
G (s)= 0.02 = 0.02
P S2 + 2.1s + 0.2002 (s+2.000Xs+0.1001) ,

with corresponding pulse-transfer function as

H (z)= 99.3x10-
6
(z+0.9931).

pq Z2 -1.979z + 0.9792
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(6.13)

(6.14)

Figure 6.7 shows the simulation of the system controlled by the classical controller, a self-

tuning regulator and a model-reference adaptive controller. The performance of both the

self-tuning regulator and the model-reference adaptive controller are unaffected by the

change is system parameters. However, the classical controller's performance is drastically

reduced. By virtue of the integrator the steady-state error is zero, but the settling time is

greatly increased. At a time of 3s, the output is still only at 93.4% of the final value. The

overshoot requirement is met; however, the controller does not reduce the settling time as

compared to the open-loop system. It is reasonable to assume that as the load increases, the

transfer function coefficients vary more from the unloaded values. It follows that the system

response for the classically controlled system will be poorer as the difference in coefficients

grows. The most extreme case that will be addressed is when the inertial constant of the

motor and the load is 5 kg '2
m2

• Substituting this value of J into Equation 6.12 results in the
s

transfer function,

G (s)- 0.004
P - S2 + 2.02s + 0.04004 '

which has the pulse-transfer function,

H (z)= 19.87x10-
9
(z+0.9929).

pq Z2 -1.98z + 0.98

(6.15)

(6.16)



82



83

The zero of the pulse-transfer function remains in the same vicinity, as do the pole. The

main impact that changing the inertia of the load has on the pulse-transfer function is to

change the value and magnitude of the dc-gain. Because the dc-gain is so small, it greatly

lessens the effect of the gain introduced by the classical controller. This decreased effect of

gain tends to keep the closed-loop poles in very close proximity to the open-loop poles. The

controller has little effect on the damping ratio and natural frequency, and thus little effect on

the overshoot and settling time of the system. The presence of the integrator does indicate

that eventually, the system will reach zero steady-state error. The self-tuning regulator does

not remain unaffected by the change in de gain. While the output remains the same, the

control effort is increased by a similar magnitude as the dc-gain of the pulse-transfer function

is decreased. Figure 6.8 shows the simulation of the system with J =5 kg ·2

m2

. The
s

classically-controlled system has reached a value that is 5.3% of its final value by 3s. The

output of the self-tuning regulator and the model-reference adaptive controller are both

unchanged by the change in system parameters.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

In the first chapter a mathematical model for a dc motor was developed, which

was formulated as a continuous-time transfer function. Subsequently, a pulse-transfer

function was derived as well. The desired characteristics of the output of the plant were

used to determine a desired transfer and pulse-transfer function. It was shown that any

variation on the load would change the poles and dc gain of the transfer function.

The classical root locus technique was used to design the controller that was given

by

D(z) =30.2 z- 0.9800 .
z-1

7.1

which exceeds the requirements of overshoot of 8%, a settling time of Is, and zero

steady-state error.

A self-tuning regulator was designed that had total pole-zero cancellation. This

adaptive controller resulted in an output that reached its steady-state in about Is, with an

overshoot of only 6% and zero steady-state error. This controller, however, produced a

control signal whose value greatly changed from sample to sample, a phenomenon

known as ringing. A second self-tuning regulator was designed that did not have pole-

zero cancellation. The output of this system has zero steady-state error, an overshoot of
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4% and a settling time of Is. The control signal produced by this controller did not

have ringing and also had a smaller magnitude.

The third type of controller was a one-step ahead adaptive controller. This type of

controller met the overshoot and settling time specifications of 15% and Is exactly.

Two variants, weighted and unweighted one-step ahead controllers were considered. The

unweighted controller resulted in zero steady-state error, however the control signal

exhibited ringing and had too great a control effort. The ringing and control effort

problems were lessened by weighting the control effort. This introduced some steady­

state error into the system.

