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ABSTRACT

FINITE ELEMENT ANALYSIS OF BEAT CONDUCTION

IN THE ABSORBER PLATE OF A SOLAR COLLECTOR

Faramarz Mossayebi

Master of Science in Engineering

Youngstown State university, 1987

The Finite Element Method (FEM) is used to model the

absorber plate of a flat plate solar collector. The Finite

Element equations for steady-state temperature distribution

are then derived by the Galerkin approach. Based on these

formulations, a computer program is written in FORTRAN

language to obtain the temperature field. The program

contains all the necessary algorithms to handle two

dimensional Laplace and Poisson's equations. Only some

basic input data is essential to run the program.

The Finite Element solution is compared to the

analytical solution and/or the solution by the Finite

Difference Method, where possible. The results show good

agreement.
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CHAPTER I

INTRODUCTION

Flat plate solar collectors are the most common un

sophisticated device for harnessing solar energy at low

cost. A typical collector consists of an absorber plate,

piping for coolants, transparent cover glazing, thermal

insulation and a casing. The heart of the system is the

absorber plate. It is desired to determine the steady-state

temperature distribution on the absorber plate. This type

of problem belongs to one of the classical groups of

problems in heat transfer analysis. Yet, an accurate

prediction of temperature distribution on the absorber plate

is quite difficult due to nonuniform boundary conditions and

other uncertain conditions. The main objective of this

thesis is focused on numerical analysis rather than

mathematical modeling of an absorber plate. In other words,

the methodology and procedure of finite element formulation,

and its implementation to numerical computing, have been

dealt with in detail.

Finite element method is an approximate method for

solving differential equations of boundary and/or initial

value problems. The name IIFinite Element Method ll first

appeared in 1960, when it was used in a paper on a plane

elasticity problem by Clough [1]. However, Turner, et al.[2]
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were the pioneers with their paper on solution of plane

stress problems by means of triangular elements, which was

pUblished in 1956. In 1965, Zienkviewicz and Cheung [3]

reported that the method is applicable to all field problems

which can be cast into variational form.

The range of applications for the finite element

method was greatly enlarged when Szabo and Lee [4] and

Zienkiewicz [5] showed that the finite element equations

could be derived by using a weighted residual procedure.

The finite element method reduces a continuum

problem, which theoretically has infinite number of

unknowns, to one with finite number of unknowns by dividing

the solution region to a finite number of subdomains called

"finite elements". The field variable within each element

is then expressed in terms of some assumed approximate

functions. These approximate functions ( also called

interpolation functions ) are defined in terms of the value

of the field variables at "nodes". The nodes usually lie on

the element boundaries where adjacent elements are

connected. The finite element equations which govern all

isolated elements are then derived. Finally these elements

are assembled to form a global system of equations. After

incorporation of the boundary conditions, the nodal value of

the field variable is determined from the global system of

equations.

In the process of solving the global system of

equations, matrix technique combined with digital compute~



is generally employed. A complete compact computer program

which could handle the general heat conduction problem with

various boundary conditions was written and applied to the

problem.

3
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CHAPTER II

ABSORBER PLATE DESCRIPTION AND MATHEMATICAL MODEL

When a flat plate solar collector absorbs solar

radiation the temperature of the absorber plate gradually

rises until it is high enough above ambient such that the

rate of heat loss from the plate to the ambient just

balances the rate of heat gain from absorbtion of solar

rays. Practically a hot metal sheet is not of any value by

itself. In a solar collector the collected heat is carried

off by movement of a fluid, either as air blown over the

plate or a fluid flowing through tubes attached to the

plate. A typical liquid-cooled flat plate collector is

illustrated in Fig. 1. Assuming that the spacings of the

tubes attached to the absorber plate are equal, only one~

:t

\Insulation

/
Fluid tUbes~

/////////////////$

-

~""'-------- -'u'Absorber

plate

Glass
cover

Fig. 1. Liquid-cooled flat plate collector
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section of the absorber plate is considered for analysis as

shown in Fig. 2. Other major assumptions made are as

follows [6J:

1. The absorber plate is made of aluminum with

constant properties, and receives constant solar

flux.

2. There is no convective and conduction heat loss

in the vertical direction.

3. The inlet (Ti > and outlet (To> temperatures of

fluid are constant.

4. The temperature variation of the fluid from Ti
to To is linear.

Y t

I

T.
1

_._._._.+:...~ X

.
I
I

I
t I t.

I

o 0

Fig. 2. A section of absorber plate
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considering the symmetry of the absorber plate with

respect to y axis ( Fig. 2) and the above assumptions, the

mathematical model of the plate can be constructed as shown

in Figure 3. From Fourier's law of heat conduction, the

governing differential equation of the model can be written

as

a 2T a 2T a 2T
-+-+ =0
ax 2 ay 2 az 2

(1)

Analysis of three dimensional problems by the finite element

method ( and, in general, any numerical method ) requires

extensive programming efforts and computational

capabilities. However, due to the fact that the thickness

of the absorber plate is small, temperature gradient in the

z direction is assumed to be negligible. Hence, the lumping

technique reduces the problem to a two dimensional problem

(Fig. 3) as follows:

JI: ( a 21: a 2T [c a 2T
-+ - ) dz = - a;r ) dz (2)

ax 2 ay 2
" II

a 2T a 2T q
-+ ay 2 = -- (3)

ax 2 K

where q is calculated in Appendix D. The boundary conditions

for the above equation are as follows

aT
(0, y) = 0 0 < y < 0.6 m

a~

aT- K = h (T - T ) at x = 0.15 m
ax c 00

T (x,O) = T. = 50°c
1

T (x,0.6) = T = 53°C
0



y

I
1+---- O.15m .

T=53"c~

~----~ t=O.00l27 ~

h,T
00

7

Fig. 3. Mathematical model of the absorber plate
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CHAPTER III

FORMULATION OF FINITE ELEMENT EQUATIONS FOR
HEAT CONDUCTION IN THE ABSORBER PLATE

In the finite element method, there are basically

four different approaches in the formulation of element

properties: direct approach, energy balance approach,

variational approach, and weighted residual approach [7].

The most versatile approach for a continuum problem is the

weighted residual approach which is adopted in this

analysis. A brief discussion of the weighted residual

approach is presented in Appendix c.

The Finite Element Formulation

Assuming that the solution domain is divided into n
-_e-

triangular elements, the overall finite element equations

can be obtained by deriving the equations for each element

and assembling them.

The element equations are derived by assuming a

linear variation of T in each element, as it is discussed in

Appendix A. Therefore

T~X,y) = N(X,y) Te

where Te and N(X,y) are given by equations (68) and (69)

respectively as

(5)
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Ti
T.

