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ABSTRACT 

GENERALIZED CONTINUITY, MONOTONICITY, 

CLOSED GRAPH AND CONTINUITY 

Roy A. Mimna 

Master of Science 

Youngstown State University, 1987 

In Chapter I the notion of separate continuity is 

introduced and explained using various examples, including an 

example of a real valued separately continuous function which 

has a dense countably infinite set of points of discontinuity. 

The latter example is explicitly constructed using a method 

of densifying points in the real plane. 

Chapter I1 introduces other kinds of generalized 

continuity and presents theorems on generalized continuity - 

and monotonicity. In particular, the notions of quasi-con- 

tinuity, symmetric quasi-continuity, and near continuity are 

introduced. The discussion and analysis deals with real val- 

ued functions of two variables which are monotone in one or 

both of the variables. The general question addressed is 

what conditions of generalized continuity on such a function 

will guarantee that the function is continuous. The Lemma on 

page 8, Theorem 2, Theorem 3, and Corollary I are my results. 

Theorem 2 states that a function f: lR2-+lR, which is continu- 

ous in y for every x, nearly continuous in x for every y, and 

monotone in x for every y, is continuous. This is a general- 



ization of the previously known result presented in Theorem 

1. Theorem 3 presents a similar result for a function 

f : IR~-.)I.R which is jointly nearly continuous. 

In Chapter I11 the closed graph property is intro- 

duced, and various theorems are presented concerning this 

property, generalized continuity and continuity. Theorems 6 

and 7 are my results. Theorem 5 states the well-known result 

that a function f:X-+Y, where Y is compact and G(f) is closed 

in X x Y ,  is continuous. Theorems 6 and 7 place a different, 

although related condition on a function f:X x Y-- .Z ,  (namely, 

that f be bounded), rather than the compactness of the range 

off. 
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ABSTRACT 

GENERALIZED CONTINUITY, MONOTONICITY, 

CLOSED GRAPH AND CONTINUITY 

Roy A. Mimna 

Master of Science 

Youngstown State University, 1987 

In Chapter I the notion of separate continuity is 

introduced and explained using various examples, including an 

example of a real valued separately continuous function which 

has a dense countably infinite set of points of discontinuity. 

The latter example is explicitly constructed using a method 

of densifying points in the real plane. 

Chapter XI introduces other kinds of generalized 

continuity and presents theorems on generalized continuity 

and monotonicity. In particular, the notions of quasi-con- - 

tinuity, symmetric quasi-continuity, and near continuity are 

introduced. The discussion and analysis deals with real val- 

ued functions of two variables which are monotone in one or 
- - 

both of the variables. The general question addressed is 

what conditions of generalized continuity on such a function 

will guarantee that the function is continuous. The Lemma on 

page 8, Theorem 2, Theorem 3, and Corollary I are my results. 

Theorem 2 states that a function f: IR~-*IR, which is continu- - 

Ous in y for every x, nearly continuous in x for every y, and 

monotone in x for every y, is continuous. This is a general- 
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CHAPTER I 

SEPARATE CONTINUITY AND JOINT CONTINUITY 

Introduction 

At least as long ago as 1873 it was known that there 

are functions f: lR2+lR which are continuous on every straight 

line parallel to the coordinate axes of the domain, but are 

nevertheless not continuous at a point of their domain. 

Definition: Consider a function f: l R + l R .  The function 

x (y), given by fx (y) = f (x ,y), is called an x-section of 
0 0 

0 

f. Similarly, the function f (x) , given by f (x) = f (x,yo) 
Yo  Y o  

is called a y-section of f. If all x-sections and all y- 

sections of f: lR2-+R are continuous, we say that f is sepa- 

rately continuous. 
- 

Clearly, continuity implies separate continuity, but 

separate continuity does not imply continuity. Consider, for 

example, the real valued function 

At the point (0,O) f is separately continuous, but not con- 

tinuous. Clearly, f is separately continuous at (0,0), for 

f (0,y) = 0 and f (x,O) = 0. To see that f is not continuous 
- 

at (0,0), let x = r cosQ and y = r sine. Then 

2r cos r sin - - 2r2 sin? cosO .= 2sinOcos0 = sin2~. (x,Y) = rLcosLO+r'sin'O rZ (sinLO+cosLO) 



Then since f depends only on 8, if the domain of f is a 

sphere centered at (0,0), no matter how small the radius be- 

comes, f(x,y) takes on all values between -1 and 1. So let 

s = $ be given. Then there is no 8 such that 1 f (x, y) - 
f (0,O) 1 < s ,  Notice that f has an oscillation of 2 at the 

point (0,O). As indicated in the illustration, f "drops off" 

at the origin from 1 to 0 and from -1 to 0. 

