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ABSTRACT

The intent of this project is to compare and contrast the advantages and

disadvantages of using adaptive techniques as opposed to classical ones in the control of

a DC motor. To that end Root Locus and the adaptive techniques of self-tuning

regulation, one-step ahead adaptive control, and model-reference adaptive control are

presented. The controllers are designed based on a model that is commonly used for a

DC motor. To investigate the effect of a non-ideal model on the controlled system,

several variations are considered. The effect of model mismatch is investigated by

making the order ofthe plant and the type ofthe plant higher than the assumed model for

controller design. Furthermore, the effect of load on the motor as well as the presence of

additive noise is considered. The Root-Locus designed controller does not meet the

criteria in most non-ideal situations. The self-tuning regulator meets the design criteria in

all the non-ideal cases, but has a high control effort before the parameter estimates

converge, after which the control effort is more reasonable. The weighted model

reference adaptive system best meets the design criteria with the least control effort in all

the non-ideal cases if the model used to design the controller has been over

parameterized. This thesis concludes with a summary of the project results and ideas for

future research topics.
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INTRODUCTION

Control theory is concerned with obtaining a desired response from a system, or

plant. Classical control theory, in the form of root locus, pole placement, etc, can be used

when the designer has a priori knowledge of the plant. Control systems allow the

management of large and small equipment with a degree of precision that would

otherwise be impossible. Further, the use of control systems incorporating feedback

allows compensation for disturbances, such as mechanical or electrical noise

[3],[8],[11],[14].

In some cases, however, a portion or the entirety of the plant is unknown; in other

cases the parameters of the plant change, or disturbances are too great for the classical

controller to rej ect. In these instances different techniques must be applied; one such

class of techniques is known collectively as adaptive control. Adaptive control was first

developed in the early twentieth century to automatically steer a ship. These

developments contributed to proportional-integral-derivative control. Other adaptive

techniques are the self-tuning regulator and the model-reference adaptive controller

[1],[7],[11].

Adaptive control schemes incorporate some sort of on-line parameter estimation

scheme that takes into account any changes in the external or internal factors that

contribute to change in the plant. The most widespread and common parameter

estimation method is that of least squares regression. Least squares regression can be
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used in nonlinear applications where the system is linear in the parameters, which can

sometimes be selected or manipulated in such a manner as to cause this [1],[3].

The first section of this work, encompassing Chapters I and II, is concerned with

the basic concepts behind classical and adaptive control. Chapter I follows the

development of a transfer function for a DC motor, which is then analyzed for response

and developed into a pulse-transfer function. The establishment of a desired system

response is also Chapter 1. The least squares estimation technique is derived in Chapter

II; both a non-recursive estimation and an online estimation algorithm are given.

Chapters III, IV, and V compose the second section of the thesis, which contains

the design of the three different types of controllers. The root locus technique is utilized

in Chapter III to design a classical controller that conformed to the design criteria set

forth in Chapter 1. The self-tuning regulator is developed and designed for the dc motor in

Chapter IV. This chapter contains the design of two self-tuning regulators, one with

process zero cancellation and one without any cancellation. In the final chapter in this

section, Chapter V, development of the one-step ahead and model-reference adaptive

controllers are presented. The one-step ahead algorithm is divided into two different

types, a pure one-step ahead controller and one that takes into account the desire to keep

the control effort low.

The final section of this work includes Chapters VI and VII. Chapter VI

compares the performance of the different controllers when the system is placed under

various changes. The final chapter in the thesis presents a discussion of the results and

the conclusions derived from the work contained in this thesis, as well as

recommendations for future study.
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CHAPTER I

MODELLING THE DC MOTOR

In this chapter, the required background will be established. First, a mathematic

model of a dc motor will be developed, which will be used to determine the relation

between the voltage input to the motor and the speed at which the motor rotates.

Secondly, because typical control systems are implemented with computers, a discrete

time representation for the continuous-time plant must be found. This is called the pulse

transfer function. The open-loop response will be addressed in the chapter, as will the

design criteria. The final topic addressed in this chapter is the effect that varying the load

of the dc motor has on the transfer function.

1.1 Determining the Transfer Function

In order to enact any sort of control on the DC motor under investigation, a model

must be formulated. Figure 1.1 shows a typical model of a DC motor [4],[14]. The

torque produced by the motor is directly proportional to the current through the armature.

In other words,

(1.1)
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5

holds, where K, is the torque constant. A back electromotive force, or emf, is generated

by the motor, which is directly proportional to the speed of the rotor, shown by

em/=K/}, (1.2)

where K e is the electric constant. In the system of units is consistant, it can be shown

that

K=K, =Ke

is true [14]. Using Kirrchoff's Voltage Law around the electronic circuit gives

. . diet)
vet) - K . B(t) = let) . R +- .L

dt

(1.3)

(1.4)

where vet) is the source, or input, voltage. Taking the Laplace Transform of Equation

1.4 results in

V(s) - K . sees) =I(s)· R + sI(s)· L =(sL + R)· I(s). (1.5)

The motion of the rotor is opposed by the inertia of the rotor and the friction of rotor.

This is described by Newton's Law and can be written as

K . i(t) - J .O(t) - b .O(t) =0, (1.6)

where B(t) is the angular position of the motor. Taking the Laplace transform of

Equation 1.6 yields

K . I(s) =J. s2e(s) + B· se(s).

Rearranging Equation 1.5 to solve for I(s) yields,

V(s) - K . sees)
I(s) = .

sL+R

(1.7)

(1.8)
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In order to find a transfer function for the dc motor, with source voltage, v(t) , as the

input and angular velocity, dB as the output, the expression for I(s) in Equation 1.8 is
dt

substituted into Equation 1.7, resulting in

J. s2e(s) + B. sees) =K. V(s) - K· sees) ,
sL+R

which can be rearranged to collect the like terms, giving

((sL + R)(sJ + B) + K 2). sees) = K . V(s).

This gives the transfer function,

G (s) = sees) = K
P V(s) (sL + R)(sJ + B) + K 2

With some algebraic manipulation, Gp (s) becomes

K

G (s) - JL
p - 2 (B R) RB+K

2
's + -+- s+---

J L JL

1.3 Numerical Transfer Function

(1.9)

(1.10)

(1.11)

(1.12)

Based on experiments conducted at Carnegie Mellon University [4], the following

values were selected for the parameters of the dc motor:

b =O.lN .m . s ,

N'n
K=Ke =Kt =0.01--,

A

(1.13)

(1.14)

(1.15)
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and

R=ln,

L=0.5H.

(1.16)

(1.17)
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Substituting these values into Equation 1.12 results in the transfer function,

2
G ~)= ,

P S2 +12s + 20.02
(1.18)

with poles at - 2.0025 and - 9.9975. Figure 1.2 shows the step response of this system

as obtained via MATLAB.

1.3 Determining the Pulse-Transfer Function

For computer implementation of control systems, a discrete-time transfer

function, H pq (z) , must be developed. A common technique used to change signals from

digital to analog is by means of the zero-order hold [15],[16]. When forming the

discrete-time transfer function, often called the pulse-transfer function, the characteristics

of the zero-order hold must be taken into account with the sampled response of G/s).

The relation between H pq(z) and G/s) is given in [15],[16], as

(1.19)

where T is the sampling period, and ZT{ GPs(S)} signifies taking the z-transfonn of the

inverse Laplace-transform of Gp (s) , sampled with a sampling period of Ts ' The inverse
s

and

R=ln,

L=0.5H.

(1.16)

(1.17)
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G (s)
Laplace transform of -p- is also called the step response, gsle/f) , of Gp (s). Because

s

the parameters of the continuous-time model of the motor will be changing, it is useful to

derive the pulse-transfer function in terms of the continuous-time transfer function, which

is of the form,

G (s)
-p- can be written as

s

Gp(S) cI c2 c3--=--+ +-"--
S S - PI S - P2 S - P3

(1.20)

(1.21)

where two of PI' P2' and P3' are the roots of A(s) and the other is 0, and cI ' c2 ' and

C3 are the residues of Gp (s). The step response is then,

(1.22)

A sampled-time version of the step response is

(1.23)

which can be written as

(1.24)

where

(1.25)

The pulse-transfer function is z -1 times the z-transform of this function, which
z
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H (z)=bozz+b\z+bz (1.26)
pq ZZ + a z + a '\ z

where

a\ =1-d\ -dz -d3 , (1.27)

az =d\dZd3 , (1.28)

bo =c\ + Cz + c3 ' (1.29)

b\ =-c\(dz +d3 )-cz(d\ +d3 )-c3 (d1 +dz)' (1.30)

and

bz =c\dZd3 + cZd\d3 + c3d\dz · (1.31)

For the transfer function given in Equation 1.18, the pulse-transfer function is

H (z) = 0.961 x 10-4
Z + 0.9233 X 10-4

pq ZZ -1.885z + 0.8869
(1.32)

with the sampling period, Ts ' of 0.0 Is. Figure 1.3 shows the step response of the pulse-

transfer function on the same axes as the step response of the transfer function. The

pulse-transfer function does a good job of approximating the transfer function.

