl8lY+f'VY.

(Sincef'VY contracted with X gives usf'Vx Y,

'V{jY) contracted with X gives us 'Vx (jY).

Now consider dfl8lY, where dfis a covector field, Y is a vector field.

Ilf ) K "( ) K "C 0 0 )dJ \X = oxi dx' X = oxi dx
l

a! oxi

or 0 "C 0 )-~aJdxl -- oxi oxi

= ai-g; (which is a real number when evaluated at some point p).

So when dfl8lY is contracted with X, we get ai-g;y, which is the same as x(f>Y, since

(i'\ oK 0 0Xv J = a l oxi , where X= a' oxi ).

Given any Cr+1 vector basis o~a and dual one-form basis dx
a

on a neighborhood U, we

shall write the components ofvY as Y~b ,so 'VY=Y~b dx
b

l8l o~a .

The connection is determined on Uby n3 C r functions, n~e' defined by

"..2.- _ r a dxb to. ..2.
v oxe - be 'CI oxa

For any C1 vector field Y,
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=y~b dxb ® ~a +yCrZc(dxb ® ~a) (since we are summing on c which is just a
dummy index, we can replace c by a)

The components of 'IVwith respect to coordinate basis ~ and dx
b

are

Ya_va +ycra
;b - ,b be'

where a, b, C = 1, ..., n .

And Yfb transforms as the components ofa tensor should transform, under a change in

coordinates.

Suppose we have a manifold and a vector field. So for each point on a Mwe have a

vector.

In other words, ya(xo) ~a IXo eTxo(M)

Figure 17.

Then ya is a vector field on M. At each point we select a vector from the tangent space

at that point, and we put them together in such a way that ifwe move from point to point

we get a function..
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Let us suppose yu are the differentiable components of a vector field, and x on M has

coordinates XU in some coordinate neighborhood . Let us take a point x
a

+dx
u

,

where dxu is a small change in each of the coordinates. dxu can be thought of as a vector

going from one point to another. If a vector field is differentiable, we can express the

value of ya(xa+ dxu ) in terms ofYu(x), using a Taylor expansion.

terms of Taylor expansion).

As we change from point to point we are going to have different values of a vector field.

Now we are going to introduce a very important concept: parallel transfer (transport).

We are going to define a new vector field y~.t at the new point XU +dx
a

as follows:

In this interpretation the r~c define the parallel transport.

Figure 18.

Y"(x+dx) 11Y;, (x+dx)

---- x+dx
X

We wrote ya as the components of a vector in a tangent space. We can think ofya as

either the components of a vector in a tangent space or the components of a vector in the

manifold, since the tangent space at a point has the same dimension as the manifold and a
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manifold is locally homeomorphic to ~n. So we can think ofya as being in a manifold

instead ofbeing in a tangent space. Hence if we draw a tangent vector in a tangent space

it will have "n" components and dx will give us a direction.

In Euclidean space the connection terms are zero (because we have the same vector in

terms of components (vectors are parallel and have the same length)). It is true if you are

in ~n in Euclidean space. Euclidean space is flat (zero curvature).

Now what is the difference between ya(x +dx) and y~.t (x + dx) ?

This will give us a formula for ofYfb'

So we need to find

Yfb = ~ba is called the total or absolute derivative.

Now let co =coadxa , and find an expression for coa;c .

We start with any ya components of an arbitrary vector and consider

[ ya _components of a vector; COn - components of a covector ; ya and CO a are real

valued functions, a=l,...,n

note: " ; " on a real valued function is the ordinary partial derivative.

The definition of a covariant derivative can be extended to any C
r

tensor field if r ~ 1 .

One of the rules is \If=df .(see definition of "d" on pg 40)

50

"T~



I "''''llif'

Now we will write down the formula for the covariant derivative of the components

given by

Suppose the tensor is called T and suppose the components (with respect to a basis) are

of a general tensor.

Tb....e.. I ( b "u stal' s" l' d'c I "d t'''' d' )c ;a e - p r n 1 es, c - owns aIrs III Ices.