The fourth and final type of controller considered , model-reference adaptive

controllers, is related to the one-step ahead controller. Rather than trying to follow the

reference signal, the controller attempts to follow the output of an acceptable model to

the reference signal. This results in the lessening the control effort. In the model­

reference adaptive controller, the overshoot and settling times were met exactly. As in

one-step ahead control, the unweighted output had the greatest control effort as well as

some ringing in the control signal. There was a direct correlation between the amount of

steady-state error and the weight that was given to having a low control effort.

The control efforts of each of the controllers were compared. The lowest control

effort was generated by the classical controller. The self-tuning regulator had the greatest

control effort, while the model-reference adaptive system had a moderate control effort.

Based solely on the design criteria of the unloaded dc motor whose mathematical model

was entirely correct and the control effort, the best controller would be the classical

controller. Each off the three controllers exhibited an acceptable amount of inherent
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disturbance rejection, with the model-reference adaptive controller displaying the greatest

disturbance rejection, and the classical controller displaying the least amount of

disturbance rejection.

Several situations in which the assumed model was inexact were investigated with

the three different controllers, the classical controller, the self-tuning regulator, and the

model reference adaptive controller. The variations from the ideal model were obtained

by including an error in the type of the system, the stability of the system, and the order

of the system. When the plant was of a higher type than the assumed plant, the classical

controller remained in sustained oscillation for closed-loop response. The self-tuning

regulator and the model-reference adaptive controller remained unaffected by this type of

error. The control effort was largely unaffected for all three of the controllers.

For the second type of plant variation from the ideal case, one of the poles of the

plant was moved to the right half plane, resulting in an unstable system. When the

classical controller was used, the system remained unstable. Once again, neither the self­

tuning regulator nor the model-reference adaptive controller were effected by this change.

Again, the control effort of the three controllers for the unstable case remained largely

unchanged from that of the stable case. The variation from the ideal model was created

by adding a pole to the open-loop transfer function, increasing the order of the system.

The output of the self-tuning regulator controlled system was unaffected by this error.

The control effort was slightly greater with this variation as compared to the ideal case.

The classically controlled system, while stable, did not perform within the desired

criteria. The overshoot was 71% and the settling time was great. This change had a

catastrophic effect on the model-reference adaptive controlled system, which could be
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avoided by over-parameterizing the model used in design. Both the control effort and the

output of the model-reference adaptive system grew without bound.

The final changes that were made to the system were changes to the load of the dc

motor, which changed the location of the poles and zeroes of the transfer function from

the assumed poles and zeroes of the transfer function. For the self-tuning regulator and

the model-reference adaptive controller, the response did not change. However, as the

load was increased, the control effort for both the self-tuning regulator and the model­

reference adaptive controller increased. Increasing the load also increased the control

effort of the classical controller. In addition, the settling time also greatly increased as

the load to the controller increased.

7.2 Conclusions

The classical controller has several disadvantages. The first is that it results in an

unstable closed-loop system if the plant is of higher type. Further, this controller cannot

compensate for an unstable plant. The most likely situation that is disadvantageous for

the classical controller is when the dc motor is loaded, for which the settling time is

greatly increased over the open loop transfer characteristic.

If the order of the system is known, then the model-reference adaptive controller

is the best controller because it can follow a desired output no matter what the load, the

type, or the stability of the plant is. However, because of the catastrophic reaction to a

system of higher order than assumed, the model-reference adaptive is a bad controller if

there is the possibility of a higher order plant. Designing the controller assuming a higher
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order for the controller would be a solution for this type of error, but would increase the

number of calculation required at each iteration. The increase in calculations should not

present any problem because inexpensive high-speed processors are readily available.

If the smallest control effort is not absolutely necessary, the self-tuning regulator

is the best choice for a controller. It is able to retain its response even if the plant is of a

different order, type or even unstable. The load on the motor has little effect on the

performance of the system controlled by a self-tuning regulator.