The system can be written in terms ofthe forward shift operator, q, where

qf(k) == f(k + 1).

The system can now be written as

where

and

(1.33)

(1.34)

(1.35)
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(1.36)

It is convenient in determining the response of the plant to represent the system in

terms of the reverse shift operator, or delay operator, such that the system becomes

A; (q-I)y(k) =B;(q-I)U(k), (1.37)

where

q-I f(k) == f(k -1) , (1.38)

A· ( -I) 1 -I -2 (1.39)P q = +a1q +a2q ,

and

B· ( -I) b b -I b -2 (lAO)P q = 0 + Iq + 2q .

1.5 Characteristics of the Open-Loop Responses

Characteristics of the open-loop system must be analyzed to determine which

specific portions of its performance need to be improved. Because the poles are in the

left-hand plane, the system is stable, so stabilizing the system is not a design criterion,

although it is imperative to maintain the system's stability. Several characteristics about

the open-loop step response can be established by looking at the transfer function in

terms of the natural frequency, OJn , and the damping ratio, ,. These constants can be

determined from the transfer function by noting that for a second order system,

(1.41)
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holds [8],[14]. For this system, the natural frequency is 4.47 rad , and the damping ratio
s

is 1.34. The damping ratio indicates that this system is overdamped. From Figure 1.2, it

is apparent that the settling time is 2.1s and that the steady-state error is 90.091 %.

1.6 Design Criteria

The desired performance of the system involves the steady-state error, overshoot

and the settling time. A reasonable value for the overshoot is 15%. Using the relation,

t; = -In(%OS /1 00)

~1r2 +ln 2 (%OS/100)'
(1.42)

t; , the damping ratio, is found to be 0.5169. The system is to be sped up to have a

settling time, Ts ' of Is. This implies, through use of the relation,

(1.43)

rad
a natural frequency, OJn , of 7.738-. Using these values in Equation 1.41 gives the

s

desired performance as

G (s) = 59.88
m S2 + 8.0s + 59.88

(1.44)

Figure 1.4 shows the step response of this transfer function. From Figure 1.4, it can be

seen that the overshoot is 5%, and the settling time is about Is, meeting the desired

design criteria.
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Using the procedure that was presented in Section 1.3, the pulse-transfer function

of the desired transfer function can be obtained. Using a sampling time of O.Ols, the

pulse transfer function is

H m (z) =0.001638z + 0.001594 .
pq Z2 -1.92z + 0.9231

(1.45)

It can be observed that the pulse-transfer functions' step response is a reasonable

approximation of the step response of the continuous-time step response; Figure 1.5

shows the step responses of both the pulse-transfer function and transfer function on the

same axis.

1.7 Varying the Load of the Motor

The prior calculations involved the motor in an unloaded state. When a load is

added to the motor, the moment of inertia, J, ofthe motor will effectively be changed. It

will be assumed the connection of the motor and the load will be perfectly attached, that

is there is no slipping between the motor and the load. This change in J changes the

location of the poles of the transfer function, which will change the nature of the system.

For example, if J is 0.0471, then r; is 1.0, resulting in a critically damped system. If J

is 0.0501, then r; is 0.995; then the system becomes overdamped. For the situation

where J is 0.0471 , the transfer function is

G' (s) = 0.4246 = 0.4246 (1 46)
P S2 + 4.123s + 4.251 (s + 2.06 + }0.0349Xs + 2.06 - }0.0349) .

and the pulse-transfer function is
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H (z)=20.94x10-6z+20.66xlO-
6 = 20.94 X 1O-6(z +0.9866) .(1.47)

pq Z2 -1.959z + 0.9596 (z - 0.98 + jO.0134Xz - 0.98 - jO.0134)

For a controller using classical control techniques, this would result in a poor

response, as will be shown in Chapter 6.
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CHAPTER II

PARAMETER ESTIMATION

2.1 Least Squares Estimation

Because all of the system parameters may not be known or may vary from the

known values in an adaptive system, some form of parameter estimation must be enacted.

For this discussion, linear estimation will be emphasized. For this situation, the

measurement equation has the general form

Z=Hx+&", (2.1)

where Z is the noisy observation, x is a vector of the parameters to be estimated, &" is the

error, and H is the linear function operating on x to get the measured quantity [3]. The

noise-free measurement is a linear function of the parameters to be estimated.

Least squares linear estimation is a common method for determining parameters

in an adaptive control scheme. In the general case, the measurement is of the form of

Equation (2.1), and the distribution of &" is unknown. The principle of least squares is

that errors that are present in measurements tend to be minimized over time, and thus a

logical estimate for the parameters in x are that values for which the sum of the squares

of the error is minimum. In mathematical terms, the loss function,

(2.2)
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should be minimized. Because the function, H, is linear, this loss function can be

rewritten as

(2.3)

Because the choice of the parameters, x, are to result in a minimal loss function, the loss

function, J, must be differentiated with respect to x, and equating the result with zero.

Solving the equation,

OJ] T T T... - ;:;::-2Z H+x H H,
OxN

(2.4)

for x, yields the least squares estimate, denoted by x[3],

This can be written as [1]

where hj is the i 1h member of H .

2.2 Recursive Least Squares Estimation

(2.5)

(2.6)

Because most of the parameter estimation in adaptive controllers must be done in

real time, a recursive parameter estimation is used to save computation time [1],[7]. The

definition

(2.7)

is introduced. Equation 2.6 can now be written as
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However,

k

P-l(k)= HT(k)H(k) =Lh;hT;,
;=1

which follows from the definition in Equation 2.7, and can be expanded into

k-I

P-I(k) =Lh;hT;+h(k)hT(k),
;=1

which can be simplified as

p-I (k) =p-I (k -1)+ h(k)hT(k).

Equation 2.8 leads to

k-I

L h;hT; =p-I (k -l)x(k -1),
;=1

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

which upon using a rearranged Equation 2.11 to substitute for p-I (k -1) results in

k-I

L h;hT; =p-I (k )x(k -1)- h(k)h-I(k )x(k -1).
;=1

(2.13)

The estimate for time k can now be written in terms of the estimate for time k -1 as

x(k) = x(k -1)- P(k)h(k)hT(k)x(k -1)+ P(k)h(k)z(k), (2.14)

which can be rearranged into

(2.15)

The error, e(k), associated with the prediction of z(k) based on the estimate x(k -1) is

Equation 2.16 can be written as

i(k) =x(k -1)+ R(k)e(k),

(2.16)

(2.17)
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k-I

L h;hT; =p-I (k )x(k -1)- h(k)h-I(k )x(k -1).
;=1

(2.13)

The estimate for time k can now be written in terms of the estimate for time k -1 as

x(k) = x(k -1)- P(k)h(k)hT(k)x(k -1)+ P(k)h(k)z(k), (2.14)

which can be rearranged into

(2.15)

The error, e(k), associated with the prediction of z(k) based on the estimate x(k -1) is

Equation 2.16 can be written as

i(k) =x(k -1)+ R(k)e(k),

(2.16)

(2.17)
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where R(k) is defined as

R(k)== P(k)h(k). (2.18)

In order to use these results, a recursive relation for P(k) must be found rather than for

p-1(k). This can be done by using the matrix inversion lemma found in Appendix A,

which states

(A + BCDt == (A-1
- A-IB(C-I + DA-1Bt DA-1

). (2.19)

This lemma is used by substituting p-1(k -1) for A, the identity matrix, I , for C , h(k)

for B, and hT (k) for D. This choice satisfies the required conditions for the matrix

inversion lemma, as p-1(k -1), I, and h(k)IhT (k) are nonsingular matrices. Using

Equation 2.19 in conjunction with Equation 2.11 results in

P(k) =P(k -1)- P(k -1)h(kXr l + hT (k )P(k -1)h(k)t hT (k )P(k -1). (2.20)

Using

(2.21)

the estimation of parameters can be summarized as follows:

First find R(k), using Equation 2.21 based on the choice of initial conditions for

parameters and matrix, p(0). Next, determine p(k) using

P(k) =(I - R(k)hT (k )P(k -1)), (2.22)

which is found by substituting Equation 2.21 into Equation 2.20. The residual error in

the system can be then calculated as

e(k) = z(k)- hT (k )i(k -1).

Finally, the parameters may be estimated using

(2.23)
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x(k) == x(k -1)+ R(k)&(k).
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(2.24)

The recursive least squares estimation technique can be used to estimate the coefficients

in the transfer function of a system. The transfer function of the system is assumed to be

of the form

A(q)y(k) == B(q}u(k), (2.25)

where q is the forward shift operator. Equation 2.25 can be rewritten as

any(k - n)+ ... + a1y(k -1)+ y(k) == bmu(k - m)+ .. ·+ b1u(k -1)+ bou(k), (2.24)

which can be solved for y(k) as

y(k) == bmu(k - m)+ ... + b1u(k -1)+ bou(k)- any(k - n)-· .. - a1y(k -1). (2.25)

Let

¢(k)==h(k)==(u(k-m) ... u(k) y(k-n) ... y(k-1)Y (2.26)

and

Equation 2.25 can now be written as

y(k) == ¢T (k )o(k),

which is of the form of Equation 2.1.