Fig. 1.--Graph of a Separately Continuous Function 

We may also use Heine's condition of continuity to - 

show that f is not continuous at (0,O). Recall that Heine's 

condition of continuity provides that a function f: I R 2 d I R  is 

continuous iff for all {an], lim an = (x,y) - lim f(an) = 
n - t m  n + m - -  

1 1  f (x, y) . So, let {an) be a sequence, where an = 

Clearly, {an) converges to (0,O) as n goes to + =J. However, 
the corresponding sequence of values of f converges as 

follows: 

1 1  
2 ( ~ 1  

lim f (an) = lim 
n+w n - tm  

= 14% 1 = 1 # f(0,O) = 0. 
1 2  n (;12 + 



Thus, by Heine's condition of continuity, we see that f is 

not continuous at (0,O). 

An Example of a Separately Continuous Function 
which is Discontinuous on a Countably 

- .  
Infinite Dense Subset of the Domain 

We can now use the function illustrated above to 

construct a new separately continuous function which has 

two points of discontinuity. Let 

As we have seen, f l  has a point of discontinuity at the 

origin. Now, let 

Observe that f is of the same type as fl, but with the 
2 

point (+,+) as the "origin". The function f* = fl + f2 is 
- 

now separately continuous but has two points of discontin- 

uity. 

We can continue this process by defining a method 

of choosing the successive points of origin. In fact-, by 

this method, we can construct a function which is separately 

continuous, but whose set of points of discontinuity is 

countably infinite. Consider the closed square 

A = [-I, 11 x [-I, 11 in lR2 .  Let us define a method of select- 
- 

ing points in A whereby we choose the center of successively 

smaller squares as shown in the illustration. The first 

point is the center of A, and the next four points are the 



centers of the first, second, third, and fourth quadrants 

in that order. The next sequence of 16 points begins again 

in the first quadrant, with point number 6 being the center 

of the first quarter-quadrant, point number 7 being the 

center of the second quarter-quadrant, and so on. 

Observe that the selected points are arranged in a 

sequence as follows: (al,bl) = (0,0), (a2,b2) = ( % I % )  

(a3,b,) = (-%,4) - - =  

Fig. 2.--Densifying Points in the Rectangle [-l,l]x[-l,l] 

Now consider the sequence of all of the points-- 

arranged in the indicated order; call it { (an,bn) },  " = 1 

2, 3, ... Clearly, the sequence {(an,bn)} is countably in- 
finite. Let fn(x,y) be the function given by 



That is, fn is similar to the function given by 

but with the point (an,b ) as the "origin". Now let F (x.y) n 

= +fl (xIy) + ff2 (xty) + a  + $nfn(x,y) +. . . F is a function 
series in which each term is less than or equal to the 

corresponding term of the series + + f +...+ +" +..., which 
is convergent. Thus, the oscillation of F does not exceed 

two at any point of its domain. Each term f, of F generates 

a unique point of discontinuity of F, and the points of 

discontinuity of F are therefore countably infinite. Yet F 

is separately continuous everywhere on its domain, for on 

any straight line parallel to the x-axis or the y-axis, each 

term of the series is continuous, and therefore F is also 

continuous on the same line. 

We can also show that the points of discontinuity of 
- 

F form a dense subset of the domain, for let (x,y) E 

[-1,lI [-1,lI and let r > O  be given. Then r > $kfor some 

k EN, and if the square [-1,1] x [-1,1] is divided into quad- 
- - 

rants k + 2 times, the open sphere S [ (x,y) , r] will contain 
at least one point of discontinuity of F. 