J
Tk

Substituting eq. (5) into the equation (3) yields

Applying the weighted residual(Galerkin) principle,

where Q is the domain. This equation can be transformed

(6)

(7)

(8)

(9)

into a first degree equation by noting that

a aT' a2T' aN. aT'
K (Ni K Ni K

:I.- -) = -+
ax ax ax 2 ax ax

or
a2T' a aT' aN . aT'

K Ni K (N. -) - K
l

=
ax 2 ax l- ax ax ax

y

h, T
00

(10)

(11)

Fig. 4. Finite element modeling of the absorber plate
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Similarly,

a2T' a
K· N. - = K

~ ay2 ay
aT' aN. aT'

(N. ----) - K~
~ a y ay ay (12)

aT'
(N. -)

~ ax

SUbstituting equations (11) and (12) into equation (9)

yields .

-1 N. ( aNi ~ + aNi ~)d Q +lK{~
.G ~ ax ax ay?Jy Q ax

a aT' i+ ---- (N. -)}d Q+ N. qdQ = 0
ay ~ ay ~

Q

(13)

Applying Gauss theorem to the second integral of equation

(13) yields

~
aN. aT' aN. aT'

1 1
- N. (---- ---- + ---- -)d

Q ~ ax ax ay ay
aT'

-Q,)& +(N. qdQ =0
ay y )Q ~

(14)

where r is the surface which bounds the region Q , and Q, x

and Q,y are direction cosines of the outward drawn normal to

the boundary. The surface can have a combination of two

different kinds of boundaries, convection and prescribed

temperature. For instance, the element number 72 in the

mesh of Fig. 4 is subjected to convection and a prescribed

temperature. This element is redrawn as shown in Fig. 5,

Fig. 5. Boundary conditions for a triangular element
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where f1 and f2denote prescribed temperature and convection

boundaries, respectively. The surface integral of (14) can

be written as
aT' aT' aT'

ffKNi (a;-fl.x+ay-fl.y)df = Jf 1
K Ni(a;-fI. x +

:-IT' aT' aT'
':- fI. ) d f 1 + ( K N. (- fI. + - fI. ) d f 2 (15)
ay y )f2 1. OX x oy y

Because the temperature over f1 is prescribed and constant,

the surface integral over f1 is zero. Since

oT' oT'
K (- fI. + - fI. ) = - h (T - Too)

OX x oy Y

it follows that

oT' aT'

J KN.(-fI. +_fl. y)dr2=-(hN1..(T"-Too)df2• (16)
f 2 1. 0Y x aY )f 2

SUbstituting equation (16) into equation (14) yields

oN. oT' oN. oT' i
2
h Ni(T oo --i KN. (--L -+ --l... -)d rl T) d f2+

rl 1. ox ox oy oy

J N. q drl = 0 (17)rl 1.
Expanding the second integral and rearranging yields

aN. dT' oN. dTl

-J: KN. (--1- -+ --l... -)d rl -jh N. T d f 2+
rl 1. ox ox oy oy f2 1.

f h N. T dr2 +iN. q dn = 0 (18)f2 1. 00 rl 1. ,
The partial derivatives of T with respect to x and y are

obtained from equation (5) as

oT' 0
Te oN.

Te= (Ni ) = --L
ox ox ax

~ L- Te oN.
Te= (Ni ) = --l... (19)

oy oy oy
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Substituting equation (19) into equation (17) and writing it

in terms of matrices yields

[ K ] TIe + [ K ] TIe - f - f = 0--n q h

where

[ K ] = k K [B]T [B] drl ,

[ ~ ] = h2 h [N] T [N] dr2'

f q = h. q[N] T d rI ,

f h = ff2h T [N]T dr2,

and
aN aN aN

[af- --1.. at-]aX
[B] = aN aN aN

1 2 3- -ay ay ay

Construction of element characteristic matrices

The element conduction and force matrices are

calculated from equation (20). Matrix [K] is calculated for

each element while [~] is calculated for those elements

which are subjected to convection heat loss. The vectors f q
and f h are calculated for the elements which are subjected

to internal heat generation and convection, respectively.

Assuming that the solar absorber plate is

discretized by 9 nodes and 8 elements as shown in Fig. 6,

the matrix K must be calculated for all eight elements,

while ~ is calculated for element numbers 6 and 8 which are

sUbjected to convection heat loss. In order to determine

matrix K, the matrix B must be evaluated. However, to

calculate B, the partial derivatives of shape functions N.
1.
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y

3

2

1

9

k-------~------~8

~------.a-------~I.__---+x

Fig. 6. Discretiziation of the absorber plate

with respect to x and y should be derived. From equation

(69) ,

Ne=[Ni Nj Nk ] =1/2A[ ai+bix+ciy a.+b.x+c.y ak+bkx+cky]J J J
Therefore

aN. bj
oN. c.

1 = 1 = 1

a x 2A a y 2A

oN. b. aN. c.
J J 2i-a x~ = 2A =a y

a Nk bk a Nk ck= 2A = (21)a x a y 2A

where b i , b. , ......, and ck are given by equation (63) and
J

A is the area of the triangle. Substituting equation (21)

into equation (20) yields

c

[B]= 1/2A [i b
j

c. C.
J. J

Since B is constant and independent of x and y,

[K] = (k [ B ]T [ B ] dA = k [ B ]T[ B ] JdA
)A A

(22)
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preforming the integration gives

(24 )

bibk+CiCk

bjbk+cjCk
b k + c k

b.b.+c.c.
~ J ~ J

b j + c j
[

b. + c.
~ ~

[K]=k/(4A)

symmetric

considering element number 1,

X.=y.=O.O
~ ~

Xj =0.075

xk=O.o

Substituting into

bi=-O.3

y.=O.O
~

Yk=0.3 •

equation (63) yields

c i =-0.075

b.= 0.3 C.= 0.0
J J

b k= 0.0 c k= 0.075

SUbstituting into equation (24) results

[

0.09562 -0.09

Kl = k/4Al 0.09

symmetric

-0.00562 ]

0.0

0.00562

(25)

Since element number 1 is not subjected to convection heat

loss,

[~l] = {fhl } = 0

If the Element Conduction Matrix (ECM) is defined as

(26)

then

[ECMl ] = [Kl ] (27)

Since all the elements have constant heat generation, from

equation (20)



N.
l.

f q1 =In l q [N] T d nl = q in l Nj d nl

Nk
where nl is the domain of element number 1.