2.3 MATLAB Code

(2.27)

(2.28)

The MATLAB code for estimating the parameters at each time, m, is as follows.

It is assumed that there is an initial guess, theta(:,1), an initial confidence matrix, P(:,:,1),

an initial K vector, K(:,1), the output at times m-l and ,m-2, that is y(m-1) and y(m-2),

x(k) == x(k -1)+ R(k)&(k).
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and the inputs at times m-l and m-2, which are u(m-l ),u(m-2). Note that the algorithm

must be initialized by providing an initial guess for the parameters, theta(:,:). This

example is for a second order system, with m = 2 and n = 1.

% Estimate Parameters

Pkml =P(:,:,m-l);

phikml=[-y(m-l) -y(m-2) u(m-l) u(m-2)]';

thetakm1=theta(: ,m-l );

e(m)=y(m)-phikml'*thetakml;

K(:,m)=Pkml *phikml *inv(1ambda+phikml'*Pkml *phikml);

P(:,:,m)=(diag([l 1 1 l])-K(:,m)*phikml')*Pkml/lambda;

theta(:,m)=thetakml+K (:,m)*e(m);

al =theta(l ,m);

a2=theta(2,m);

bO=theta(3,m);

bl=theta(4,m);
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CHAPTER III

CLASSICAL CONTROL TECHNIQUES

In this chapter classical control techniques are explored for the dc motor modeled

in Chapter One. At first a discrete-time lag-lead controller was designed, but it was

impossible to meet the design requirements with such a controller. Either the settling

time was lengthened or the error was unacceptable. In what follows a classical controller

designed based on the traditional Root Locus technique will be presented.

3.1 Introduction to Root Locus

One technique that can be used to design a controller for a continuous-time

system is the Root Locus method. A Root Locus is a graph that shows the positions of

the closed-loop poles as the system gain, K, is varied [8],[11],[14]. This technique can

be used for discrete-time systems as well because the characteristic equation used is both

discrete-time and continuous-time is of the same form, only in different complex

variables and domains. The stability boundary is the unit circle for discrete-time systems

rather than the j OJ -axis, as it is in continuous time case. Likewise, the curve of constant

parameters such as damping ratio and natural frequency, are changed from continuous

time to discrete-time systems; a cartoid is the curve of constant damping ratio in discrete-
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time instead of a line radiating from the origin and a circle centered at z =1 is the curve

of constant natural frequency in the z-domain [15],[16]. Figure 3.1 depicts the block

diagram of the system that is used for Root Locus analysis and design.

3.2 Designing the Compensator

The first step in designing the compensator is to construct the Root Locus for the

uncompensated system,

H (z)=96.1xl0-
6
z+92.33xl0-

6 =96.1xl0-6 z+0.9608 .(3.1)
pq Z2 -1.885z + 0.8869 (z - 0.9800Xz - 0.9050)

Figure 3.2 shows the Root Locus for this system. Initially, with a gain of zero, the

system is stable and remains stable. If the gain is increased to about 1,360, the system

becomes unstable. Three system response parameters are important: no steady-state error

in the step response, an overshoot of less than 15%, and a settling time of at most Is. In

order to have zero steady-state error, integrating action is needed. This is accomplished

by placing a pole at z =1 [16]. This, however destabilizes the system as can be seen

from the Root Locus depicted in Figure 3.3 which is derived by adding a pole at z =1.

This is because poles tend to repel the branches of a Root Locus, and there are two poles

in the near vicinity of z = 1. One solution is to cancel the other pole at z = 0.9800 by

placing a zero at the same place. Pole-zero cancellation is not perfect, however, the pole

will be effectively cancelled if the zero is very close to the same location [15]. The

compensator is so far given by

D(z)=Kz-0.9800.
z-1

(3.2)
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The Root Locus of the compensated system is shown in Figure 3.4. In this Root Locus,

the curves of constant damping ratio at 0.5169 and constant natural frequency of

0.07738 have been added. The desired natural frequency for a discrete time must be in

terms of

rad ,so the natural frequency must be multiplied by the sampling period. In order
sample

for the compensated system to exactly meet the design requirements, the Root Locus

must intersect at the same point as the two curves of constant parameter, which is not the

case. The control design is acceptable if all the criteria are met or exceeded. Where the

Root Locus and the curve of constant damping ratio intersect, the gain is 42.8. Figure

3.5 shows the step response when the compensator gain is 42.8. The percent overshoot

is about 15% , however the settling time requirement is not met; the settling time is about

1.2s. The other option is to use the gain 30.2, which is the gain where the Root Locus

and the curve of constant natural frequency meet. Because this point is inside the curve

of constant damping ratio, the damping ratio is greater, thus the overshoot is less. Figure

3.6 shows the step response when the compensator gain is 30.2. The settling time is met

exactly, and the percent overshoot is 8%, which exceeds the design requirement. The

compensator given by

D(z) =30.2 z- 0.9800
z-1

will be used in the discussions on disturbances and varied loads in Chapter 6.

(3.3)
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CHAPTER IV

SELF-TUNING REGULATORS

The self-tuning regulator is the first adaptive control scheme that will be used to

control the dc motor. First, the process for designing a self-tuning regulator will be

presented. Then the ramifications of designing a controller with pole-zero cancellation as

well as one that has no cancellation will be observed. Finally, two self-tuning regulators

will be designed and compared with respect to meeting the design criteria and the control

effort.

4.1 Introduction to Self-Tuning Regulation

A self-tuning regulator is a control scheme that is useful when the environment in

which the controller operates changes. The block diagram of a general self-tuning

regulator is shown in Figure 4.1 [1]. The process is the system which is to be controlled.

The estimation block involves the estimation of the process parameters, which are fed

into the controller design block. These parameters, along with the control specification,

determine the control parameters. The controller output, also called the control signal,

which drives the plant changes at each time interval based on the output of the system,
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the control parameters, and the input to the system. For this discussion, only least

squares estimation, as discussed in chapter 2, will be considered.

4.2 Controller Design

The design technique for a self-tuning regulator is gIven by Astrom and

Wittenmark [1], which this development basically follows. In order to design the

controller, pole placement is utilized. The model of the system is assumed to be

A(q)yet) =B(q)(u(t) + v(t)), (4.1)

where y is the output, u is the input, and v is a disturbance. The polynomials A(q) and

B(q) have degrees of nand m, respectively. The pole excess of the system, do, is the

difference between nand m. Two assumptions about A and B have been made; the

coefficient of the highest term with highest degree in A is one, that is, A is monic, and

A and B have no common factors, which means that they are relatively prime. These

assumptions serve to make the generalization of the design process easier. In general,

A(q) will be written as A.

The controller can be written as

R . u(t) =T . Uc (t) - s .y(t) , (4.2)

where R, S , and T are polynomials, and u(t) is the signal fed into the system, and U c (t)

is the reference signal that the system is trying to follow. Combining Equation 4.1 and

Equation 4.2 results in

which simplifies to

AR· yet) = B(t. uc(t) - S· yet) + R· vet)), (4.3)
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(t) = BT .Uc(t) + BR . vet) .
Y AR+BS

This gives the closed-loop characteristic polynomial, ACL ' as

ACL = AR+BS.
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(4.4)

(4.5)

Equation 4.5 is called the Diophantine equation [1], and can be used to determine Rand

S. In order to determine T, the response of the desired system to Uc (t), which is

described by

(4.6)

is used, where Ym(t) is the desired output, Am and Bm are the numerator and

denominator of the desired transfer function. The condition,

BT BT Bm
AR +BS = A

CL
= Am '

must hold for the system to follow the model.

In order for the controller to be causal, the conditions

deg S ::; deg R

and

degT::; deg R,

(4.7)

(4.8)

(4.9)

must be true. Equation 4.5 has numerous solutions, thus it is possible to select the

solution which gives the controller with the lowest degree. Because n is greater than

m , and the degree of S cannot be greater than the degree of R , the relationship

degR =degAcL - n (4.10)

can be used to find the degree of R. Because it is undesirable to have extra delays in the

controller, R, S , and T are required to have the same degree.
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This design allows some cancellation of process zeroes with poles of the

controller. In order for the zeroes to be cancelled, they must be both stable and well

damped, lest the controller introduce unstable or poorly damped poles to the closed-loop

system. The polynomial B can be factored as

(4.11)

where B+ consists of the monic polynomial whose roots are stable and well-damped,

while B- consists of the polynomial whose roots are either unstable or poorly-damped.

If the zeroes are not cancelled, then they must appear in the desired zeroes. This implies

(4.12)

where B~ is the desired numerator with the desired cancelled zeroes, B-, factored out.

Because B+ is cancelled, it must be a factor of AcL ' thus

(4.13)

is true. Because B+ is a factor of both ACL and B , but it is not a factor of A, B+ must

be a factor of R , which can be written as

R =R'B+,

where R' is the feedback relation with B+ factored out of it.