Thus we have constructed an example of a separately 

continuous function f: IEt2+R which is discontinuous on a 

countably infinite dense subset of the domain. It is well - 



known' that the set of points of discontinuity of any real- 

valued function is an F, set. Thus, we see that the set of 

points of discontinuity of f is an FG set which is also 

countably infinite and dense in the domain of F. This re- 

sult is especially interesting in view of the well-known 

fact2 that the set of points of continuity of a real-valued 

separately continuous function from the product of, say, 

two separable and complete spaces, is a dense G6 set. Thus, 

F has a dense G6 set of points of continuity and a dense Fo 

set of points of discontinuity. 

I R. R. Goldberg, Methods of Real Analysis, (N. Y.: 
John Wiley and Sons, 1976), Second Edition, p. 144. 

L 2 .  Piotrowski, "Separate and joint continuity," 
Real Analysis Exchange, Vol.11, No. 2(1985-1986), 
pp. 293-322. 



CHAPTER I1 

GENERALIZED CONTINUITY AND MONOTONICITY 

Introduction 

Although separate continuity does not imply contin- 

uity, a separately continuous function f:IR2-+IR is continuous 

if f is monotone in one of the variables. This chapter pre- 

sents theorems and counterexamples involving monotone func- 

tions which exhibit not only separate continuity, but other 

kinds of generalized continuity as well. In particular, 

functions f: R2+R, where f is monotone in one or both vari- 

ables, are analyzed to determine what additional conditions 

on the function will result in continuity. 

Separate Continuity and Monotonicity 

We begin by defining monotonicity: 

Definition: Let X and Y be metric spaces. A function 

f: XxYJIR is nondecreasing [nonincreasing] in x for y E Y if 

xl 5 x implies that f(xl,yo) < f(x2,yo 
2 - [f(x1,y0) , 

We say that f: X xY+IR is monotone in x for y E Y 

if f is either nondecreasing or nonincreasing in x for ~ E Y .  

The definition of monotonicity in y for X E  X for functions 
- 

f: XxY+lR is similar to the above. 

Continuity clearly implies separate continuity, but 

as we have seen in Chapter I, the converse is not true. 



However, the following theorem presents a well-known result 

combining the notions of separate continuity and monoton- 

icity: 3 

Theorem 1: Let f: m2*IR be separately continuous and suppose 

that f is monotone in x for ycY. Then f is continuous. 

It is well known4 that a function f: lR2*IR can be con- 

tinuous along every analytic curve through a point (xoty0) 

without being continuous at (x ,yo). This stronger kind of 
0 

generalized continuity clearly implies separate continuity, 

and thus, when combined with monotonicity with respect to 

one of the variables, implies continuity. 

Near Continuity and Monotonicity 

Definition: Let X and Y be metric spaces. A function 

f: X*Y is nearly continuous at x if, for every open set V 
0 

containing f(x ) f-'(~) is a neighborhood of xo. 
0 - 

In order to proceed further, we need the following: 

Lemma: Suppose that a function f: lR*lR is nearly continuous 

and monotone. Then f is continuous. - - 
Proof: W.L.O.G., take f to be nondecreasing. Let xo be any 

point in the domain of f. Let V be any open interval 

'R. L. Kruse and J. J. Deely, "Joint continuity of 
monotone functions," Amer. Math Monthly, Vol. 76 (1969), pp. 
74-76. - 

4A. Rosenthal, "On the continuity of functions of 
several variables, "Math. Zeitschr., Vol. 63 (1955), pp. 
31-38. 



containing f (x ) .  By the near continuity of f, f-l(V) is a 
0 

neighborhood of xo . That is, f- ' (V) is dense in some open 

set, call it G, containing xO. Choose r >  0 such that 

o g  (xO ,I) c G. I claim that f [S (x ,r) 1 c V. Suppose, to the 
0 

contrary, that there exists a point x such that xl E S(X ,r) 
1 0 

and f (x g! V. W.L.O.G., assume that xl > x . Since f- (v) 
0 

* 
is dense in S (x ,r) , there exists a point x E f- ' (V) such 

0 * 
that x* > x and x E S (x ,r) . Since f is nondecreasing, 

1 0 

* * 
x < x  < x  - f(xo) 5f(xl) <f(x ) .  But this implies that 
0 1 

* 
f(x ) jf V, which is a contradiction. Thus, for every open 

set V containing f(xo), there exists r >  0 and there exists 

an open sphere S (xO ,r) such that f [S (x ,r) 1 c V. Hence f is 
0 

continuous. 