15

(28)

The evaluation

of this integral is painless if the area coordinates are

employed. The concept of area coordinates and its relating

integral formulas are discussed in Appendix B. Assuming

that L1 is measured from the side opposite to node i,

L
1

= N i ,

L2 = Nj , and

L3 = Nk • (29)

Substituting into equation (28) and using equation (76) with

the assumption that the thickness is unity, yields

L1

{~ )f q1 = q.L" L 2 dA1 = qA1 /3

L 3
If the Element Force vector (EF) is defined as

(30)

, (31)

then

{EF1 } = f q1
The heat generated within the absorber plate (

approximated to be 139433 w/m3 ( Appendix 0 ).

46477.68)

{EF1 } = A1 46477.68

46'477.68

(32)

q ) is

Therefore

(33)

Since element numbers 2,3,4,5, and 7 are not SUbjected to

convection heat loss, repeating the above procedure yie1ds--



16

the following element property matrices for aforementioned

elements:

0.0

0.00562

(35 )

(34)

0.0 1
-0.09

0.09

-0.09 ]
-0.09562

0.00562
[

0.09

symmetric

[

0.00562 -0.00562

0.09562

symmetric

0.0

0.00562
[

0.09

symmetric

-0.09 ]
-0.00562

0.09562

(36)

[

0.00562

symmetric

-0.00562

0.09562
0.0 ]

-0.09

0.09

(37)

-0.00562

[

0.00562

symmetric

0.09562
0.0 ]
-0.09 •

0.09

(~8)

Since the areas of all the elements and the heat generated

within each element are equal,

1
46477.63)

{EFI}={EF2}={EF3}={EF4}={EF5}={EF7}= Al 46477.63 •

46477.63

(39 )

since element numbers 6 and 8 are sUbjected to convection,

{Kb} and f h matrices are not zero. Considering element

number 6, [K6 ] and f q6 are calculated as
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[

0.00562 -0.00562

0.09562

symmetric

0.0 ]
-0.09

0.09

(40)

and

46477.63

46477.63

46477.63

(41)

(42),:~::l d r
N 2

k

which must be evaluated over the surface from which the

However, [KhJ is given by

[KhJ=1r h[NJT[NJdr = hfr [N
i
2

:~=j
symmetric

element is subjected to convection. For element number 6,

side i-j is subjected to convection. Since Nk is zero along

this side, equation (42) reduces to

O. OJ
0.0 d r

0.0

(43)

Employing the area coordinates and using related integral

formulas gives

, (44)

where rijis the ~ength of side i-j and is calculated by

:ij = Jcx i - X j )2 + (Yi _Yj)2 = 0.3 (45)

Substituting rij =0.3 and h=304. 0 w/m2K (Appendix D) into

equation (43) and then forming the element conduction matrix

gives



[

59.92 -14.28

[ECM6]=[K6]+[Kh6 ]= 531.92

symmetric

0.0 ]
-471.99

471.99

18

(46 )

Furthermore, f h6 is obtained as follows:

N.
~

Too) Njr ..
lJ N

k

Using the area coordinates and integrating yields

SUbstituting Too = 51°c,

f h6 = J:::::::l
10.0

The element force matrix is then obtained as

(47)

(48 )

(49 )

{EF
6

}
(

2851.45 I
= 28251.45

522.87

(50)

Similarly, the element conduction and force matrices for

531.92

-14.28

element number 8 are calculated as

[

59.92

symmetric

and

0.0 I
-471.99

471.99

(51)
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(52)

The FORTRAN coding for calculation of these element

property matrices is shown in Table 1. The variables are

defined as follows:

GK = element conduction matrix,

FQ = heat generation force vector,

FH = convection force vector,

GKH = element convection matrix,

cc = thermal conductivity,

H = coefficient of convection heat loss,

SEIJ = length of I-J side of the element, and

A = area of the element.
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Table 1. Fortran coding for calculation of property matrices

c.....
c ... obtain nodal coordinates
c .....

B1=Y2-Y3
B2=Y3-Y1
B3=Y1-Y2
C1=X3-X2
C2=X1-X3
C3=X2-X1

c... calculate area
A(I)=(C3*BI-C1*B3)/2
GK(1,1)=B1**2+Cl**2
GK(1,2)=B1*B2+C1*C2
GK(1,3)=B1*B3+Cl*C3
GK(2,2)=B2**2+C2**2
GK(2,3)=B2*B3+C2*C3
GK(3,3)=B3**2+C3**2
GK(2,1)=GK(1,2)
GK(3,1)=GK(1,3)
GK(3,2)=GK(2,3)
DO 20 M=1,3
FQ(M)=QD(I)*A(I)/3.0
FH(M)=O.O
DO 20 N=1,3
GK(M,N)=GK(M,N)*CC/(4*A(I»
GKH(M,N)=O.O

20 CONTINUE
IF(INBC(I) .EQ.O) GO TO 30

C••. boundary on ij side of element
SEIJ=SQRT«X2-Xl)**2+(Y2-Yl)**2)
CT=H(I)*SEIJ/6.0
GKH(1,1)=2.0*CT
GKH(1,2)=CT
GKH(2,1)=GKH(1,2)
GKH(2,2)=GKH(1,1)
FH(1)=H(I)*SEIJ*AT(I)/2.0
FH(2)=FH(1)

30 CONTINUE
c....
C ••••
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Assemblage of Element Equations

Once the element properties are determined, the

next step is to construct the overall system equations which

in a sense is equivalent to constructing the solution domain

with the elements that comprise it. The assembly is based

on the principle of compatibility; that is, at the nodes the

value of the unknown field variable is the same for all

elements joining at that node.

The element conduction matrix and force vector for

element I are rewritten in Table 2. The location of any

coefficient ECij in the global conduction matrix, [GC], is

identified by the global degrees of freedom corresponding to

the local degrees of freedom. The location of the

coefficients ECij in [GC] and EFi in {GF} for element I is

shown in Table 3. The conduction matrix and the force

vector of the second element are shown in Table 4. These

elements are placed in [GC] and {GF} at appropriate

locations as shown in Table 5.

The final global conduction matrix and force vector

are obtained by adding the contributions of elements 3

through 8 to those shown in Table 5. If there is no

contribution from any elements to any coefficient of [GCM] ,

then that coefficient will be taken as zero. The final

global conduction matrix and force vector are shown in Table

6. The matrix [GCM] is written in a sYmmetric banded form.



Table 2. Coduction and force matrices of element 1

local
d.o.f i j k

global
d.o.f 1 4 2

i 1

r01.
49 -471.99 -29.49]

[EC1 ]= j 4 471.99 0.0

k 2 symmetric 29.49

22

{EF1 }=

i

j

k

1

4

2
{

522.87

522.87

522.87



Table 3. Location of the coefficients of [ECl ] and {EFl }
in [GCM] and {GF}.