Equation 4.5 reduces to

and T can be determined from

(4.14)

(4.15)

(4.16)

This leads to three types of controllers where either some zeroes are cancelled, all zeroes

are cancelled or no zeroes are cancelled.
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If all the process zeroes are cancelled, then the degree of Ao is do -1. Choosing

(4.17)

results in the factorization of Equation 4.12 to be

(4.18)

and

(4.19)

The Diophantine equation becomes

(4.20)

and T is

If no zeroes are cancelled, then the degree of Ao is do -1. Choosing

B = flB = Am (l) B
m B(l)

results in the factorization of Equation 4.12 to be

and

The Diophantine equation becomes

and T is defined by

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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T = f1rA = Am (1) A .
o B(1) 0

4.3 Self-Tuning Regulator Algorithm

39

(4.26)

The algorithm for determining a self-tuning regulator, taken directly from Astrom and

Wittenmark [1] is as follows.

Data: Given the specifications of the desired closed-loop pulse-transfer operator and a

desired Ao.

Step 1: Estimate the polynomials of the transfer function with recursive least-squares.

Step 2: Solve for Rand S in Equation 4.55 and T in Equation 4.16.

Step 3: Calculate the control variable, u(t) , from Equation 4.2

Repeat Steps 1, 2, and 3 at each sampling period.

4.4 Self-Tuning Regulator Design Specifications

It is assumed that the model is

2
G (s) = ,

P S2 +12s+20.02

as determined in Chapter 1, with pulse-transfer function

H () = B = 0.961x10-
4
q+0.9233x10-

4

pq q A q2 -1.885q + 0.8869

(4.27)

(4.28)
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which can be generalized to

because the parameters will vary. The desired pulse-transfer function is

H () _ Bm _ Bm

mpq q - Am - q2 -1.6015q + 0.6703 '

which can be generalized to

(4.29)

(4.30)

(4.31 )

The numerator has been left undefined because it is convenient to define the desired

numerator differently depending on zero cancellation. The pole excess for the system,

do is one.

4.5 Self-Tuning Regulator with Zero-Cancellation

For zero cancellation, the degree of Ao is zero. Thus,

(4.32)

is true because Ao is monic. The desired pulse-transfer function, obtained by choosing

Bm according to Equation 4.17, is

B is factored into

b
B+ :::: q + _1 :::: q + 0.9608

bo

(4.33)

(4.34)
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and

(4.35)

Because n is two, the degrees of R, S , and T are 1. Since the degrees of Rand B+ are

both 1, according to Equation 4.14 the degree of R' must be O. Substituting into the

Diophantine equation gives

(4.36)

Equating like coefficients yields

(4.37)

for the first degree term and

(4.38)

for the constant term. However, R is defined by Equation 4.14 as

(4.39)

The expression for S is obtained from Equations 4.37 and 4.38, i.e.

(4.40)

defines S. Using Equation 4.21 gives T. The simulation of this adaptive scheme is

depicted in Figures 4.2 and 4.3. The output of the plant is shown in Figure 4.2, while the

control signal is shown in Figure 4.3. Figure 4.4 shows that the parameter estimates

converge within ten steps. The system does meet all the requirements, however, from

Figure 4.3 it is seen that there is a great initial control effort. Further, the control signal

has ringing which can cause additional wear on the plant.
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4.6 Self-Tuning Regulator without Zero-Cancellation

For a self-tuning regulator without zero-cancellation, the degree of Ao is one.

Hence, Ao is given by

Ao = q+aoo ' (4.41)

Selecting Bm according to Equation 4.22 results in the desired pulse-transfer function,

0.0031 (b +b)
b +b oq 1=_-,-0_-,-I _

q2 -1.92q + 0.9231 .
(4.41 )

Substituting for A and B in the Diophantine equation results in

to be solved for R and S. Collecting coefficients of q, results in

Equating like coefficients of q results in the system of equations,

Solving for the vector consisting of the R and S coefficients gives

or

(4.43)

(4.44)

(4.45)
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The solutions for '1' So' and SI are

(4.47)

So = bO(aOO a2+a2aml -ala2-aooam2~+bl~a: +am2 +aooaml -aooal -amlal -aJ(4.48)
a2bo +bl - albobl

and

T is defined by Equation 4.26 to be

T - 1+ amI + am2 A _ 0.0031 ( )
- 0 - q + aoo .

bo +bt bo +b t

(4.49)

(4.50)

The simulated system output is shown in Figure 4.5. It can be observed that the

system's output settles to its final values with zero error in about one second. The

overshoot of the system is 4%. Figure 4.6 shows the control signal, which has no

ringing and a lesser control effort than is the case for the self-tuning regulator with zero

cancellation. Figure 4.7 shows the convergence of the parameter estimates, which once

again converge within 10 samples.

4.7 Conclusions

Both self-tuning regulators, with and without zero cancellations, meet the

requirements of the design. However, due to the lesser control effort and the lack of

ringing, the self-tuning regulator without zero cancellation can be considered to be a
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better choice. This control technique will be used in the discussion on disturbances and

varying loads on the motor, which is provided in Chapter 6.
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CHAPTER V

ONE-STEP AHEAD AND MODEL-REFERENCE ADAPTIVE CONTROLLERS

This chapter covers two related types of adaptive controller, the one-step ahead

controller and the model-reference adaptive controller. First the one-step ahead

controller is used to attempt to bring the output of the closed-loop system to the desired

value in one step. This in general requires a great control effort, so a form of weighting

on the control signal is also considered to reduce the control effort. A further step to

reduce the control effort is taken. Rather than attempting to bring the output to the

desired output in a single step, the model-reference adaptive technique endeavors to bring

the output of the system to that of the desired model. Several controllers with different

weightings for model-reference adaptive controllers are designed and compared in this

chapter.

5.1 Introduction to One-Step Ahead Control

The one-step ahead (OSA) controller is another adaptive control technique [7].

The one-step ahead controller brings the predicted output y(k + d) to a desired value,

y" (k + d) in a single step. As will be discovered, the control effort for such a controller

51

CHAPTER V

ONE-STEP AHEAD AND MODEL-REFERENCE ADAPTIVE CONTROLLERS

This chapter covers two related types of adaptive controller, the one-step ahead

controller and the model-reference adaptive controller. First the one-step ahead

controller is used to attempt to bring the output of the closed-loop system to the desired

value in one step. This in general requires a great control effort, so a form of weighting

on the control signal is also considered to reduce the control effort. A further step to

reduce the control effort is taken. Rather than attempting to bring the output to the

desired output in a single step, the model-reference adaptive technique endeavors to bring

the output of the system to that of the desired model. Several controllers with different

weightings for model-reference adaptive controllers are designed and compared in this

chapter.

5.1 Introduction to One-Step Ahead Control

The one-step ahead (OSA) controller is another adaptive control technique [7].

The one-step ahead controller brings the predicted output y(k + d) to a desired value,

y" (k + d) in a single step. As will be discovered, the control effort for such a controller



52

is often great, so the controller can be weighted in such a way as to reduce the control

effort.

5.2 The One-Step Ahead and Weighted One-Step Ahead Controllers

Once again, the model is assumed to be

(5.1)

where

and

B·( -I) -d(b b -I b -m)_ -dB'( -I)p q =q 0 + Iq + ... + mq - qq.

(5.2)

(5.3)

as described in Equation 1.37. This model can be rewritten in a d-step-ahead predictor

form,

(5.4)

where

and

fJ( -1)_ p P -I .. fJ -m-d+1 - F( -I )'D'( -I)q - 0 + Iq +. + m+d-Iq - q V q ,

with the coefficients of F(q-I) and G(q-I) given by

10 =1,

H

/; =- 'L!ja;_j ,
j=O

and

(5.5)

(5.6)

(5.7)

(5.8)

52

is often great, so the controller can be weighted in such a way as to reduce the control

effort.

5.2 The One-Step Ahead and Weighted One-Step Ahead Controllers

Once again, the model is assumed to be

(5.1)

where

and

B·( -I) -d(b b -I b -m)_ -dB'( -I)p q =q 0 + Iq + ... + mq - qq.

(5.2)

(5.3)

as described in Equation 1.37. This model can be rewritten in a d-step-ahead predictor

form,

(5.4)

where

and

fJ( -1)_ p P -I .. fJ -m-d+1 - F( -I )'D'( -I)q - 0 + Iq +. + m+d-Iq - q V q ,

with the coefficients of F(q-I) and G(q-I) given by

10 =1,

H

/; =- 'L!ja;_j ,
j=O

and

(5.5)

(5.6)

(5.7)

(5.8)



d-I

gj =- 'Lfjaj+d-j .
j=O
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(5.9)

The time delay, d, is selected in such a manner as to ensure that bo in Equation 5.3 is

nonzero, which assures that flo in Equation 5.6 is nonzero as well. In order to bring

y(k + d) to the desired value of y. (k + d), while minimizing the cost function,

(5.10)

the desired value is substituted into Equation 5.4, resulting in

(5.11)

This can be expanded into

which can be solved for u(k)

u(k) = y" (k + d)- a{q-l )y(k)- fl1u(k -1)-'" - /3m+d_I U(k - m- d +1). (5.13)

/30

Because the selection of bo always results in a nonzero /30' the construction is possible

[6].