Applying the above Lemma, we have the following 
- 

generalization of Theorem 1: 

Theorem 2: Let f: lR2-tlR be a function which is nearly con- 

tinuous in x for every y and continuous in y for every x. 

Suppose that f is monotone in x for every y. Then f-2s con- 

tinuous. 

Proof: Since the y-sections of f are nearly continuous and 

monotone, by the Lemma, all y-sections are continuous. 

Since f is monotone in x for every y, by Theorem 1, f is 

continuous. 



Corollary 1: Let f: W+IR be separately nearly continuous 

(that is, all of the x-sections and all of the y-sections 

of f are nearly continuous.) Suppose that f is monotone in 

x for every y and monotone in y for every x. Then f is con- 

tinuous. 

The condition in Theorem 2 (and hence in the corol- 

lary) that the function be monotone in x for every y is 

necessary. To see this, suppose that a function f: IR2+IR is 

nearly continuous in x for every y, continuous in y for 

every x, but not monotone in x for every y (even though it 

is constant - hence monotone in y for every x). We shall 

construct such a function which will not be continuous. In 

fact, consider the real plane. Let all of the lines ex, 

where ex is parallel to the y-axis, and where x is rational, 

be raised to the level one. That is, let 

1, if x is rational and 
- 

0, otherwise 

Observe that f is monotone in y for every x, but not mono- 

tone in x for every y. Clearly, all x-sections of f are 

continuous. observe further that all y-sections of f- are 

nearly continuous. That is for each y in the domain of f, 
0 

(1, if x is rational 

£yo 
(x) = f(x,y0 1 

= I 0, if x is irrational . 
Clearly, for every x in the domain of f, and for every open - 

set V containing f (x), f-'(V) is a neighborhood of x. That 
Yo 



is every y-section of f is nearly continuous. It is easy to 

see that f is not continuous, and thus we see the necessity 

of the condition that f be monotone in x for every y. 

It has been shown5 that separate near continuity 

does not imply (joint) near continuity, and (joint) near 

continuity does not imply separate near continuity. In view 

of the just stated results of T. Neubrunn, it would be inter- 

esting to see an analogue of Theorem 2 for (joint) near con- 

tinuity. 

Recall that a function f: IR2-tlI? is nearly continuous at (p,q) 

if, for every open set V containing f (p, q) , f- ' (V) is a 
neighborhood of (p,q). 

Theorem 3: Let f: IR2+IR be nearly continuous and suppose 

that f is increasing [decreasing] in x for every y and is 

increasing [decreasing] in y for every x. Then f is con- 

tinuous. 

Proof: W.L.O.G., let f be increasing in x for every y and - 

increasing in y for every x. Let (p,q) be any point in the 

domain of f. Let V be any open interval containing f(p,q). 

- 1 By the near continuity of f, f (V) is a neighborhood-of 

(p,q) . Then, f-' (V) is dense in some open set, call it G 

containing (p, q) . Choose r > 0 such that (p-r ,p+r) x (p-r , q+r) 

= A c G. I claim that f (A) c V. Assume, to the contrary, 

that there exists a point (xl,yl) & A  such that f(xl,yl) &V. 
- 

- - 

5 ~ .  Neubrunn, "Generalized continuity and separate 
continuity," Math. Slovaca, Vol. 27 (1977), pp. 307-314. 



We now show that this assumption leads to a contradiction. 

W.L.O.G., let xl > p and y, > q. Since f-I (v) is dense in 
* * 

A, there exists a point (x ,y ) in f- ' (V) such that 
* * * * 

(X ,y ) 3  A and x > x l  and y >yl. Since f is increasing in 

x for every y and increasing in y for every x, p <  x l <  x* and 

* * * 
q <  y l  < y f(p,q) < f (xlfyl) < f (x ,Y ) ~ u t  this implies 

* * 
that f(x ,y ) jf V, a contradiction. Thus, for every open 

set V containing f(p,q), there exists an open rectangle 

(p-r,p+r) x (q-r,q+r) = A such that f (A) c V. Hence f is 

continuous.O 

Fig. 3.--An Illustration of the Proof of Theorem 3 
- 



Quasi-continuity, Symmetric 
guasi-continuity, and Monotonicity 

S .  Kempisty first introduced the notions of quasi- 

continuity and symmetric quasi-continuity. 6 

Definition: Let X, Y, and Z be topological spaces. A 

function f: X xY+ Z is guasi-continuous at the point (p ,q )  

in its domain if, for every open set V containing f(p,q), 

and for every open set U c X  containing p, and for every open 

set W c  Y containing q, there exists an open nonernpty set G, 

where G c U  x W, such that f (GI c V. 