The work presented here can be expanded by considering experimental

implementation of developed controllers using a microprocessor and digital signal

processing. An extension of the implementation would be to observe how quantization of

the process effects the system, and which controller is most effected by the quantization.

The dependence of the closed-loop system response on the initial guess for the system

parameters could also be observed.
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APPENDIX A:

MATRIX DERIVATIVE AND MATRIX INVERSION LEMMA

A.I Matrix Derivative

If f(x) is a vector function of the vector x, then the formal definition of the partial

derivative of f(x) with respect to x is

aJ; aJ; aJ;

ax) &2 aXN

Bf(x)
al2 al2 al2

--= ax) &2 aXN (A.I)ax
aiM aiM aiM
ax) &2 aXN

Two common vector functions that are encountered are

f(x) =Ax

and

f(x) =xTAx.

For the first function, the definition of the partial derivative leads to

(A.2)

(A.3)

a(Ax) a
=ax ax

al1 x) + a)2x2+... + a)NxN

a2)x) +a22 x2+ .. ·+a2N xN (AA)

which becomes, upon performing the partial derivatives,



For the second function,

=A. (A.S)
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Differentiating xT Ax with respect to Xl yields

(A.6)

Collecting like terms in Xi results in the equation,

Similarly the partial derivative with respect to Xi is

If A is symmetric, then Equation (A.9) becomes

(A.ID)

which is the i 1h entry in the row vector forming the partial derivative. This quantity is

twice as large as the i1h entry in the row vector xTA. Thus, as long as A is symmetric,

(A.ll)

holds.
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A.2 Matrix Inversion Lemma

If the matrices A, C, and C-I + DA-IB are nonsingular, then the matrix A + BCD is

nonsingular, and

(A. 12)

is true. This is shown by multiplication of A + BCD by its inverse. This yields

(A+BCDXA-I_A-IB(C-I+DA-IBtDA-I). The product of the first term of each

multiplicand, which is the first term, is the identity matrix, 1. The second term, which is

the product of the first term of the first multiplicand and the second term of the second

multiplicand, is - B(C-I + DA-IBt DA-I . The product of the second term of the first

multiplicand and the first term of the second multiplicand is BCDA-I , which is the third

term. The fourth term, which is product of the second term of each multiplicand, is

- BCDA-IB(C-I + DA-IBt DA-I . The sum of the second and fourth term is

- B(C-I + DA-IBt DA-I - BCDA-IB(C-I + DA-IBt DA-I

=-B((C-I +DA-IBt +CDA-IB(C-I +DA-IBt)DA-I

=- BC(C-I (C-I + DA-IBt + DA-IB(C-I + DA-IBt )DA-I

=-BC((C-I +DA-IBXC-I +DA-IBt )DA-I =-BCDA-I

The sum of the second and fourth term, thus cancels the third term, leaving only the first

term, the identity matrix. Thus, A +BCD and A-I - A-IB(C-1 +DA-IBt DA-I are

inverses.
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APPENDIXB:

LINEAR PREDICTION MODEL

A linear discrete-time system can be written as

(B.l)

where

(B.2)

and

as described in Equation 1.37. The output of the system at time k + d can be written in

the predictor form,

where

( -I) -I -n+1 G( -I)a\q =a o+ a1q +... + an_1q = q

and

(B.4)

(B.5)

F(q-I) and G(q-I) are the unique polynomials that satisfy

with

F( -I) {' {' -I {' -d+1q =Jo + Jlq +... + Jd-Iq ,

and

(B.7)

(B.8)



The coefficients are computed in the following manner from Equation B.7.