For the DC-motor plant as given in Equation 1.45

H( -1)= q-d{bo+b1q-l) = q-l{0.0367+0.0321q-I),
q l+a

1
q-l+azq-Z 1-1.6015q-l+0.6703q-Z

(5.14)

the order of the numerator, m, is one, the order of the denominator, n , is two, and the

pole excess, d, is one. This means that F({q-I) is zeroeth order, and G{q-l) is first

order.
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Because F(q-l) is zeroeth order, the only coefficient present is 10' which from Equation

5.7 is one. The coefficients of a(q-I) are given by Equation 5.9, which evaluates to

(5.15)

and

(5.16)

The predictor is described by

The control signal, u(k) , is given by

u(k) =y. (k +d)+ a1y(k)+ a2y(k -1)- b1u(k -1) .
bo

(5.17)

(5.18)

For adaptive one-step ahead control, the parameters are unknown and must be estimated,

in this case with a recursive least squares estimation algorithm. Figure 5.1 shows the

response for this closed-loop system, and Figure 5.2 shows the control signal for the DC

motor using one-step ahead control.

A simple modification to Equation 5.12 results in the weighted one-step ahead

controller control signal [7], given by

u(k) = flo(/ (k +d)- a(q-I )y(k)- fllu(~ -1)-'" - flm+d-lU(k - m - d+I)J .(5.19)

flo + /l,

This is a generalized case of one-step ahead control, which minimizes the cost function

(5.20)

When Ii is set to zero, the control signal obtained by one-step ahead adaptive control is

recovered. For the DC motor, the control signal becomes
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(5.21)

where aI' a2 , bo' and bl are estimated recursively. Because bo is of the magnitude of

10-3
, A must be less than lOx 10-6 lest A dominate the denominator. The closed-loop

responses of the system for several different values of A and the corresponding control

signals are depicted in Figures 5.3 through 5.6. Figure 5.3 shows the results when A is

lOx 10-6
• This system does reach its final value rather quickly, however, the final value

is 0.4879, which gives an unacceptable steady-state error. The control signal for this

system has a maximum magnitude of 15, which will be the smallest control signal. One

additional benefit is the elimination of the ringing in the control signal. Figure 5.4 shows

the system information when A is 10-6
• This system has a final value of 0.905, which is

better than the first system. This is countered by the fact that this system has a maximal

magnitude of 185 for the control signal. Once again there is no ringing in the control

signal. Figure 5.5 shows the system when A is 500 x 10-9
• The final value for this

system is 0.9506 with a maximal magnitude of 370 for the control signal. The

overshoot for this system is 25%. The final simulation is in Figure 5.6 when A is

100 x 10-9
• The final value of this simulation is 1, however, the cost for the perfect

steady state is high as the maximum magnitude of the control signal approaches 1,800,

with an overshoot of about 45%. Based on comparing these four simulations, either a A

of 500 x 10-9 or a A of 10-6 is the best controller for this plant, depending on how

important the steady state accuracy is.
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5.3 Model-Reference Adaptive System

Rather than trying to follow the reference signal, following a model that has an

acceptable transfer function will serve to lessen the control effort. This is the so-called

model-reference adaptive control, which is somewhat related to the self-tuning regulator

[1],[7]. The model that will be used for reference is given by Equation 1.45,

H
m

(z)= 0.001638z+0.001594.
pq Z2 -1.92z + 0.9231

(5.22)

The mechanism that was used to implement the model-reference adaptive control is one-

step ahead and weighted one-step ahead control. Figure 5.7 shows the simulation for

model-reference one-step ahead control. It can be observed that the steady-state error is

0, with the overshoot of 15%. The maximum magnitude of he control signal is about

700, and ringing is present in the control signal. Once again, the control effort can be

improved by using a weighted one-step ahead approach. The system simulation for a A,

of 10xl0-6 is shown in Figure 5.8. The final value of this system output is 0.4873, that

is the steady state error is large and un acceptable. The magnitude of the maximal control

input is 12.5. A lesser weighting of A" 10-6 is used for the simulation shown in Figure

5.9. This simulation shows an overshoot of 10% and a steady-state error of 9.2%. The

control effort has a maximum magnitude of 60. Weighting A, even less, to 500 x lO-9

results in the system shown in Figure 5.10. The steady-state error is only 4.56% and the

overshoot is 11%. The control effort is relatively small with a maximal magnitude of

72. Figure 5.11 shows the final simulation, for the system with A, equal to 100 x 10-9
•

This system has no steady-state error and an overshoot of 15%. The maximum control
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5.3 Model-Reference Adaptive System
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H
m

(z)= 0.001638z+0.001594.
pq Z2 -1.92z + 0.9231

(5.22)
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effort is 85. Each of these closed-loop systems has a settling time of less than Is. This

system has similar performance compared to the unweighted model-reference adaptive

system, but at a greatly reduced control effort.

5.4 Conclusions

Several adaptive control schemes were considered in this chapter. The model

reference adaptive controller based on weighted one-step ahead adaptive contol provided

the best response. By using a weighting of 100 x 10-9
, all of the design criteria,

overshoot of 15% , no steady-state error, and a settling time of Is, were met with out an

extremely unreasonable control effort. This controller will be used as the basis for the

discussion in Chapter 6, which deals with the effect of varying the load as well as noise

on the closed-loop system.
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CHAPTER VI

SYSTEM AND LOAD ERROR RESULTS

In this chapter the effect of model uncertainty and noise on the behavior of the

closed-loop controlled systems are investigated. First the disturbance rejection properties of

the controlled systems designed based on an ideal model are considered. The effect of model

uncertainty is then investigated by imposing errors in the type, order, and the stability of the

system. Finally, the classical and adaptive techniques are compared when the motor has a

nonzero load.

6.1 Comparison of Techniques

The closed-loop response of the classical controller, self-tuning regulator, and model-

reference adaptive system derived and shown in Chapter 3, Chapter 4, and Chapter 5,

respectively, are shown in Figure 6.1. The plant has the assumed transfer function,

G (s) =----:--_2__
P S2 +12s+20.02

and assumed pulse transfer function

H (z) = 96.1 0 x 10-
6

Z + 92.3310-
6

pq Z2 -1.885z + 0.8869

(6.1)

(6.2)
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From Figure 6.1, it is apparent that all three controllers meet the design criteria of a

maximum overshoot of 15% and a settling time of Is , with the sole exception that the self

tuning regulator has a settling time of about 1.04s, which is close enough. The self-tuning

regulator has the best performance in terms of percent overshoot, having only 4.21 %

overshoot. The model-reference adaptive controller has the least desirable overshoot, just

meeting the overshot requirement. The classical controller has an overshoot of 8.04%.

Figure 6.1 also shows the control effort for each of the three controllers. Both the self-tuning

regulator and the model-reference adaptive controller have higher control signals as the

parameters are being estimated. However, in the steady state, the model-reference adaptive

controller has the best control signal.

6.2 Disturbance Rejection

The first non-ideal situation that will be explored is the case where the input signal

has noise coupled to it. For this purpose, a random signal was created in MATLAB with the

RAND command. The amplitude of the noise was 10% of that of the input. Figure 6.2

shows the results of that simulation as well as the noise that was added to the input. The

disturbance rejection of all three of the controllers is adequate for this magnitude of noise. It

is intuitive that the classical controller will have a decent amount of disturbance rejection due

to the presence of the pole at z =1, which provides integrating action. The overshoot on the

classical controlled system remains about 8%, the overshoot on the model-reference

adaptive system remains at about 15%, while the self-tuning regulator is reduced to about

3%. The settling time on each system is about Is. The control effort remains largely

similar to that of the noise free case simulation.
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6.3 Non-Ideal Model Situation

This situation encompasses a number of circumstances, the three of interest for this

discussion is an error in the type of the system, in the stability of the system, and in the order

of system. First, suppose that there is an error in the type of the system, that is, the plant to

be controlled is a type-1 system while the controllers were designed based on a type-O

system. Another popular model for a DC motor is

(6.3)

which is a Type-I system. Suppose that the pole at - 2.0025 remains, but that there is a zero

at - 200, and the dc gain is 0.0049; the resulting transfer function would be

( )
s+ 200

Gp S =0.049 ( ) ,
S s+2.0025

and the pulse-transfer function would be

H (z)= 96.92xlO-
6 z

pq Z2 -1.9802z + 0.9802 .

(6.4)

(6.5)

Typically, the zero at s =-200 could be ignored because it has a magnitude of 100 times

that of the next pole or zero. However, it is mathematically convenient to include it in this

discussion because the zero in the continuous-time transfer function increases the magnitude

of the pulse-transfer function. Figure 6.3 shows the simulation of the system with this plant.