Tb ...e.. c.../..; a =Tb...e.. c.../.., a + r~fTb..f. e...I.. + ... + similarly for each upstairs index

_r~1 T b...e.. e..f. - ... - similarly for each downstairs index.

Suppose we start with the components of a vector. We would like to take (A~b);e or A~be

(take covariant derivative with respect to x b and then take covariant derivative of that

answer with respect to XC) and take (AfJ;b .Then find (A~b) ;e- (Afe);b ( it is not

necessarily 0).

The expression we get leads us to the components of the Riemann curvature tensor
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byf)

Next find CAfc);b = l~cb + l~b r~k + lk r~k,b + rgfk(c +rgflk r~k - rt l~f-r{c lk rJk .

(This second expression can be easily found from the first by simply interchanging the b

and c).

So l~bc - A~cb =A~bc + A~c rgk+ lk rgk,c +r~f~b +r~fAk r{k - r~b Aj- r~b A
k

rJk

-A~cb - A~b r~k - Ak r~k,b - rgfk(c - rgfAk r~k + r{c Aj+ r{c AkrJk

( in r~f A~b and A~b r~k' A~ rgk and r bf «c the indices k and f are dummy, so replace k

= Ak [rgk,c + r~fr{k - r~k,b - rgfr~k] + (Aj+ AkrJ,J(r{c - r~b)

We will deal only with torsion-free connections, i.e. we will assume TJk = rJk - r~ = 0,

where this is the torsion tensor. In this case, the coordinate components of the connection

obey rJk =r~ , so such a connection is often called a symmetric connection.

(In physics we use that assumption.)

So (r{c - r~b) = 0

Now replace k by d and get:

2l~[bc] =A~bc - A~cb = Ad [rgd,c + r~f r{d - r~d,b - rgf r~d] = Ad Ricb ' where Rdcb is

called the Riemann (curvature) tensor.

So A~bc - A~cb =ld Rdcb .

R dcb can be represented in terms of the coordinate components of the connection.

We can define Z~dc -Z~cd =Rgcd zb =(rM,c - rgc,d - (r~c r de - r~d r~e)) zb

Note: this is skew-symmetric in c and d.
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So we can define Rg =Rgcd dxC /\dxd to be the curvature two-fonn and define

rg = rgd dxd as a I-fonn representing n3 functions, when dim M =n.

We would like to find the exterior derivative drg and wedge-product of the two

one-fonns r b/\ r~ and then consider 2[drg - r b/\ r~] and compare what we get with

the expression for Rg =Rgcd dxc /\dxd
•

So we can conclude that

Fibre bundles.

We will find it useful to examine a concept of fibre bundles since these are used in some

applications ofmathematical physics. We can construct a manifold M called a fibre

bundle which is a direct product ofM and a suitable space. We start with a manifold M

and take its Cartesian product with IRn : Mx IRn =E. dim M =4, dim IR
n =n ~ 1 .

In a special case when n = 1 we sometimes call this a "line bundle".

We have a manifold and at each point of the manifold there is a line attached to it,
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because the point in E is described by specifying a point of the manifold together with a

point in Rn. But ifn = 1, then points are in IR 1 which are specified by giving a real

number.

For example, Mx 1R1 = {(x, a) :xeM,ae IRl}.

Figure 19.

So, E= {(x, at, ...,an ): x eM,ai e R}.

II : E --+ M , is a projection that takes us from one of the points ofE and maps us down

to the point ofM that it is attached to . That is why M is called the base space. This

mapping is not one-to-one because all points on a line get mapped to the same point x.

Given p eM, II: E --+ M, we define n-l (p) = {z e E : II{z} = p }

A Ck bundle over a CS (s ~ k) manifold M is a Ck manifold E and a Ck surjective map

n :E --+ M .The manifold E is called the total space, M is called the base space, and IT,

the projection.

The simplest example ofa bundle is a product bundle (M x A,M, II), where A is some

manifold and the projection II is defined by II(p, v) =p for all p eM, v eA.