10 =1,

i-1

J; =-"Ilja i - j ,
j=O

and

d-l

gj =-"Iljai+d-j .
j=O

(B.9)

(B.IO)

(B.lI)

(B.12)
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APPENDIXC

MATLAB CODE

Code for Classical Controller Simulation

Root Locus

Bq=[0.96Ie-4 0.9233e-4]; % Set uncompensated numerator

Aq=[1 -1.8850.8869]; % Set uncompensated denominator

Ts=O.OI; % Set sampling time

sysol=tf(Bq,Aq,Ts); % Formulate uncompensated open-loop system

Aqint=conv(Aq,[I -1]); % Determine compensated denominator

Bqint=conv(Bq,[I -0.98]); % Determine compensated numerator

sysint=tf(Bqint,Aqint,Ts); %Formulate compensated open-loop system

rlocus(sysint) % Perform root locus

zgrid(0.5I69,0.07738) % Add contours of constant damping ratio and natural frequency

axis([0.8 1.2 -.2 .2]) % Specify graph size

Step Response

Kos=42.8;

Bq=[0.96Ie-4 0.9233e-4]; % Set uncompensated numerator

Aq=[1 -1.8850.8869]; % Set uncompensated denominator

Ts=O.OI; % Set sampling time

sysol=tf(Bq,Aq,Ts); % Formulate uncompensated open-loop system

Aqint=conv(Aq,[I -1]); % Determine compensated denominator



Bqint=conv(Bq,[l -0.98]); % Determine compensated numerator

sysint=tf(Bqint,Aqint,Ts); % Formulate compensatted open-loop system

syscl=feedback(Kos*sysint,1); % Formulate closed-loop system

step(syscl) % Find the closed-loop step response

title('Matching the Overshoot Criteria')

Self-Tuning Regulator Simulation

clear

clf

lambda=O.l; % Initialize forgetting factor

T=O.Ol; % Set sampling time

k=0:300; %Initialize sample index

N=length(k); % Determine the number of samples

uc=l *sign(sin((2*pi*k)/400)); % Formulate the reference signal

% Designate Plant

B=[96.le-6 92.33e-6]; % Set uncompensated numerator

A=[l -1.8850.8869]; % Set uncompensated denominator

% Extract transffer function coefficients

brO=B(l);

brl=B(2);

arl =A(2);

ar2=A(3);

% Designate Desired Transfer Function

Bm=[0.1761 0]; % Set desired numerator
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Am=[1 -1.920.9231]; %Set desired denominator

% Extract desired coefficients

bmO=Bm(1);

bml=Bm(2);

aml=Am(2);

am2=Am(3);

aOO=O;

% Initialize estimation variables

e=zeros(1,N);

K=zeros(4,N);

theta=zeros(4,N);

den=zeros(1,N);

% Set initial parameter estimate

theta(:, 1)=[0;0;0.01;0.2];

% Perform first two iterations of estimation and output

theta(: ,2)=theta(:,1);

P(:,:,2)=diag([100 100 100 100]);

u(1 )=uc(I);

u(2)=uc(2);

y(1)=O;

y(2)=brO*u(1 );

% Perform ramaining iterations of estimation, conttrol signal formulation

% and output determination
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form=3:N

% Determine Output

y(m)=-ar1 *y(m-1)-ar2*y(m-2)+brO*u(m-1)+br1*u(m-2);

% Estimate Parameters

Pkm1=P(:,:,m-1);

phikm1 =[-y(m-1) -y(m-2) u(m-1) u(m-2)]';

thetakm1=theta(: ,m-1 );

e(m)=y(m)-phikm l'*thetakm1;

K(:,m)=Pkm1 *phikm1 *inv(lambda+phikm1'*Pkm1 *phikm1);

P(:,:,m)=(diag([l 1 1 1])-K(:,m)*phikm1 ')*Pkm1/lambda;

theta(:,m)=thetakm1 +K (:,m)*e(m);

a1=theta(1 ,m);

a2=theta(2,m);

bO=theta(3,m);

b1=theta(4,m);

% Formulate Control Signal

den(m)=a2*bO*bO+b1 *b1-a1 *bO*b1;

%Determine the S polynomial

sO=(bO*(aOO*a2+a2*am1-a1 *a2-aOO*am2)+bl *(al *al+am2+aOO*aml-aml *al­

a2))/den(m);

sl=(bO*(aOO*a2*aml +am2*a2-aOO*a1 *am2-a2*a2)+b1*(al *a2+aOO*am2-aOO*a2­

a2*aml))/den(m);