Because the closed-loop system using the classical controller has a double pole at 1, it is

expected that the output will oscillate and not settle down to a steady state. The

classically-controlled system exhibits marginally stable behavior rather than explicitly

unstable behavior because the pole at 0.9802 is still cancelled by the controller. However, if
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the pole is moved to 0.983, with the resulting pulse-transfer function

H () 96.92 X 10-
6
z

pq Z == Z2 -1.983z + 0.983 '
(6.6)

the resulting output from the classically controlled is unstable, which is the case if the pole is

moved any closer to 1 than 0.9802. The closed-loop responses for this plant is depicted in

Figure 6.4, from which it can be seen that the response from the model-reference adaptive

controller and the self-tuning regulator are unchanged by these variations in the model.

Suppose that the system, rather than being open-loop stable, is open-loop unstable.

This is accomplished if a pole is in the right hand side of the s-plane for the continuous-time

plant and if a pole is on or outside the unit disc for the discrete-time model. Suppose that the

continuous-time plant is described by

(6.7)

The resulting pulse-transfer function is

H (z)== 0.0001003z + 0.0001007 == 0.0001003(z+1.004) (6.8)
pq Z2 - 2.01z +1.01 (z -lXz -1.01) ,

which has a pole at z == 1.01, which is outside the unit circle. Because the order of he

numerator and the order of he denominator of the pulse-transfer function are the same as the

assumed model, the self-tuning regulator and the model-reference adaptive controller have no

trouble keeping the system stable and within the design parameters, as shown in Figure 6.5.

The control effort for the adaptive schemes once again have spikes on the order of 60 during

the parameter estimation, but settle down to 20 for the self-tuning regulator and 5 for

75

the pole is moved to 0.983, with the resulting pulse-transfer function

H () 96.92 X 10-
6
z

pq Z == Z2 -1.983z + 0.983 '
(6.6)

the resulting output from the classically controlled is unstable, which is the case if the pole is

moved any closer to 1 than 0.9802. The closed-loop responses for this plant is depicted in

Figure 6.4, from which it can be seen that the response from the model-reference adaptive

controller and the self-tuning regulator are unchanged by these variations in the model.

Suppose that the system, rather than being open-loop stable, is open-loop unstable.

This is accomplished if a pole is in the right hand side of the s-plane for the continuous-time

plant and if a pole is on or outside the unit disc for the discrete-time model. Suppose that the

continuous-time plant is described by

(6.7)

The resulting pulse-transfer function is

H (z)== 0.0001003z + 0.0001007 == 0.0001003(z+1.004) (6.8)
pq Z2 - 2.01z +1.01 (z -lXz -1.01) ,

which has a pole at z == 1.01, which is outside the unit circle. Because the order of he

numerator and the order of he denominator of the pulse-transfer function are the same as the

assumed model, the self-tuning regulator and the model-reference adaptive controller have no

trouble keeping the system stable and within the design parameters, as shown in Figure 6.5.

The control effort for the adaptive schemes once again have spikes on the order of 60 during

the parameter estimation, but settle down to 20 for the self-tuning regulator and 5 for



7676



7777



78

the model-reference adaptive controller. After the parameter estimates have converged, the

control effort of the model-reference adaptive system and the self-tuning regulator are largely

the same. On the other hand, because the classical system is unstable, the control signal is

unstable as well.

As a final consideration in model-type errors, the assumption will be made that there

is an error in the order of the model. Suppose that the transfer function has a pole at s =-5,

resulting in

2
Gp (s) =....,....(s-+-2-.0-02-5..,....,Xs-+-5--,-X.,.-s-+-9.-99-7-""5)

and a pulse-transfer function of

(6.9)

H (z) = 323 x 10-9 (Z2 + 3.867z + 0.9350) = 323 X 10-
9 (z + 3.608Xz + 0.2591) .(6.10)

pq Z3 -2.874z 2 +2.752z-0.8773 (z-0.9049Xz-0.9802Xz-0.9891)

The simulation for the three different controllers is shown in Figure 6.6. The self-tuning

regulator has no problem keeping the output within the desired criteria. This is because the

self-tuning regulator does not need the exact values of the system parameters, only a proper

ratio of system parameters. The estimator tries to formulate a model that has a second-order

denominator and a first-order numerator that fits the input-output relation. The self-tuning

regulator then uses the ratios between numerator and denominator coefficients to formulate

the control signal. The estimator in the model-reference adaptive controller also attempts to

fit the input and output into a second-order denominator and a first-order numerator.

However, the values that are estimated are used directly in formulating the control signal, so

errors in the model estimation dramatically effect the output; in this case causing the output

of the system to be unstable, as can be seen in Figure 6.6. The classically controlled system,
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while stable, has an overshoot of 71 %, and has a very long settling time. For this situation

the self-tuning regulator is the best controller. The control effort for any of these controllers

has much to be desired. The self-tuning regulator has the best control effort, but it settles at a

value on the order of 6 x 105
, while the control signal of the model-reference adaptive

controller and the classical controller oscillate with an increasing magnitude. From these

results, it is seen that the self-tuning regulator can control a system that has a higher order

than designed for, but that the control effort creates an incentive to have the order correct

when designing the controller.

6.4 Load Error

Recall that the transfer function of the plant is described by

K

G (s)- JL
p - 2 (B R) RB+K 2

'
S + -+- S+---

J L JL

(6.11)

as shown in Chapter 1. When using the values given in Equations 1.14, 1.15, 1.16, and 1.17,

but letting the value of J vary, Equation 6.11 becomes

0.02

Gp(S)= 2 (2J +0\) 0.2002'
S + s+-----

J J

(6.12)

Assuming that the value of J for the motor shaft and load is 1kg '2

m2

; the transfer function
S

is then, after plugging the value of J into Equation 6.12,
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G (s)= 0.02 = 0.02
P S2 + 2.1s + 0.2002 (s+2.000Xs+0.1001) ,

with corresponding pulse-transfer function as

H (z)= 99.3x10-
6
(z+0.9931).

pq Z2 -1.979z + 0.9792

81

(6.13)

(6.14)

Figure 6.7 shows the simulation of the system controlled by the classical controller, a self-

tuning regulator and a model-reference adaptive controller. The performance of both the

self-tuning regulator and the model-reference adaptive controller are unaffected by the

change is system parameters. However, the classical controller's performance is drastically

reduced. By virtue of the integrator the steady-state error is zero, but the settling time is

greatly increased. At a time of 3s, the output is still only at 93.4% of the final value. The

overshoot requirement is met; however, the controller does not reduce the settling time as

compared to the open-loop system. It is reasonable to assume that as the load increases, the

transfer function coefficients vary more from the unloaded values. It follows that the system

response for the classically controlled system will be poorer as the difference in coefficients

grows. The most extreme case that will be addressed is when the inertial constant of the

motor and the load is 5 kg '2
m2

• Substituting this value of J into Equation 6.12 results in the
s

transfer function,

G (s)- 0.004
P - S2 + 2.02s + 0.04004 '

which has the pulse-transfer function,

H (z)= 19.87x10-
9
(z+0.9929).

pq Z2 -1.98z + 0.98

(6.15)

(6.16)
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The zero of the pulse-transfer function remains in the same vicinity, as do the pole. The

main impact that changing the inertia of the load has on the pulse-transfer function is to

change the value and magnitude of the dc-gain. Because the dc-gain is so small, it greatly

lessens the effect of the gain introduced by the classical controller. This decreased effect of

gain tends to keep the closed-loop poles in very close proximity to the open-loop poles. The

controller has little effect on the damping ratio and natural frequency, and thus little effect on

the overshoot and settling time of the system. The presence of the integrator does indicate

that eventually, the system will reach zero steady-state error. The self-tuning regulator does

not remain unaffected by the change in de gain. While the output remains the same, the

control effort is increased by a similar magnitude as the dc-gain of the pulse-transfer function

is decreased. Figure 6.8 shows the simulation of the system with J =5 kg ·2

m2

. The
s

classically-controlled system has reached a value that is 5.3% of its final value by 3s. The

output of the self-tuning regulator and the model-reference adaptive controller are both

unchanged by the change in system parameters.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

In the first chapter a mathematical model for a dc motor was developed, which

was formulated as a continuous-time transfer function. Subsequently, a pulse-transfer

function was derived as well. The desired characteristics of the output of the plant were

used to determine a desired transfer and pulse-transfer function. It was shown that any

variation on the load would change the poles and dc gain of the transfer function.

The classical root locus technique was used to design the controller that was given

by

D(z) =30.2 z- 0.9800 .
z-1

7.1

which exceeds the requirements of overshoot of 8%, a settling time of Is, and zero

steady-state error.

A self-tuning regulator was designed that had total pole-zero cancellation. This

adaptive controller resulted in an output that reached its steady-state in about Is, with an

overshoot of only 6% and zero steady-state error. This controller, however, produced a

control signal whose value greatly changed from sample to sample, a phenomenon

known as ringing. A second self-tuning regulator was designed that did not have pole-

zero cancellation. The output of this system has zero steady-state error, an overshoot of
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steady-state error.