23

global
d.o.f 1 2 3 4 56789

1

2

3

501.49 -29.49

-29.49 29.49

-471.99

0.0

4 -471.99 0.0 471.99

[Ec1 ]= 5

6

7

8

9

1 522.87

2 522.87

3

4 522.87

{EF1 }= 5

6

7

8

9



Table 4. Conduction and force matrices of element 2

24

local
d.o.f

global
d.o.f

i

2

j

4

k

5

i

j

k

i

j

k

2

4

5

2

4

5

[

471.99 0.0

29.49

symmetric

522.87

522.87

-471.99]

-29.49

501.49

Table 5. Assembly of [EC1 J,[EC2 J,{EF1 },and {EF2 }

global
d.o.f 1 2 3 4 5 6 7 8 9

1 501.49 -29.49 -471.99

2 -29.49 29.49+ 0.0+ -471.99
471.99 0.0

3

[EC1 J+ 4 -471.99 0.0+ 471.99 -29.49
[EC2 J= 0.0 +29.49

5 -471.99 -29.49 501.49

6

7

8

9



Table 5. (continued)

1 522.87

2 522.87+522.87

3

4 522.87+522.87

EF1 }+ 5 522.87
EF }=2 6

7

8

9

Table 6. Global conduction and force matrices

501.49 -29.49 0.0 -471.99

1002.99 -29.49 0.0 -943.99

501.49 0.0 0.0 -471.99

1002.99 -58.99 0.0 -471.99

[GCM] = 2005.99 -58.99 0.0 -943.99

1002.99 0.0 0.0 -471.99

531.93 -14.28 0.0

1063.87 -14,28

531.93

25
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Table 6. (Continued)

522.87

1568.62

1045.74

1568.62

{GF} = 3660.11

1045.74

3374.32

5702.9

3374.32

Table 7 shows the FORTRAN coding that has been used

for the assembly process. Since the matrix [GCM] is banded

and symmetric, only the upper triangular matrix is

calculated and stored. The variables are defined as follows:

NEL = number of elements

NNODE = total number of nodes

NBW = number of band width

GCM = global conduction matrix

ECM = element conduction matrix

GF = global force vector

EF = element force vector

NENN(i,j) = global node number corresponding to the

jth corner of i th element. (53)
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Table 7. Fortran coding for assembly of element matrices

c ....
C initialize the matrices
c ...

DO 5 I=l,NNODE
GF = 0.0
DO 5 J=l,NBW
GCM(I,J)=O.O

5 CONTINUE
c ...
C•••

DO 10 I=l,NEL
DO 15 M=1,3
IM=NENN(I,M)
GF(IM)=GF(IM)+ EF(M)
DO 15 N=1,3
IN=NENN(I,N)-IM+1
IF(IN.LE.O) GO TO 15
GCM(IM,IN)=GCM(IM, IN) + ECM(M,N)

15 CONTINUE
10 CONTINUE

Incorporation of Dirichlet Boundary Conditions

After all the element characteristic matrices have

been assembled into the global conduction matrix and force

vector, the system equations can be written as

[ GCM ]{ T } = { GF } (54)

This system of equations must be modified whenever some of

the nodal temperatures are prescribed. If the ith

coefficient of { T } is prescribed, then the modification

proceeds as follows:

1. Subtract the product of the (j,i) coefficient of [GCM]

times the known ith coefficient of { GF } from the jth

coefficient of { GF }.

2. Replace the ith row and the ith column of [GCM] by zero.



28

3. Set the (i,i) coefficient of [ GCM ] to unity.

4. Make the ith coefficient of { GF } equal to the

prescribed value [8].

The temperatures of nodes 1,3,4,6,7, and 9 of the

mesh of Fig. 6 are prescribed and are

T =T =T =T.= 50.0 °c1 4 7 ~

T =T =T =T = 53.0 °c369 0

The system of equations is given by

all a12 a13 a14 •.•••.•••••• a19

a21 a22 a23 a24 ••••••••••.• a29· .
· .

=

f1

f2

· .
a91 a92 a93 a94 ••••.•••.••. a99 T9 f9 (55)

where a11,a12, .••.• ,and f9 are the same as those shown in

Table 6. Considering node number 1 and implementing the

above procedures yields

••••••••••••••• • a29

a34 •••.••.••..• a39

a44 a45 •••••.• a49

50.0

3043.12

f3

= 25168.12

o

. .

...............o

a33

a23

a43

o

a32

a22

a42

o

o

o

1

. .
o a92 a93 a94 a95 a96 •• a99 T9 f9 (56)

Repeating the procedure for the remaining nodes will result

in the following system of equations:
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1 0 0 0 T1 50.0 ....

1002.99 0 0 -943.99 T2 4607.11

1 0 0 0 T3 53.0

1 0 0 0 T4 50.0

2005.99 0 0 -943.9 T5 = 9737.11

1 0 0 0 T6 53.0

1 0 0 this T7 50.0
matrix

206.24 0 is written Ta 7173.79
in the

1 banded form T9 53.0 (57)

To implement incorporation of the Dirichlet boundary

conditions according to the aforementioned procedure, a

subroutine is written which is shown in Table a. The

program assumes that the matrix [ GCM ] is stored in band

form. The subroutine is called for each prescribed nodal

degree of freedom by the following FORTRAN statement

CALL DIRBC (GCM,GF,NNODE,NBW,ND,PT)

where

NO = node subjected to prescribed temperature

ST = value of the prescribed temperature.

Solution of System Equations

The last step of the finite element method is the

solution of system equations. Although there are many

methods available for solving a system of linear equations,

the Choleski's method is used. This method is briefly

discussed in Appendix E.



30

Table 8. Fortran coding for incorporation of the Dirichlet
boundary conditions.

SUBROUTINE DIRBC (GCM,GF,NNODE,NBW,M,ST)
DIMENSION GCM(NNODE,NBW),GF(NNODE)
DO 5 K = 2,NBW
I1=M-K+1
I2=M+K-1
IF(I1.GE.1) GF(I1)=GF(I1)-A(I1,K)*ST

5 IF(I2.LE.NNODE) GF(I2)=GF(I2)-A(M,K)*ST
GF(M) = ST
DO 10 J = 1,NBW
I l=M-J+1
IF(I1.GE.1) A(I1,J)=0.0

10 A(M,J) = 0.0
A(M,l) = 1.0
RETURN
END

The Choleski's method is implemented by using two

subroutines which are shown in Tables 9 and 10. The

subroutine DECOM performs the decomposition of the global

conduction matrix [GCM] into an upper triangular matrix,

while the subroutine CHOLE solves the system equations and

stores the results in array TEM. The subroutines are cal~ed

by the following FORTRAN statements

CALL DECOM (NNODE,NBW, GCM)

CALL CHOLE (NNODE,NBW, GCM,TEM)

Using Choleski's method to solve the system of

equations given by equation (57) yields

T1 50.0
T2 73.32
T3 53.0
T4 50.0
T5 = 73.02 (58)
T6 53.0
T7 50.0
T8 l71.53
Tg 53.0



Table 9. Fortran coding for decomposition of global
conduction matrix.