For example, ifone chooses M as the circle Sl and A is the real line R 1 , one constructs

the cylinder C2 as a product bundle over Sl .

In this thesis we are mostly concerned with the mathematical-physics application where

the base is 4-dimensional space-time and A is Rn .
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The metric.

From geometry, if we are in 3-dimensional space and want to find a distance,

we are going to have

It turns out that we can recognize b,s2 as being like a product of a matrix with 2 vectors:

Now consider ~4 , (t,x,y,z) =(xO,x 1
,X

2
,X

3
);

t is going to be treated a little bit differently thanx,y,z . It turns out that the distance is

replaced with the concept of the interval, and is going to be

(If we have two people - one is at a certain space and time, another is at a certain space

and time - then we have the interval between them.)

We have the matrix A=

1 0 0 0
o -1 0 0
o 0 -1 0
o 0 0 -1

and

~t

III = (~t)2 _ «1ll)2 +(~y)2 +(~)2)
~y

~

The matrix A is called a metric in flat 4-dimensional space-time. That 4-dimensional

space-time has a special name, Minkowski space, and the metric is not positive definite;

that is, it is possible for two different points in our space-time to have a zero interval
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between them. That can happen when

Now consider (XO,Xl,X2,X3), where Xo =ct and c (speed oflight) is constant.

The speed (velocity) oflight is independent of the motion of the source. For example,

suppose I shine a flashlight at you and we are standing still relative to each other, and

suppose you measure how fast the light is coming at you from that flashlight. Now

suppose I am running toward you with flashlight and you again measure the speed of the

light coming at you. Then the two speeds will be the same. But this is not true (for

example) about sound.

Now we going to consider how to define the components of a tensor,

We can think of gap aP as gap operating on the components of the vector aP• But there

is a free index, a , and so we can think of g afJ afJ as components of a covector in the

following way:

first write gap as the components of a tensor

(i.e.,we know that gap = gfJa ( symmetric) is given),

and think ofgap aP as operating on vectors, to produce a real number answer.

To see this, let x have components x =(xa
) and

let y have components y =(yfJ).

Then g(x,y) is a real number.

This is defined by taking a pair of vectors from the tangent space and giving us a number
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( g : Tp xTp - IR ).

Now suppose we have g(_,y):Tp - IR . This mapping now has only one argument.

So it is a mapping from Tp - IR which is linear in the argument. Such mappings are

covectors.

So this mapping can be identified with a covector (an element of the dual space of Tp,

which is T; ).

The question is what should we call this element of T; ? Every element can be

expressed in terms of a basis: OJa dxa . And we are going to identify OJa

with the symbol aa .Thus we are defining the components of a tensor by the formula

Now in our case, gap =

1 0 0 0
o -1 0 0
o 0 -1 0
o 0 0 -1

(by aa = (a~o' - \7) ), where \7 is the usual3-dimensional gradient

operator.
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Application to Electrodynamics.

Using this notation, we will now illustrate the covariance of electrodynamics by

casting Maxwell's equations in tensor form.

First, the electromagnetic fields E and B are expressed in terms of the potentials as

~

E= -t at; - "V¢ - electric field

~

B= "V xA - magnetic field.

at a1 dx° a1
because at = axo lit =c axo

~

The potentials ¢ (a scalar function) and A(a 3-vector) form a 4-vector potential

1) Define aa=(a~o,-"V)=(a~o'-a~l'- a~2'- a~J and write down the x,y,z

components ofE and B :

E =_ aA2 -("VA.) =_ aA2 _ aAo =_aOA2+a2Ao=-(aOA2-a2Ao'y axo 'r y axo aX2 '

Ey = _(aDA 2 -a2AO)

Ez = _(80A3 -a3AO)
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l i
~ a

B= \l x A =det ox!