A self-tuning regulator was designed that had total pole-zero cancellation. This

adaptive controller resulted in an output that reached its steady-state in about Is, with an

overshoot of only 6% and zero steady-state error. This controller, however, produced a

control signal whose value greatly changed from sample to sample, a phenomenon

known as ringing. A second self-tuning regulator was designed that did not have pole-

zero cancellation. The output of this system has zero steady-state error, an overshoot of
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4% and a settling time of Is. The control signal produced by this controller did not

have ringing and also had a smaller magnitude.

The third type of controller was a one-step ahead adaptive controller. This type of

controller met the overshoot and settling time specifications of 15% and Is exactly.

Two variants, weighted and unweighted one-step ahead controllers were considered. The

unweighted controller resulted in zero steady-state error, however the control signal

exhibited ringing and had too great a control effort. The ringing and control effort

problems were lessened by weighting the control effort. This introduced some steady

state error into the system.

The fourth and final type of controller considered , model-reference adaptive

controllers, is related to the one-step ahead controller. Rather than trying to follow the

reference signal, the controller attempts to follow the output of an acceptable model to

the reference signal. This results in the lessening the control effort. In the model

reference adaptive controller, the overshoot and settling times were met exactly. As in

one-step ahead control, the unweighted output had the greatest control effort as well as

some ringing in the control signal. There was a direct correlation between the amount of

steady-state error and the weight that was given to having a low control effort.

The control efforts of each of the controllers were compared. The lowest control

effort was generated by the classical controller. The self-tuning regulator had the greatest

control effort, while the model-reference adaptive system had a moderate control effort.

Based solely on the design criteria of the unloaded dc motor whose mathematical model

was entirely correct and the control effort, the best controller would be the classical

controller. Each off the three controllers exhibited an acceptable amount of inherent

/

86

4% and a settling time of Is. The control signal produced by this controller did not

have ringing and also had a smaller magnitude.

The third type of controller was a one-step ahead adaptive controller. This type of

controller met the overshoot and settling time specifications of 15% and Is exactly.

Two variants, weighted and unweighted one-step ahead controllers were considered. The

unweighted controller resulted in zero steady-state error, however the control signal

exhibited ringing and had too great a control effort. The ringing and control effort

problems were lessened by weighting the control effort. This introduced some steady

state error into the system.

The fourth and final type of controller considered , model-reference adaptive

controllers, is related to the one-step ahead controller. Rather than trying to follow the

reference signal, the controller attempts to follow the output of an acceptable model to

the reference signal. This results in the lessening the control effort. In the model

reference adaptive controller, the overshoot and settling times were met exactly. As in

one-step ahead control, the unweighted output had the greatest control effort as well as

some ringing in the control signal. There was a direct correlation between the amount of

steady-state error and the weight that was given to having a low control effort.

The control efforts of each of the controllers were compared. The lowest control

effort was generated by the classical controller. The self-tuning regulator had the greatest

control effort, while the model-reference adaptive system had a moderate control effort.

Based solely on the design criteria of the unloaded dc motor whose mathematical model

was entirely correct and the control effort, the best controller would be the classical

controller. Each off the three controllers exhibited an acceptable amount of inherent



87

disturbance rejection, with the model-reference adaptive controller displaying the greatest

disturbance rejection, and the classical controller displaying the least amount of

disturbance rejection.

Several situations in which the assumed model was inexact were investigated with

the three different controllers, the classical controller, the self-tuning regulator, and the

model reference adaptive controller. The variations from the ideal model were obtained

by including an error in the type of the system, the stability of the system, and the order

of the system. When the plant was of a higher type than the assumed plant, the classical

controller remained in sustained oscillation for closed-loop response. The self-tuning

regulator and the model-reference adaptive controller remained unaffected by this type of

error. The control effort was largely unaffected for all three of the controllers.

For the second type of plant variation from the ideal case, one of the poles of the

plant was moved to the right half plane, resulting in an unstable system. When the

classical controller was used, the system remained unstable. Once again, neither the self

tuning regulator nor the model-reference adaptive controller were effected by this change.

Again, the control effort of the three controllers for the unstable case remained largely

unchanged from that of the stable case. The variation from the ideal model was created

by adding a pole to the open-loop transfer function, increasing the order of the system.

The output of the self-tuning regulator controlled system was unaffected by this error.

The control effort was slightly greater with this variation as compared to the ideal case.

The classically controlled system, while stable, did not perform within the desired

criteria. The overshoot was 71% and the settling time was great. This change had a

catastrophic effect on the model-reference adaptive controlled system, which could be
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avoided by over-parameterizing the model used in design. Both the control effort and the

output of the model-reference adaptive system grew without bound.

The final changes that were made to the system were changes to the load of the dc

motor, which changed the location of the poles and zeroes of the transfer function from

the assumed poles and zeroes of the transfer function. For the self-tuning regulator and

the model-reference adaptive controller, the response did not change. However, as the

load was increased, the control effort for both the self-tuning regulator and the model

reference adaptive controller increased. Increasing the load also increased the control

effort of the classical controller. In addition, the settling time also greatly increased as

the load to the controller increased.

7.2 Conclusions

The classical controller has several disadvantages. The first is that it results in an

unstable closed-loop system if the plant is of higher type. Further, this controller cannot

compensate for an unstable plant. The most likely situation that is disadvantageous for

the classical controller is when the dc motor is loaded, for which the settling time is

greatly increased over the open loop transfer characteristic.

If the order of the system is known, then the model-reference adaptive controller

is the best controller because it can follow a desired output no matter what the load, the

type, or the stability of the plant is. However, because of the catastrophic reaction to a

system of higher order than assumed, the model-reference adaptive is a bad controller if

there is the possibility of a higher order plant. Designing the controller assuming a higher
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order for the controller would be a solution for this type of error, but would increase the

number of calculation required at each iteration. The increase in calculations should not

present any problem because inexpensive high-speed processors are readily available.

If the smallest control effort is not absolutely necessary, the self-tuning regulator

is the best choice for a controller. It is able to retain its response even if the plant is of a

different order, type or even unstable. The load on the motor has little effect on the

performance of the system controlled by a self-tuning regulator.

The work presented here can be expanded by considering experimental

implementation of developed controllers using a microprocessor and digital signal

processing. An extension of the implementation would be to observe how quantization of

the process effects the system, and which controller is most effected by the quantization.

The dependence of the closed-loop system response on the initial guess for the system

parameters could also be observed.
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APPENDIX A:

MATRIX DERIVATIVE AND MATRIX INVERSION LEMMA

A.I Matrix Derivative

If f(x) is a vector function of the vector x, then the formal definition of the partial

derivative of f(x) with respect to x is

aJ; aJ; aJ;

ax) &2 aXN

Bf(x)
al2 al2 al2

--= ax) &2 aXN (A.I)ax
aiM aiM aiM
ax) &2 aXN

Two common vector functions that are encountered are

f(x) =Ax

and

f(x) =xTAx.

For the first function, the definition of the partial derivative leads to

(A.2)

(A.3)

a(Ax) a
=ax ax

al1 x) + a)2x2+... + a)NxN

a2)x) +a22 x2+ .. ·+a2N xN (AA)

which becomes, upon performing the partial derivatives,
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For the second function,

=A. (A.S)
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Differentiating xT Ax with respect to Xl yields

(A.6)

Collecting like terms in Xi results in the equation,

Similarly the partial derivative with respect to Xi is

If A is symmetric, then Equation (A.9) becomes

(A.ID)

which is the i 1h entry in the row vector forming the partial derivative. This quantity is

twice as large as the i1h entry in the row vector xTA. Thus, as long as A is symmetric,

(A.ll)

holds.
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A.2 Matrix Inversion Lemma

If the matrices A, C, and C-I + DA-IB are nonsingular, then the matrix A + BCD is

nonsingular, and

(A. 12)

is true. This is shown by multiplication of A + BCD by its inverse. This yields

(A+BCDXA-I_A-IB(C-I+DA-IBtDA-I). The product of the first term of each

multiplicand, which is the first term, is the identity matrix, 1. The second term, which is

the product of the first term of the first multiplicand and the second term of the second

multiplicand, is - B(C-I + DA-IBt DA-I . The product of the second term of the first

multiplicand and the first term of the second multiplicand is BCDA-I , which is the third

term. The fourth term, which is product of the second term of each multiplicand, is

- BCDA-IB(C-I + DA-IBt DA-I . The sum of the second and fourth term is

- B(C-I + DA-IBt DA-I - BCDA-IB(C-I + DA-IBt DA-I

=-B((C-I +DA-IBt +CDA-IB(C-I +DA-IBt)DA-I

=- BC(C-I (C-I + DA-IBt + DA-IB(C-I + DA-IBt )DA-I

=-BC((C-I +DA-IBXC-I +DA-IBt )DA-I =-BCDA-I

The sum of the second and fourth term, thus cancels the third term, leaving only the first

term, the identity matrix. Thus, A +BCD and A-I - A-IB(C-1 +DA-IBt DA-I are

inverses.
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APPENDIXB:

LINEAR PREDICTION MODEL

A linear discrete-time system can be written as

(B.l)

where

(B.2)

and

as described in Equation 1.37. The output of the system at time k + d can be written in

the predictor form,

where

( -I) -I -n+1 G( -I)a\q =a o+ a1q +... + an_1q = q

and

(B.4)

(B.5)

F(q-I) and G(q-I) are the unique polynomials that satisfy

with

F( -I) {' {' -I {' -d+1q =Jo + Jlq +... + Jd-Iq ,

and

(B.7)

(B.8)
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The coefficients are computed in the following manner from Equation B.7.