It is well known that separate continuity implies quasi-con- 

tinuity. An example of a quasi-continuous function is the 

following: Let f: [-1,lI x [-1,1] +IR be defined by: 

0, if (0 - < x L 1  and 0 < y < 1) or (-1 < x < Oandd - - - - 

1, otherwise -1 5 y 5 0) 

Observe that this function, which is quasi-continuous and is- 

also monotone in x for every y, and monotone in y for every 

x, would be actually a counterexample to a conjecture that 

quasi-continuity and monotonicity with respect to both-vari- 

ables, imply continuity. 

However, there is another counterexample which will 

show that a stronger condition of symmetric quasi-continuity 

6 ~ .  Kernpisty, "Sur les fonctions quasicontinues" , 
- 

Fundamenta Mathematicae, Vol. 19 (1932), pp. 184-197. 

7 ~ .  Piotrowski, "Separate and joint continuity", 
p. 295. 



and monotonicity with respect to both variables, does not 

imply continuity. First, we define symmetric quasi-contin- 

uity . 
Definition: A function f: IR2+IR is quasi-continuous with re- 

spect to x if for every (p,q) EXXY, and for every open set 

G containing f(p,q), and for every open set 0 = U x V  3 (p,q) , 

there exists an open (in X) nonempty set U'c U, and there 

exists an open (in Y) set V'c V, where V contains q, such 

that f (U' XV') c G. 

Quasi-continuity with respect to y is similarly de- 

fined. 

Definition: If a function f: IR2+lR is quasi-continuous with 

respect to x and quasi-continuous with respect to y, then we 

say f is symmetrically quasi-continuous. 

Again, it is known that separate continuity implies 

symmetric quasi-continuity and that symmetric quasi-contin- 

uity implies quasi-continuity.8 An example of a symmetric- 

ally quasi-continuous function, which turns out to be our 

counterexample, is the following: Let f: X?+IR be the func- 

tion defined by 

1, if y > x - 

0, otherwise 

This function is symmetrically quasi-continuous at every 

point on the line y = x and is continuous (and thus sym- 

metrically quasi-continuous) at all other points of its - 

'Z . Piotrowski , 'Separate and joint continuity', 
p. 295. 



domain. Observe further that the function is monotone in 

x for every y and morlotone in y for every x. However, the 

function is not continuous. Thus it is clear that symmetric 

quasi-continuity, when combined with monotonicity with re- 

spect to both variables, does not imply continuity. 



CHAPTER I11 

THE CLOSED GRAPH PROPERTY, 
GENERALIZED CONTINUITY, AND CONTINUITY 

Introduction 

A function f: X+Y, where X and Y are arbitrary topo- 

logical spaces, has a closed graph if the graph of f, denoted 

by G (f) = { (x, f (x) ) :x E X) is a closed subset of the product 

X xY. Very little is required in order that a continuous 

function have a closed graph, In fact, the following is 

true : 

Theorem 4: Let X and Y be topological spaces and Y be 

Hausdorff. Suppose that f: X -+ Y is continuous. Then G (f) 

is closed in X x Y. 

Proof: Let p = (xo ,yo ) be a limit point of G(f). Assume 
- 

that p j? G(f), Since Y is Hausdorff, there exists an open 

set G c Y  such that G contains yo and G does not contain 

f (xo); and there exists an open set Vc Y such that V con- 
- - 

tains f(x ) and G n V  = pl. By the continuity of f, there 
0 

exists an open set Uc X such that U contains x and f (U) c V. 
0 

Since the product of open sets is open in the product of the 

spaces, U xG is an open set containing p but no other point 
- 

of G (f) . This is a contradiction and shows that G (f) con- 

tains all of its limit points. Eence, G(f) is closed in ~xy.0 



The following is a useful characterization of the 

closed graph property: 

Definition: Let f: X+Y, where X and Y are metric spaces. 