Al

"'111'1

By=_(B3AI_BIA3)

Bz =_(B IA 2 - B2A I
)

These equations imply that the electric and magnetic fields, six components in all, are

the elements of a second-rank, anti symmetric field-strength tensor:

Explicitly, the field-strength tensor is, in matrix form,

0 -Ex -Ey -Ez

FaP = Ex 0 -Bz By

Ey Bz · 0 -Bx

Ez -By B x 0

Indeed F OO = 0,

, a,{3= 0, 1,2,3.

F33 =0
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F22 =0

For reference, we record the field-strength tensor with two covariant indices,

0 Ex Ey Ez

Fap=gay F)'<5 gJp=
-Ex 0 -Bz By

(6)
-Ey Bz 0 -Bx
-Ez -By Bx 0

and in fact gay F)'<5 gop is an ordinary matrix product.

In particular, the expression, gay F)'<5 gop, represents the matrix product

±(±girFrs Jgsj (the inner summation is the (i,s) entry, the outer summation is the
s=O r=O

(i,j) entry).

Explicitly, let gay =

1 0 0 0
o -1 0 0
o 0 -1 0
o 0 0 -1

. Then

1 0 0 0 0 -Ex -Ey -Ez 1 0 0 0

o -1 0 0 Ex 0 -Bz By o -1 0 0
=

0 0 -1 0 Ey Bz 0 -Bx 0 0 -1 0

0 0 0 -1 Ez -By Bx 0 0 0 0 -1

0 -Ex -Ey -Ez 1 0 0 0 0 Ex Ey Ez

-Ex 0 Bz -By o -1 0 0 -Ex 0 -Bz By
=

-Ey -Bz 0 Bx 0 0 -1 0 -Ey Bz 0 -Bx

-Ez By -Bx 0 0 0 0 -1 -Ez -By Bx 0

We note that the elements of F a{J are obtained from FaP by putting E-+ -E.

Another useful quantity is the dual field-strength tensor Fa{J. We first define the totally
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anti-symmetric fourth rank tensor EaPyo =

+1 , for a =0,/3 = 1, y =2,t5 =3,
and any even permutation

-1 , for any odd permutation
o,if any two indices are equal

The dual field-strength tensor is defined by
o -Bx -By -Bz

p*ap = tE aPyc5 p yO = Bx 0 Ez -Ey

By -Ez 0 Ex
Bz Ey -Ex 0

1 1=-zBx- zBx =-Bx

1 1=-zBy - zBy =-By

Analogously we can do the rest.

But what does it mean physically? The elements of the dual tensor p*aPare obtained from

pap by putting E--+B and B--+ -E in pap (physically we changed fields).

0 -Ex -Ey -Ez

Indeed, put E--+B and B--+ -E in pap =
Ex 0 -Bz By , and we would have
Ey Bz 0 -Bx

Ez -By Bx 0

0 -Bx -By -Bz

Bx 0 Ez -Ey
By -Ez 0 Ex

Bz Ey -Ex 0

Every one of the components of the electric and magnetic fields is included in p*aP.
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It is important because we want to put all information about our fields into a single object

called the field-strength or dual field-strength tensor.

We are trying to come up with a more compact version of the equations, and we want to

show that we can write them in terms of tensors, so that we know it is covariant in the

sense that if we change the coordinates, the laws of electricity and magnetism are

the same no matter what our reference frame is.

So we must write the Maxwell equations themselves in an explicitly covariant form.

The inhomogeneous equations are

--7
'\l·E = 4np , (7)

These two equations lead us to an equation for pap and we can write them in terms of this

~

field-strength tensor. So in terms of pap and the 4-current Ja =(cp, J ) these take on the

covariant form,

~ pap _ 41tJP
Va - c • (9)

1 aEx aB z aBy h aB aBy • f I-cat +ay - T were i3yZ - T IS an x -component 0 a cur,

aBx aBz • fwhere T - &'" IS a y- component 0 a curl,
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1 BEz BBy BBx h BBy BB'-cat + ax - BY were ax - avX IS a z -component of a curl.