SUBROUTINE OECOM (NNOOE,NBW,A)
DIMENSION A(NNOOE,NBW)
DOUBLE PRECISION 0
A(l,l) = SQRT(A(l,l))
DO 10 I=2,NBW

10 A(l,I)=A(l,I)/A(l,l)
DO 20 I=2,NNOOE
I1=I+1
I2=I-1
O=A(I,l)
DO 30 J=1,I2
I3=I+1-J
IF(I3.GT.NBW) GO TO 30
0=0-A(J,I3)** 2

30 CONTINUE
A(I,l)-OSQRT(O)
DO 40 IJ-2,NBW
IF (I+IJ-1.GT.NNOOE) GO TO 20
O-A(I,IJ)
DO 50 J-1,I2
I3=I+1-J
I4=I+IJ-1
IF(I4.GT.NBW) GO TO 50
IF(I3.GT.NBW) GO TO 50
0-0-A(J,I3)*A(J,I4)

50 CONTINUE
40 A(I,IJ)=O/A(I,l)
20 CONTINUE

RETURN
END

31
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Table 10. Fortran coding for solution of system equations.

SUBROUTINE CHOLE (NNODE,NBW,A,B)
DIMENSION A(NNODE,NBW),B(NNODE)
DOUBLE PRECISION D
B(l)=B(l)jA(l,l)
DO 10 I=2,NNODE
D=B(I)
DO 20 J=2,NBW
I1=I+1-J
IF(I1.LT.1) GO TO 20
I2=I+1-I1
IF(I2.GT.NBW) GO TO 20
D=D-A(I1,I2)*B(I1)

20 CONTINUE
B(I)=DjA(I,l)

10 CONTINUE
B(NNODE)=B(NNODE)jA(NNODE,l)

C
C compute the system unknowns
C

DO 30 I=2,NNODE
I3=NNODE+1-I
D=B(I3)
DO 40 J=2,NBW
I4=I3-1+J
IF(I4.GT.NNODE) GO TO 40
D=D-A(I3,J)*B(I4)

40 CONTINUE
B(I3)=DjA(I3,1)

30 CONTINUE
RETURN
END
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CHAPTER IV

NUMERICAL ANALYSIS OF THE ABSORBER PLATE

The mesh of Fig. 6, which was used to illustrate the

formulation of the problem by the finite elements method,

does not produce an accurate solution to the problem.

However, the solution is expected to converge as the size of

the elements are reduced. On the other hand, there are two

more possible mathematical models for representation of the

absorber plate. These models, along with the initial model

of Fig. 2, are shown in Fig. 7. For the model of Fig. 7-b,

u
°Lt'l.

u
°M
Lt'l
'W

1-
8

\h
u
°a
Lt'l

..
~

N
E.......
3

o::ta
M
II

.J::

T=50°c

( a )

Too= 51.5°c
h=304 w/rn K

( b )

Te,.,= 50°c
h=304 w/rn2K

( c )

Fig. 7. possible mathematical models for absorber plate
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the mean temperature of the fluid flowing through the tubes

is used as the ambient temperature (5l.50 c). The model of

Fig. 7-c assumes that the ambient temperatures around the

top and bottom of the plate are equal to the outlet and

inlet fluid temperatures, respectively. Again, the

temperature variation of the fluid from Ti to To is assumed

to be linear.

In order to achieve an accurate solution to the

problem, a fine mesh with 451 nodes and 800 elements was

constructed. The finite element solutions of the

aforementioned problems are illustrated by means of the

isothermal lines within the absorber plate, as shown in

pages 36,37, and 38. The temperature distribution along the

vertical and horizontal axes are also shown in page 39.

Note that this is done only for the original mathematical

model, since for this case the isothermal lines do not

visualize the solution of the problem as good as the other

two cases.

In order to investigate the accuracy of the finite

element method, the well-known method of finite differences

was used. The finite difference solution of the problems

along with the finite element results are tabulated in

Tables 11 and 12. The finite difference solution was

obtained by dividing the solution region into 8 rectangles

(9 nodes). The finite element solution was also obtained by

using the same number of nodes (9 nodes and 16 elements) and

the mesh with 451 nodes and 800 elements. The results are
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very close to each other, which implies that an excessive

number of elements is not necessary for a reasonably

accurate solution. It may be noted that for this particular

problem, the finite difference solution converges faster

than finite element because of the simple geometry of the

problem.
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Table 11. Comparison of finite element results for model
of Fig. 7-b to finite difference and approximate
analytical solutions.

FDM (9 nodes) FEM (9 nodes) FEM (451 nodes) Analytical

105.551 105.6827 105.3435 105.3521

104.376 104.5124 104.1686 104.1778

100.829 100.9697 100.6223 100.6331

103.604 103.6134 103.3452 103.3655

102.473 102.5289 102.2146 102.2360

99.057 99.1745 98.8011 98.8236

97.412 96.9271 97.0306 97.0417

96.419 96.3323 95.9984 96.0526

93.417 93.6127 93.0064 93.0599 -_e-



Table 12. Comparison of finite element and finite
difference solutions for model of Fig. 7-c

F.E.M. (15 nodes) F.E.M.(451 nodes) F.D.M. (15 nodes)

97.1582 96.5292 96.845

95.6068 95.5512 95.836

92.8418 92.5343 92.779

103.5136 103.1205 103.284

102.3752 101.9811 102.144

98.5172 98.5371 98.699

105.6827 105.4169 105.551

104.5124 104.2413 104.376

100.9697 100.6928 100.829
-.e-

103.9211 103.7367 103.924

102.8457 102.6155 102.803

99.5199 99.2302 99.415

97.4695 97.6632 97.978

96.8873 96.6643 97.003

94.2087 93.7057 94.055

41
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CHAPTER V

CONCLUSION AND DISCUSSION

The finite element formulation for determination of

temperature distribution in the absorber plate of a flat

plate solar collector has been demonstrated and a computer

program written based on these formulations.

This demonstration has shown that the finite element

analysis is a valid and versatile method. The finite

element solution of those problems which have analytical

solutions, shows excellent agreement with the corresponding

analytical solutions.

The finite element program used in this thesis is

written based on the formulation of the equations by the

Galerkin approach. It has several features which make i~

easy to use and economical. Storing the stiffness matrix in

a symmetric banded form reduces the storage requirement of

the program by more than half. For a numerical analysis the

modification of the program,in general, may be a necessity

when a new problem or a new mesh is constructed. The program

is written to accommodate various problems with minimum

modifications so that the human errors arising in the

allocation of required memory storage for the array are

greatly reduced.