If {xn} converges to x and if {f(xn)} converges to y, then 

f has a closed graph if f(x) = y. 

Functions with Closed Graph 
and Conditions for Continuity 

As shown above, continuous functions have closed 

graphs provided that the range is Hausdorff. We now turn 

our attention to functions which have the closed graph prop- 

erty. An important problem is to determine, where a func- 

tion has the closed graph property, what additional condi- 

tions on the function are necessary in order that the func- 

tion be continuous. 

First, we observe that the closed graph property 

does not, of itself, imply continuity. Consider, for exam-- 

ple, the function 

1 ,  if x + 0 
f (x) = 1 0  , i f x = ~  

Clearly, G(f) is closed in XxY, but f is discontinuous at 

the point x = 0. Thus, we see that the closed graph prop- 

erty does not imply continuity. However, a well known 

theorem9 provides that a function is continuous if it has 

'5. Dugund j ii, Topology, (Boston :Allyn and Bacon, 
1966), p. 228. 



the closed graph property and the range is compact: 

Theorem 5: Let X and Y be topological spaces and let 

f: X + Y  with Y compact. If G(f) is closed in XXY, then f 

is continuous. 

We shall now present a theorem which places a condi- 

tion on the function f rather than on the range of f. We 

shall require that the function be bounded. This result is 

proved first for the real numbers and then for more general 

spaces. 

Theorem 6: Let f: lR2+IR be bounded and suppose that G(f) is 

closed inE?xlR. Then f is continuous. 

Proof: Let (x,y) be any point in the domain of f. Let 

{(xn,yn)} be any sequence of points in the domain of f such 

that (xnf yn) } converges to (x,y) . I claim that If (xn,yn) 

converges to f(x,y), and thus by Heine's condition of con- 

tinuity, f is continuous. Assume the contrary, namely, that 
- 

{f(xnfyn 1 )  does not converge to f(x,y). Let Vc Z be any 

open interval containing f (x,y) . Then since { f (xn,yn) 

does not converge to f(x,y), there exists an infinite set A 
- - 

consisting entirely of points of If(xn,yn)} such that A n V  = 

8. The set A is bounded because f is bounded. By the 

Bolzano-Weierstrass Theorem, A has at least one limit point. 

Let z be a limit point of A. Then A contains a subsequence 

) I  which converges to z .  Clearly z # f(x,y). {f (xn rY, 
- 

i i 

Since all subsequences of a convergent sequence of real 



numbers converge to the same limit as the main sequence, and 

since { (x ,yn ) 1 is a subsequence of (xn,yn) 1, then 
"i i 

{ x n y n  + (x~Y) 1 ( x .  ~ u t  this is a 

contradiction of the closed graph property of f, because 

{ (xn ,yn 11 +(x,y) and {f (xn ,yn +z, but z # f(x,y). 
i i i i 

Hence, the original claim is correct, that {f(xn,yn)} con- 

verges to f(x,y), and by ~eine's condition of continuity, f 

is continuous. 

Observe that Theorem 6 is true for more general 

spaces. Before demonstrating this, let us recall the fol- 

lowing : 

Definition: A space X is called a Bolzano-Weierstrass 

space provided that every infinite subset of X has at least- 

one limit point. 

Observe that every compact space is a Bolzano-Weierstrass - 

space, but the converse is not true. Now, we have the fol- 

lowing : 

Theorem 7: Let X, Y and Z be metric spaces and let Z-be 

Bolzano-Weierstrass. Let f: X x Y +  Z and suppose that G(f) 

is closed in X x Y x  Z. Then f is continuous. 