Similarly, the homogeneous Maxwell equations

~

\7·B =0

~ 1 BS
\7 x E + cat = 0 ,

(10)

(11)

can be written in terms of the dual field-strength tensor as

So these four equations (7, 8, 10, 11) can be replaced by a pair of equations which are

written in a tensor form.

In terms ofFaP, rather than F*ap, these homogeneous equations are the four equations,

aaFPy + aPFya + aYFaP = 0 (12)

where a,j3, yare any three of the integers 0, 1,2,3.

Let us consider

(13)

Indeed, for j3 =0 we have -a1B x - a2By- a3
B z =0;

for j3 = 1,

for j3 =2,

for j3 = 3,

Now consider (12): for a,j3, y = 0,1,2,3 we are going to have 64 equations. These

equations can be reduced to 12 equations:
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-a1Ey+ aOBz + a2Ex =0,

-a1Ez - aOBy+ a3Ex =0,

_alBx-a2By-a3Bz =0,

-a2Ex - aOBz+al Ey =0,

-a2Ez + aOBx + a3Ey = 0,

a2By+ a1Bx+ a3Bz =0,

-a3Ex+ aOBy+ alEz =0,

-a3Ey - aOBx+ a2Ez =0,

-a3Bz-aIBx-a2By =0.

When we look closer, we see that these 12 equations can be reduced to the 4 equations

in (13) we are looking for.

Thus (12) and (13) are equivalent.

These four equations are the Bianchi identities for Pp.

Applications to Yang-Mills Field Theory.

On Minkowski space M we will consider the vector bundle B (each fiber being an

n-complex-dimensional vector space), i.e. B=MxC
n

•

The global vector fields eA (vector-valued functions ofxa
, a =0, 1,2,3, A =1, ..., n)

form a basis set as does

e~ = G~ eB , where G~ is a non-singular matrix-valued function on M.

The connection or parallel transfer of vectors is introduced by defining Va by

Va eA =Y~a eB , (14)

with y~ =Y~a dxa being the connection (matrix-valued) one-form
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For given e~ = G~ eB we can find eB =GiJIA e~,

where y~~ are the new connection components when we change to the new basis.

We will be interested in examining how the connection and other related quantities
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rewrite (14) as

transform ifwe choose a different basis labeled by e~ ,A = 1, ..., n. In other words we can

which establishes (15).

with a comma denoting the partial derivatives with respect to the Minkowski coordinates

derivative of an arbitrary vector Vby

of eB since a =0, 1,2,3, thus leading to (14).

Now suppose we have an arbitrary vector V = VAeA. We can define the covariant

vector field, so \lU eA is a vector field. Thus we can express \lu eA as a linear

combination of a basis eB, and for each eA we will get different linear combinations

By the definition of covariant derivative, the covariant derivative of a vector field is a

(y~u is a matrix and is a component of a one-form with respect to a basis dxU
).



r
then \la e ~ = \la (G~ e B) = G~,a e B + G~ \la e B

_ GB G-IC I GB C- A aBeC + A YBa e C,

_ GB G-IC I GC B
- Aa B eC+ A YCa eB,

C -IB I C D -IB I

= GA,a Gc eB + G A YCa G D eB

eGC G-IB GC D G-IB ) I= A,a C + A YCa DeB'

Ifwe compare this with (16) , we can conclude that

I B _ GC G-IB GC D G-IB
YAa - A, a C + A Y Ca D ,

or in matrix notation,

This is also refered to as a gauge transformation.

We say y~ and Ya are gauge- equivalent.

The curvature tensor or gauge field of this connection is defined by

which is skew-symmetric in a and b. We are going to examine how this expression is

consistent with how we define curvature in (5).

We start with 2[drg - r~ /\ r~] and establish a new notation.

Think of the I-form rg = rgk dxk as being y~ = Y~k dxk, the connection (matrix-valued)

one form, where A,B = 1, ...,n; k= 0,1,2,3.

=2[d(Y~k dxk) - [yic dxC
/\ yik dx

k
]]

=2[Y~k,C dxC
/\ dxk - [yicy1E] dx

C
/\ dx

k
]
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Now let us examine the components of this expression.