When comparing the finite element and the finite
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difference solutions it seems that the latter method yields

slightly more accurate values. This is to be anticipated

because of the simplicity in the geometry of the problem and

the triangular element used in this finite element

formulation, which is based on the linear variation. The

accuracy of the solution by the finite element method should

increase if quadratic or isoparametric elements are used.

Therefore, a general statement in favor of the finite

difference method over the finite element method can not be

justified. This is due to the fact that the versatility of

the finite element method, especially the ability of the

method to realistically model any geometric configuration,

is far beyond that of the finite difference method.

Another versatility of this finite element

program is the fact that it could be used to solve any field

problem which is goverened by the Laplace or Poisson's

equation and has the same type of boundary conditions.

For more general applications, the computer program

can be improved by accommodating portions of programming or

subroutines (l)to handle variable material properties, (2)to

calculate the convection matrix for elements which have more

than one side exposed to convec~ive heat loss, (3)to

renumber the node numbering in order to minimize the number

of bandwith and therefore to minimize the size of the

conduction matrix, and (4)to make automatic mesh generation.



APPENDIX A

TWO DIMENSIONAL SIMPLEX ELEMENT

44
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Two dimensional simplex element is a triangle with

three nodes, one at each corner, and straight sides [9]. As

shown in Fig. 12, the nodes are 1ab1ed counterclockwise from

node i, which is specified arbitrarily. The global

coordinates of nodes i, j, and k are {Xi'Yi}' {Xj'Yj}' and

{Xk,Yk }. The nodal values of the scalar field variable are

denoted as Ti , Tj , and Tk • The interpolation polynomial is

T(x,y)=a1+a2x+a3y (59)

with the nodal conditions

T=T. at x = xi' Y = Yi' (60)
~

T=Tj at x = Xj ' Y = Yj' and (61)

T=T at x = xk ' Y = Yk (62)k
Substituting the nodal conditions into equation (59) gives

Ti=al+a2xi+a3Yi

Tj=a1+a2xj+a3Yj

Tk=al+a3xk+a3Yk (63)

j(X.,Y.)
J J

Fig.12 Two dimensional simplex element
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solving the system of equations for the polynomial

coefficients yields

al=(aiTi+ajTj+akTk)/(2A)

a 2=(b.T.+b.T.+bkTk )/(2A)
~ ~ J J

a3=(ciTi+CjTj+ckTk)/(2A) (64)

where

ai=xiYk-XkYj

aj=xkYi-xiYk

ak=xiYj-xjYi

b'=Y'-Yk
~ J

bj=Yk-Yi

bk=Yi-Yj

ci=xk-xj

cj=xi-xk

ck=xj -xi ' (65)

and A is area of the triangle. A is calculated by

1 xi Yi

A =1/2 1

1

substituting equation

Xj Yj

xk Yk
(64) into equation (59) yields

(66)

T(X,y)={(ai+bix+Cjy)Ti+(aj+bjx+Cjy)Tj+(ak+bkx+Cky)Tk}/(2A),

(67)
which can be written in matrix form as

(68),
T(x,y)=[ Ni Nj Nk 1 I:U = [N(x,y) lT

e

where Te is the nodal unknown vector of element e, and the



shape functions, N(x,y)=[Ni Nj Nk ] are

Ni =(ai +bi x+ci y)/(2A)

Nj=(aj+bjx+cjy)/(2A)

Nk=(ak+bkx+cky)/(2A)

47

(69)



APPENDIX B

INTERPOLATION FUNCTIONS IN TERMS OF LOCAL COORDINATES
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The determination of the system equations involves

the integration of the interpolation functions and/or their

derivatives over the element. If the interpolation

functions are written in terms of the local coordinate

system, then the evaluation of these integrals will be

easier. The local coordinate system is one located on or

within the boundaries of the element. A special local

coordinate system is a natural coordinate system whose

coordinates range between zero and one.

For the triangular element the natural coordinate

system is obtained by defining three coordinate ratios L1 ,

L2 , and L3 as shown in Fig. 13. Each coordinate is the ratio

of a perpendicular distance from one side, s, to the

altitude, h, of that same side. These coordinates are also

called area coordinates, because their value gives the area

of sUbtriangles relative to the total area. Considering an

arbitrary point B within the element, the total area is

At =bh/2 ,

while the area of the triangle formed by Bjk is

A1=bs/2

Forming the ratio of these areas yields

AI/At = s/h = L1
Similarly

L2 = A2 / At and L3 = A3 / At

(70)

(71)

(72)

(73)
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; &.... .-a j

Fig. 13. Natural coordinate system for a triangle

since

Al + A2 + A3 = At

L1 + L2 + L3 = 1.

The natural coordinate in terms of the Cartesian

Coordinates are given by [10]

(74)

(75)

L1 (x,y)=(ai +bi x+ci y)/(2A)

L2(x,y)=(aj+bjx+cky)/(2A)

L3 (X,y)=(ak+bkx+cky)/(2A) (76)

where A is the area and the coefficients a a ck arei' j ... ,

the same as those defined by (63). Since equations (76)-and

(69) are identical, the natural coordinates are precisely

the interpolation functions for linear interpolation over a

triangle. Thus

N. = L.
~ ~

(77)

The advantage of using the area coordinate is the

existence of integration equations which simplify the

evaluation of length and area integrals. These equations

are [11]



fA LlaL2hL3c dA = (a! h! c1) (2A)j(a+h+c+2) 1

where A = area of triangle

r = length along an edge of element.

51

(78)
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WEIGHTED RESIDUAL METHOD
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The method of weighted residual is an approximate

technique for solution of partial differential equations.

In this method, an approximate solution to the problem which

satisfies the boundary conditions is assumed. Substitution

of this approximate solution into the original differential

equation results in some error or residual. This residual

is then required to vanish in some average sense over the

solution domain.

Suppose the governing equation for a problem is

L (T) - f = 0 in rI

and its boundary conditions are

Cr =- gr in r

The solution to equation (79) is then approximated by

(79)

(80 )

T' = Ni Ti (81)

in which Ni are trial functions which satisfy the boundary

conditions, and Ti are unknown parameters. Since T' is an

approximate solution, sUbstitution of T' into equation (79)

results in

L (T') - f = E =0 •

The method of weighted residual requires that m unknown

(82)

parameters Ti be determind by satisfying

kWiEdrl=-!nWi (L(T') -f) drl=O (83)

where Wi are m linear independent weighting functions [12].