Proof: Let (x,y) be any point in the domain of f. Let 

{(xn,yn)} be any sequence of points in the domain of f such 
- 

that i (xn,yn) 1 converges to (x,y) . I claim that {f (xn,yn) 1 

converges to f(x,y). Assume the contrary, namely that 



{f (xntyn )I does not converge to f(x,y). Let V c  Z be any 

open interval in Z such that V 3  f(x,y). Then since 

{f (xntyn )I does not converge to f(x,y), there exists an 

infinite set A consisting entirely of points of {f(xn,yn)I 

such that A n V  = a .  Since Z is Bolzano-Weierstrass, the 

set A has at least one limit point. Let z be a limit point 

of A. Then A contains a sequence If(xn ,yni )I which con- 
i 

verges to z. Clearly z # f(x,y). Since X and Y are metric 

spaces, and since 1 (xn,yn ) I  converges to (x,y), then the 

subsequence { (xn, y, )I also converges to (x,y). But this 

is a contradiction of the closed graph property of f. Hence, 

{f(xn,yn)I converges to f(x,y), and f is continuous. 

Generalized Continuity and the 
Closed Gra~h Pro~ertv 

- 

As we implicitly observed above, continuous func- 

tions do not necessarily have the closed graph property, 

but for realvalued functions, continuity does imply closed 

graph. We shall now show that for a function £:IR~+', 

separate continuity does not imply closed graph. Consider 

the function 

- 

To show that G(h) is not closed in X x Y x  Z, we shall use the 

characterization of the closed graph property given on page 



17 above. Returning to the function h, observe that the 

sequence 1 l/n, l/n) converges to (0,O ) , and that { h (l/n, l/n) 1 

converges to I. However, h(0,O) # 1. Thus, we see that a 

functian can be separately continuous but not have the 

closed graph property. Clearly, other kinds of generalized 

continuity, such as near continuity, do not imply the 

closed graph property. 

Many interesting results have been obtained concern- 

ing nearly continuous functions which have the closed graph 

property. The general problem is to determine what condi- 

tions on the domain and range of a function guarantee that 

if the function is nearly continuous and has a closed graph, 

then it is continuous. It has been shown, for example, that 

if the domain and range are both complete metric spaces, 

then near continuity and closed graph imply continuity. 10 
- 

It has also been shown that if f: X+Y is nearly continuous, 

Y is locally compact and either regular or Hausdorff, and - 

G(f) is closed, then f is continuous. An open question is 

the following: Let f: X XY* Z be separately nearly contin- 

uous and suppose that Z is locally compact and either-reg- 

ular or Hausdorff. If G(f) is closed in XxYxZ, is f 

continuous? 

''A. J. Berner , "Almost continuous functions with 
closed graphs," Canad. Math. Bull., Vol. 25(4) (1982), 
pp. 428-434. - 

"E. E. McGehee, Jr. and P. E. Long, "Properties of 
almost continuous functions," Proc. Arner. Math. Soc., Vol. 
24 (1970), pp. 175-180. 
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In Chapter I the notion of separate continuity is 

introduced and explained using various examples, including an 

example of a real valued separately continuous function which 

has a dense countably infinite set of points of discontinuity. 

The latter example is explicitly constructed using a method 

of densifying points in the real plane. 

Chapter I1 introduces other kinds of generalized 

continuity and presents theorems on generalized continuity - 

and monotonicity. In particular, the notions of quasi-con- 

tinuity, symmetric quasi-continuity, and near continuity are 

introduced. The discussion and analysis deals with real val- 

ued functions of two variables which are monotone in one or 

both of the variables. The general question addressed is 

what conditions of generalized continuity on such a function 

will guarantee that the function is continuous. The Lemma on 

page 8, Theorem 2, Theorem 3, and Corollary I are my results. 

Theorem 2 states that a function f: lR2-+lR, which is continu- 

ous in y for every x, nearly continuous in x for every y, and 

monotone in x for every y, is continuous. This is a general- 



ization of the previously known result presented in Theorem 

1. Theorem 3 presents a similar result for a function 

f : IR~-.)I.R which is jointly nearly continuous. 

In Chapter I11 the closed graph property is intro- 

duced, and various theorems are presented concerning this 

property, generalized continuity and continuity. Theorems 6 

and 7 are my results. Theorem 5 states the well-known result 

that a function f:X-+Y, where Y is compact and G(f) is closed 

in X x Y ,  is continuous. Theorems 6 and 7 place a different, 

although related condition on a function f:X x Y-- .Z ,  (namely, 

that f be bounded), rather than the compactness of the range 

off. 
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