S(:,m)=[sO;sl];
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%Determine the R polynomial

rO=l;

r1 =(bO*bO*am2*aOO-bO*b1 *(am2-a2+am1 *aOO)+b1 *b1 *(am1-a1 +aOO))/den(m);

R(:,m)=[rO;r1];

%Determine the T polynomial

tt=((1 +am1 +am2)/(bO+b1));

to=tt;

t1=aOO*tt;

Tmat(:,m)=[tO;t1];

u(m)=-rl *u(m-l )+to*uc(m)+t1 *uc(m-l )-sO*y(m)-s1*y(m-l);

end

%Plot the system response

t=k*T;

stairs(t,uc, 'r')

hold on

stairs(t,y,'b')

title('Output (blue) and Input (red) of a Self-Tuning Regulator without Zero Cancelation')

xlabel('Time (s)')

ylabel('Output')

Model-Reference Adaptive System Simulation Code

% MRAS Weighted

clear

elf



lambda=O.I; % Determine forgetting factor for estimation

lamc=O.OOOOOOI; % Determine small control signal weighting

T=O.OI; % Set sampling time

k=0:300; % Create sampling index

N=length(k);

uc=sign(sin((2*pi*k)/400));

% Designate Plant

B=[0.961e-4 0.9233e-4]; % Set uncompensated numerator

A=[1 -1.8850.8869]; % Set uncompensated denominator

% Extract transfer function coefficients

brO=B(l);

brl=B(2);

arl=A(2);

ar2=A(3);

% Designate Desired Output

Bm=[0.00291428474 0.0028375860]; % Set desiered numerator

Am=[1 -1.91736448 0.923111635]; % Set desired denominator

yml=filter(Bm,Am,uc); % Determine the desired system response

ym=[yml yml(N)]; % Increase the size of the desired output by one

%Initialize estimation variables

e=zeros(1,N);

K=zeros(4,N);

theta=zeros(4,N);
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theta(' 1)=[-2'1'0'0]'-, , " ,

% Perfonn the first two iterations of estimation, control signal

% fonnulation, and output detennination

theta(:,2)=theta(:,1);

P=diag([100 100 100 100]);

u(l )=uc(1);

u(2)=uc(2);

y(l)=O;

y(2)=brO*u(1 );

% At each iteration after the first

form=3:N

% Detennine Output

y(m)=-ar1*y(m-1)-ar2*y(m-2)+brO*u(m-1 )+brl *u(m-2);

% Estimate Parameters

Pkm1=P;

phikm1 =[-y(m-1) -y(m-2) u(m-l) u(m-2)]';

thetakm1=theta(: ,m-1 );

e(m)=y(m)-phikm1'*thetakm1 ;

K(:,m)=Pkm1 *phikm1 *inv(1ambda+phikm1'*Pkm1 *phikm1);

P=(diag([l 1 1 1])-K(:,m)*phikm1')*Pkml/lambda;
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theta(:,m)=thetakm1 +K(:,m)*e(m);

a1=theta(l,m);

a2=theta(2,m);

bO=theta(3,m);

b1=theta(4,m);

% Formulate Control Signal

u(m)=bO*(ym(m+ l)+al *y(m)+a2*y(m-l)-bl *u(m-l))/(bO*bO+lamc);

end

% Plot data

t=k*T;

% Plot input and controlled output

subplot(211)

plot(t,uc,'r')

hold on

stairs(t,y,'b')

title('Output (blue) and Input (red) of a Weighted MRAS GSA-Controlled DC Motor for

\lambda = 100* 1Q/\_1\9')

xlabel('Sample')

ylabel('Output')

subplot(212)

% Plot control signal

stairs(t,u)

title('Control Signal')



xlabel('Sample')

ylabel('uc(t)')
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