10 =1,

i-1

J; =-"Ilja i - j ,
j=O

and

d-l

gj =-"Iljai+d-j .
j=O

(B.9)

(B.IO)

(B.lI)

(B.12)
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APPENDIXC

MATLAB CODE

Code for Classical Controller Simulation

Root Locus

Bq=[0.96Ie-4 0.9233e-4]; % Set uncompensated numerator

Aq=[1 -1.8850.8869]; % Set uncompensated denominator

Ts=O.OI; % Set sampling time

sysol=tf(Bq,Aq,Ts); % Formulate uncompensated open-loop system

Aqint=conv(Aq,[I -1]); % Determine compensated denominator

Bqint=conv(Bq,[I -0.98]); % Determine compensated numerator

sysint=tf(Bqint,Aqint,Ts); %Formulate compensated open-loop system

rlocus(sysint) % Perform root locus

zgrid(0.5I69,0.07738) % Add contours of constant damping ratio and natural frequency

axis([0.8 1.2 -.2 .2]) % Specify graph size

Step Response

Kos=42.8;

Bq=[0.96Ie-4 0.9233e-4]; % Set uncompensated numerator

Aq=[1 -1.8850.8869]; % Set uncompensated denominator

Ts=O.OI; % Set sampling time

sysol=tf(Bq,Aq,Ts); % Formulate uncompensated open-loop system

Aqint=conv(Aq,[I -1]); % Determine compensated denominator
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Bqint=conv(Bq,[l -0.98]); % Determine compensated numerator

sysint=tf(Bqint,Aqint,Ts); % Formulate compensatted open-loop system

syscl=feedback(Kos*sysint,1); % Formulate closed-loop system

step(syscl) % Find the closed-loop step response

title('Matching the Overshoot Criteria')

Self-Tuning Regulator Simulation

clear

clf

lambda=O.l; % Initialize forgetting factor

T=O.Ol; % Set sampling time

k=0:300; %Initialize sample index

N=length(k); % Determine the number of samples

uc=l *sign(sin((2*pi*k)/400)); % Formulate the reference signal

% Designate Plant

B=[96.le-6 92.33e-6]; % Set uncompensated numerator

A=[l -1.8850.8869]; % Set uncompensated denominator

% Extract transffer function coefficients

brO=B(l);

brl=B(2);

arl =A(2);

ar2=A(3);

% Designate Desired Transfer Function

Bm=[0.1761 0]; % Set desired numerator
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brO=B(l);

brl=B(2);

arl =A(2);

ar2=A(3);

% Designate Desired Transfer Function

Bm=[0.1761 0]; % Set desired numerator
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Am=[1 -1.920.9231]; %Set desired denominator

% Extract desired coefficients

bmO=Bm(1);

bml=Bm(2);

aml=Am(2);

am2=Am(3);

aOO=O;

% Initialize estimation variables

e=zeros(1,N);

K=zeros(4,N);

theta=zeros(4,N);

den=zeros(1,N);

% Set initial parameter estimate

theta(:, 1)=[0;0;0.01;0.2];

% Perform first two iterations of estimation and output

theta(: ,2)=theta(:,1);

P(:,:,2)=diag([100 100 100 100]);

u(1 )=uc(I);

u(2)=uc(2);

y(1)=O;

y(2)=brO*u(1 );

% Perform ramaining iterations of estimation, conttrol signal formulation

% and output determination
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form=3:N

% Determine Output

y(m)=-ar1 *y(m-1)-ar2*y(m-2)+brO*u(m-1)+br1*u(m-2);

% Estimate Parameters

Pkm1=P(:,:,m-1);

phikm1 =[-y(m-1) -y(m-2) u(m-1) u(m-2)]';

thetakm1=theta(: ,m-1 );

e(m)=y(m)-phikm l'*thetakm1;

K(:,m)=Pkm1 *phikm1 *inv(lambda+phikm1'*Pkm1 *phikm1);

P(:,:,m)=(diag([l 1 1 1])-K(:,m)*phikm1 ')*Pkm1/lambda;

theta(:,m)=thetakm1 +K (:,m)*e(m);

a1=theta(1 ,m);

a2=theta(2,m);

bO=theta(3,m);

b1=theta(4,m);

% Formulate Control Signal

den(m)=a2*bO*bO+b1 *b1-a1 *bO*b1;

%Determine the S polynomial

sO=(bO*(aOO*a2+a2*am1-a1 *a2-aOO*am2)+bl *(al *al+am2+aOO*aml-aml *al

a2))/den(m);

sl=(bO*(aOO*a2*aml +am2*a2-aOO*a1 *am2-a2*a2)+b1*(al *a2+aOO*am2-aOO*a2

a2*aml))/den(m);

S(:,m)=[sO;sl];
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%Determine the R polynomial

rO=l;

r1 =(bO*bO*am2*aOO-bO*b1 *(am2-a2+am1 *aOO)+b1 *b1 *(am1-a1 +aOO))/den(m);

R(:,m)=[rO;r1];

%Determine the T polynomial

tt=((1 +am1 +am2)/(bO+b1));

to=tt;

t1=aOO*tt;

Tmat(:,m)=[tO;t1];

u(m)=-rl *u(m-l )+to*uc(m)+t1 *uc(m-l )-sO*y(m)-s1*y(m-l);

end

%Plot the system response

t=k*T;

stairs(t,uc, 'r')

hold on

stairs(t,y,'b')

title('Output (blue) and Input (red) of a Self-Tuning Regulator without Zero Cancelation')

xlabel('Time (s)')

ylabel('Output')

Model-Reference Adaptive System Simulation Code

% MRAS Weighted

clear

elf
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lambda=O.I; % Determine forgetting factor for estimation

lamc=O.OOOOOOI; % Determine small control signal weighting

T=O.OI; % Set sampling time

k=0:300; % Create sampling index

N=length(k);

uc=sign(sin((2*pi*k)/400));

% Designate Plant

B=[0.961e-4 0.9233e-4]; % Set uncompensated numerator

A=[1 -1.8850.8869]; % Set uncompensated denominator

% Extract transfer function coefficients

brO=B(l);

brl=B(2);

arl=A(2);

ar2=A(3);

% Designate Desired Output

Bm=[0.00291428474 0.0028375860]; % Set desiered numerator

Am=[1 -1.91736448 0.923111635]; % Set desired denominator

yml=filter(Bm,Am,uc); % Determine the desired system response

ym=[yml yml(N)]; % Increase the size of the desired output by one

%Initialize estimation variables

e=zeros(1,N);

K=zeros(4,N);

theta=zeros(4,N);
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theta(' 1)=[-2'1'0'0]'-, , " ,

% Perfonn the first two iterations of estimation, control signal

% fonnulation, and output detennination

theta(:,2)=theta(:,1);

P=diag([100 100 100 100]);

u(l )=uc(1);

u(2)=uc(2);

y(l)=O;

y(2)=brO*u(1 );

% At each iteration after the first

form=3:N

% Detennine Output

y(m)=-ar1*y(m-1)-ar2*y(m-2)+brO*u(m-1 )+brl *u(m-2);

% Estimate Parameters

Pkm1=P;

phikm1 =[-y(m-1) -y(m-2) u(m-l) u(m-2)]';

thetakm1=theta(: ,m-1 );

e(m)=y(m)-phikm1'*thetakm1 ;

K(:,m)=Pkm1 *phikm1 *inv(1ambda+phikm1'*Pkm1 *phikm1);

P=(diag([l 1 1 1])-K(:,m)*phikm1')*Pkml/lambda;
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theta(:,m)=thetakm1 +K(:,m)*e(m);

a1=theta(l,m);

a2=theta(2,m);

bO=theta(3,m);

b1=theta(4,m);

% Formulate Control Signal

u(m)=bO*(ym(m+ l)+al *y(m)+a2*y(m-l)-bl *u(m-l))/(bO*bO+lamc);

end

% Plot data

t=k*T;

% Plot input and controlled output

subplot(211)

plot(t,uc,'r')

hold on

stairs(t,y,'b')

title('Output (blue) and Input (red) of a Weighted MRAS GSA-Controlled DC Motor for

\lambda = 100* 1Q/\_1\9')

xlabel('Sample')

ylabel('Output')

subplot(212)

% Plot control signal

stairs(t,u)

title('Control Signal')
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xlabel('Sample')

ylabel('uc(t)')
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