We see that Fab becomes Fek, which is skew-symmetric in c and k, i.e.

F
A _ A A (E A E A)
Bek - YBk,c - YBe,k - YBeYkE - YBkYcE , or

F ek =Yk,e - Ye,k - (YeYk - YkYe), which is the curvature tensor or gauge field.

Now we will examine how the Yang-Mills field Fab transforms under the gauge

transformation given by (17).

Consider Fab = Yb,a - Ya,b - [Ya, Yb]. Now let us write down F~b using the fact that

(GG-1) = 0,a ,

(GG-1) =G G-1 + GG-1 =O.,D ,a ,0

So -G,aG-1 =GG~J.

So G-1 = _G-1G G-1 .,a ,a

S FI I I [I I]o ab=Yb,a-Ya,b- Ya,Yb

-[(G,aG-1 + GyaG-1)(G,bG-1+ GybG-
1
)] +

+[(G,bG-1 + GybG-1)(G,aG-1 + GyaG-
1
)]
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-[G,a
G

-1G,bG-1+ G,aG-1GybG-1 + GyaG-1G,bG-
1

+ GYaG-
1
GYb G-

1
]

+[G,bG-1G,aG-1+ G,bG-lGYaG-l + GybG-1G,aG-1 + GybG-
1
GYa G-

1
]

= -G bG-1G G-1 + G G-1G bG-1 - G G-1G bG-
1

+ G bG-
1
G G-

1

, ,a ,a, ,a, , ,a

In a similar manner to what we did with the Maxwell electromagnetic field we have the

following Bianchi identities, which are satisfied by the curvature tensor F ab, where the

partial derivative for the Maxwell case is replaced by the covariant derivative

'i
,II
I,

'I
Ii
II
II
I

V[c Fool =O.

Now we will defme the dual field by

(19)

with Eabcd the alternating symbol with E0123 = -1 (E apy6 = - E
a

Py6 )

We now write the Yang-Mills equations are given by the following two sets of equations.

One of them is gbc Vc Fab = Ja , (21)

where gbc is Minkowski metric and Ja is the current, and the other one

which is equivalent to the Bianchi identities given by V[c F ab1 = 0 which is
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always satisfied because F ab is given by

Now consider (20). Ifwe takeJa = 0, then the Yang-Mills equations become

gbC \IC F ab =0,

which is equivalent to

(23)

II
II

I

I

I

I

In the case that F:
b

= ± iFab (i.e. Fab is self-dual or anti-self dual) then (24) implies

\I[C iF ab] = °or \I[c F ab] =0,

which is identically satisfied by (19).

Therefore saying that the F ab is self-dual or anti-self dual is equivalent to saying that Fab

satisfies the Yang-Mills equations with Ja = 0.

Now consider the special case when n=1. We are going to show that all parts of the

above discussion reduce to the Maxwell case, where (21), which is gbc \IC F ab = Ja

is a generalization of au FaP = tt;: JP.

On Minkowski space M we will consider the vector bundle B, i.e. B=MxC
l
(n=1), which

now becomes a line bundle. The global vector fields eA (A = 1) form a basis set as does

e~ = G~ (xa ) eB, with the matrix-valued function G~ (xa
) becoming a scalar function

on M, call it g (xa ), a = 0, 1,2,3.

\Ia e1 = Ya e1, where Ya is the connection (electromagnetic potential) and is simply a

one-form on Minkowski space.

Under a change in basis (gauge transformation), the new potential Y~ = g,a g-l + Ya

(since gg-l = 1).
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adding a gradient of some scalar function qJ, the Maxwell field remains unchanged.

And under a change in basis F~b ==F abo In other words when we change the potential by

And (18) becomes F ab == Yb,a - Ya,b (YaYb == YbYa)'

So we can rewrite this as Y~ == qJ ,a + Ya, where qJ == log g.

Note that (log g), a == t g,a == g,a g-l.

And this is a well-established fact of electricity and magnetism.