There are numerous means to choose the weighting

function Wi' leading to Galerkin method, least-square

method, method of moments, and collocation method. In the

Galerkin method, the trial functions Ni are used as
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weighting functions. Thus

W. = N. (84)
~ ~

and

f W. (L(T')-f) d Q=j N. (L(T')-f) dQ
Q ~ Q ~

(85)



APPENDIX D

CALCULATION OF HEAT GENERATION AND CONVECTION
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Because it was assumed that the problem is at steady

state condition, the average solar heat flux reaching the

solar collector can be assumed to be constant and equal to
210,000.0 KJ/m hr. Thus, the solar constant can be

calculated as

I o = 10,000,000.0 I 12(3600) = 231.48 w/m2 (86)

If the collector has transmittance (T ) and absorptance (a

of 0.85 and 0.9 respectively, then the net energy absorbed

by the plate is

S = I o ('f :a) =231.48 x 0.85 x 0.9 = 177.1 w/m2 • (87)

Finally, the rate of heat generation per unit volume is

q = sit =177.1 I 0.00127 = 139,448.82 w/m3 • (88)

In order to calculate the convection heat transfer

coefficient, one must determine whether the flow of fluid

through the cooling tube is laminar or turbulent. If the

coolant fluid is water, then the velocity of water through

the tube can be determined from

V = 4 m I P (7T 0 2 ) ,

where mis the mass flow rate of water, P the density,

and 0 the diameter of the tube. The mass flow rate is

determined from following relationship

Q = m c (T - T. (90)pol.
where Q is total heat generation in the plate, and cp is

specific heat of water. The total heat generated in the

plate is

Q = S A = 177.48 (0.6 x 0.15) = 15.97 W

If the diameter of the tube is 1.0 em, then

(91)
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m= Q/Cp (TO-Ti )=15.97/4175(53-50)= 0.00127 kg/s • (92)

Thus, the velocity of water is

V = 4(0.00127)/(992.2) (0.01)2(3.14) = 0.0163 m/s • (93)

Once the velocity of the water through the tube is

determined, the Reynolds number can be calculated from

Re = VD/v , (94)

where v is the Kinematic Viscosity. substituting the

appropriate values into equation (94) yields

Re = (0.0163) (0.01)/(0.658 x 10-6) = 247.7 (95)

Since the Reynolds number is less than 2300, the flow may be

assumed to be laminar. The heat transfer coefficient for

laminar flow can be evaluated from the emprical correlation

of

NU
O

=1.86(Re
o

pr)0.33 ({__)0.33(!~__ )0.14 (96)
~s

if (Reo Pr O)/L is less than 10 [13]. In the above equation

Pr is the Prandtl number, and ~b and ~s are the viscosity at

the average bulk temperature and the wall temperature,

respectively. If the empirical correction factor (_~~_).14
~s

which is to account for the effect of temperature variation,

is assumed to be unity, then

NUO= 1.86 (Reo Pr O/L)0.33

or

NUO=1.86(247.7 x 4.3 x 0.01/0.6)°·33

=1.86(17.75)°·33= 4.805

Therefore

(97)

, (98)

where hc is the average heat transfer coefficient and K the
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thermal conductivity of the fluid. SUbstituting equation

(97) into equation (98) yields the average convection heat

transfer coefficient as

h c = (4.8) (0.633)/0.01 = 304 w/m2 k (99)
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The Choleski method, also called the Banachiewicz

method, uses the fact that a symmetric matrix can be

expressed as the product of two triangular matrices, as [14]

(100)

or

all a12 ·... aln sll sll s12 sIn

a21 a22 a2n s12 s22 s22 s2n....
a31 a32 a3n = · ...·. ...·... · ·.·... ·.. ·.·... ·.. ·:·... ·...·... ·.·... ·..
an1 an2 an sln s2n ·.. snn snn .

considering the rules of matrix multiplication,

i<j (101)

a .. =
~~

222
sli + s2i +•••••• + sii i=j (102)

Therefore the coefficients of the first row of S can be

determined by

s . =
1~sll= all;

and in general,
/r--~--:-i-~1~-2-

sii = vaii - R=' ski
i -1

Sij = ( a ij - R=l ski Skj ) / sii

Furthermore, the solution of the system

A X = F

reduces to

ST S X = F

or

S X = C

,

(103)

(104)

(105)

(106)

(107)

(108)
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The elements of C are determined from

c 1 = f 1 / sll (109)

and
;-1

c. = ( f i - l: sk' c k ) / s, , ( i>l ) (110)
~ k=l ~ ~~

Once C is known, X can be found as

xn = c / snn (111)n

and
n

xi = ( c. - L: s. xk ) / s, , (; <n ) (112)
~ k=;+l~k ~~
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The purpose of this appendix is to define the input

data which are needed in order to run the HTAFEM program.

Moreover, other parameters which must be initially supplied

to the program such that the input data are properly read by

the program are defined.

The input is divided into three different sections.

The number of the data card and the information which is

provided to the program in each of these sections is :

I-TITLE CARD (format; 20A4)

Note Columns

1-80

Variable

TITLE

Entry

Enter the title for use

in labeling the output.

II-NODAL POINT DATA CARDS (format; 3F10.5,l5)

Note Columns Variable Entry

(1) 1-10 X-CORD x-cordinates

11-20 Y-CORD y-coordinates

21-30 PT value of prescribed

temperature

(2) 31-35 lDBC Flag of Dirichi1et

boundary condition
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NOTES

(1) The total number of nodes (NNODE) controls the

amount of data to be read in this section. This

information must be supplied to the main program

prior to the execution of the program (see page 66).

(2) The flag of Dirichilet boundary condition can only

be assigned the following values :

IDBC=l;

IDBC=O;

The node is subjected to prescribed

temperature (PT),

There is no prescribed temperature.

III-ELEMENTS DATA CARDS (format;615,4F10.5) (1)

Notes Columns Variable Entry

(2) 1-5 NENN(I,l) Node 1 of the element I.

6-10 NENN(I,2) Node 2 of the element I.

11-15 NENN(I,3) Node 3 of the element I~

(3) 16-20 INBC Flag of Neumann boundary

condition.

21-25 IBCON(I) Node I of the element

which lies on the boundary.

26-30 IBCON(J) Node J of the element

which lies on the boundary.

(4) 31-40 OD Heat flux.

41-50 0 Heat generation within the

element.



Notes Columns

51-60

61-70

variable

H

TA

Entry

Convection coefficient.

Ambient temperature.
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NOTES

(1)

(2)

(3)

(4)

The total number of elements (NEL) controls the

amount of data to be read in this section. This

must be supplied to the main program prior to the

execution of the program ( see page 66).

Numbering of the elements nodes must be

counterclockwise.

Side I-J of the element which is subjected to the

Neumann boundary condition must be specified in a

counterclockwise order. For example, if an element

is numbered counterclockwise as 2,7, and 9, and if

side 7-9 is subjected to boundary conditions, th!n

IBCON(I)=7, and IBCON(J)=9. Moreover, only one

side of an element can lie on the boundary surface.