We also note that the Yang-Mills field equation (21) reduced to the Maxwell equations.
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CONCLUSION

In this thesis we started with a discussion of the concept of a differentiable manifold,

which is a topological manifold with a Coo differentiable structure, and the concepts of

vectors and tensors which are defined on the manifold.

We were able to show the important fact that the tensor itself does not change as an

object, independent ofthe choice of a coordinate system. This is important because it is

used to illustrate the covariance ofthe laws of physics as well as therefore in the study of

these laws. Covariance of these laws means that we want our basic physical principles to

remain unchanged when we change our coordinate system.

In our study ofan exterior differentiation, a differential operation which depends only on

the manifold structure, we were able to show that the exterior differentiation operator is

covariant.

An extra structure, the connection, defined the covariant derivative and the Riemann

curvature tensor, which gives us an indication of the curvature of the manifold.

We were mostly concerned with the mathematical-physics application where the

4-dimensional space-time has a special name, Minkowski space.

We were able to show the covariance ofelectrodynamics by casting Maxwell's equations,

which describe the behavior of electromagnetic fields, in tensor form.

We examined the definition ofa Yang-Mills field and how it could be thought ofas a

generalization of a Maxwell field as well as illustrating many of the mathematical concepts

earlier discussed as becoming part ofthe definition of the Yang-Mills field equations.
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This thesis could be used as a starting point for somebody interested in studying an area

ofmathematical physics which makes use of differential geometry, for example,

general relativity or fluid mechanics. This work can lead us to the subject ofBacklund

transformations, where the basic idea is to generate new solutions of the self-dual or

anti-self-dual Yang-Mills equations from a seed solution.
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APPENDIX

In this Appendix we include a derivation of some basic relationships from elementary

vector analysis which would be useful in obtaining the left hand sides of some of

Maxwell's equations in terms of the electric and magnetic potentials, ¢J and A,

respectively, instead of the electric and magnetic fields, E and B, respectively.

(-) -)) -) -)

1) Show "7. a - b = "7 . a - "7 . b .

_~ 2!:..!. oaz E!?l oa3 ~ _
- ax - ax + By - Oy + Bz - i3z -

01 a( -))
2) Show "7 'at = at "7·A .

-) BAI BAz OA3 a ( -))
Take "7. A =ax + BY + 7h ; now take at "7. A :

3) Show "7 .("7¢J) = "72 rP

"7 ·("7rP) ="7 .(¢J,x, rP,y, rP,z) = rP,xx + ifJ,yy + ¢J,zz ="7
2 ¢J
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k
o
oz

Oa2 oalax-a;

02~ ("2~ o2~ 02~)a u a\ a2 ~

Bz2 = oz2' Bz2 , oz2
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i
o
OX

{ ~ 1- -( oa3 oa2 ) -(~ - ~) ,.f oa2 -~)
Oy oz - l Oy - oz +J oz ox + K\. oX Oy'

Q2 Q3

__[.2..(oa3 oa2) _ .E.-(oa2 _ ~)] k[.E.-(~ _ oa3) _ .E.-(~ _ oa
2
)]

-Joz oy-oz ox ox Oy + ox OZ ox oy Oy oz .

Consider x components from both sides :

o( ) o¢4) Show ai \l</J = \lai .

....



and the X component for 'V xC'V xct) is the same as the X component for

'VC'V oct) _'V2 ct. (using the fact that the mixed partial derivatives in the two expressions

are equal)

Similarly we can show for the y and z components.

1 a21 2~ ~ 1 aE
7) Show -;;2 BiZ - 'V A = 'VxB - cat·

'V x1 _+at = 'V x('V x1)- {- gt (-{- aZ - 'V¢) ( say from where these equations)

~_ (1. at{!) 2 A- l a2A .1..£.( "')_ 'V - c at - 'V + c2 at2 + c at 'V'f/

~ ~_ 1. at{! 2 A- l a2A 1...£.( "') - -L a2A - 2 A-
__ c 'V at - 'V + c2 at2 + c at 'V'f/ - c2 at2 'V .
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