The heat flux into the body is negative.

A sample input data which corresponds to the

, mathematical model of Fig. 2, is shown in Fig. 13.

The HTAFEM program has been organized in a way that

modifications to the program are localized. This is done by

dividing the program into several subroutines. The

organization of the program is illustrated in Fig. 14. When
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a problem is desired to be solved, the necessary parameters

which control the memory allocation of the arrays and amount

of input data to be read must be supplied to the main

program. These parameters are: number of nodes (NNODE),

number of elements (NEL), and number of the bandwidth (NBW).

These parameters along with the thermal conductivity of the

material (CC) are supplied to the main program by means of a

DATA card, which has the following structure

DATA NNODE,NEL,NBW,CCj ---,---,---,---j
The arrays and their memory allocations which must be

defined in the main program are summarized in Table 13.

The complete listing of the program, the flow

charts, and a sample out-put which corresponds to the sample

input illustrated in this appendix concludes this Appendix.

Table 13. Definition of the variables in the program

Name definition
..~

NNODE number of nodes
NEL number of elements
NBW band width
CC thermal conductivity
NENN (NEL, 3) element connectivity matrix
XCORD(NNODE) x coordinates
YCORD(NNODE) y coordinates
PT(NNODE) prescribed temperature
IDBC(NNODE) flag of Dirichilit b.c.'s
Q(NEL) heat generation
QD(NEL) heat flux
H(NEL) convection heat-transfer coefficient
AT (NEL) ambient temperature
IBCON(I,2) location of Neumann b.c.'s for element I
INBC(NNODE) flag of Neumann b.c. 's
A(NEL) area of element
GCM(NNODE,NBW) global conduction matrix
GF(NNODE) global force vector
TEM(NNODE) nodal temperature

-



Main program (HTAFEM)

if

Subroutine FEARW I Subroutine FEAOUT

~If

I Subroutine FEAEAC I

~ ~

I Subroutine DIRBC
f I Subroutine DECOM I

" ".e-

I Subroutine CHELO I

67

Fig. 14. Organization of the computer program
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C**********************************************************************C* THIS PROGRAM IS FOR THE SOLUTION OF HEAT CONDUCTION IN A SOLID *C* SUBJECTED TO CONVECTION, HEAT FLUX, HEAT GENERATION,AND PRESCRIBED *C* TEMPERATURE. FARAMARZ MOSSAYEBI *C**********************************************************************C
C THE PARAMETERS ARE :
C
C NNODE=NUMBER OF NODESC NEL=NUMBER OF ELEMENTC NBW=BAND WIDTH
C CC=THERMAL CONDUCTIVITYC NENNCNEL,3)=ELEMENT CONNECTIVITY MATRIXC XCORD,YCORDCNNODE)= NODAL COORDINATESC GCMCNNODE,NBW)=GLOBAL CONDUCTION MATRIXC GFCNNODE)=GlOBAl FORCE MATRIXC ACNEL)=AREA OF ELEMENTC QCNEL)=HEAT GENERATION WITHIN AN ELEMENTC QDCNEL)=HEAT FLUX
C HCNEL)=COEFFICIENT OF CONVECTION HEAT LOSSC ATCNEL)=AMBIENT TEMPERATUREC PTCNNODE)=VALUE OF PRESCRIBED TEMPERATUREC IDBCCNNODE)=BINARY FLAG OF DIRICHLET BOUNDARY CONDITIONSC INBCCNEL)=BINARY FLAG OF NUMEN BOUNDARY CONDITIONSC TEMCNNODE)=NODAL TEMPERATURECSOLUTION).C
C
C**********************************************************************C* THE DIMENSION OF THE ARRAYS AND THE "DATA CARD" MUST BE *C* MODIFIED ACCORDING TO THE MODELING OF THE PROBLEM. THIS *C* MODIFICATION OCCURS ONLY IN THIS PROGRAM. *C**********************************************************************C
C

DIMENSION NENNC8,3),XCORDC9),YCORDC9),GCMC9,4),GFC9),lA(8),INBCC8),IBCONC8,2),QC8),PTC9),TEMC9),IDBCC9)2,QD(8),H(8),ATC8)
C
C.... "DATA CARD"
C

DATA NNODE,NEL,NBW,CC/9,8,4,236./C
C.... SUBROUTIN FEARW IS CALLED TO READ AND WRITE THE DATAC

CAll FEARWCNNODE,NEL,NBH,CC,NENN,XCORD,YCORD,GCM,GF,A,INBC,IBCON*,Q,PT,TEM,IDBC,QD,H,AT)
C
C SUBROUTINE FEAECA IS CALLED TO CALCULATE ELEMENT PROPERTYC MATRICES. THIS SUBROUTINE ALSO ASSEMBLES THESE MATRICES ANDC CALLS THE PROPER SUBROUTINES TO MODIFY AND SOLVE THE SYSTEMC EQUATIONS.
C

CALL FEAECACNNODE,NEL,NBH,NENN,XCORD,YCORD,CC,GCM,GF,A,INBC,* IBCON,Q,TEM,PT,IDBC,QD,H,AT)C
C..... SUBROUTINE FEAOUT IS CALLED TO HRITE THE SOLUTION.CALL FEAOUTCNNODE,TEM)
C

STOP
END
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C***********************************************************************
C* THIS SUBROUTINE READS AND WRITES THE INPUT DATA. *
c* *
C***********************************************************************
C
C

SUBROUTINE FEARW(NNODE,NEL,NBW,CC,NENN,XCORD,YCORD,GCM,GF,A,INBC,
* IBCON,Q,PT,TEM,IDBC,QD,H,AT)

DIMENSION NENN(NEL,3),XCORD(NNODE),YCORD(NNODE),GCM(NNODE,NBW),
*GF(NNODE),A(NEL),INBC(NEL),IBCON(NEL,2),Q(NEL),PT(NNODE),QD(NEL),
*H(NEL),AT(NEL),IDBC(NNODE),TEM(NNODE),TITLE(70)

C
DO 10 I=l,NEL
DO 10 J=1,3

10 NENN(I,J)=O
C
C

READ(S,50)(XCORD(I),YCORD(I),PT(I),IDBC(I),I=l,NNODE)
WRITE(6,60)
WRITE(6,70)CI,XCORD(I),YCORDCI),PTCI),IDBCCI),I=1,NNODE)
READ(S,80)(CNENN(I,J),J=1,3),INBC(I),(IBCON(I,K),K=1,2),Q(I),

*QD(I),H(I),AT(I),I=l,NEL)

WRITE(6,90)
WRITEC6,100)(I,CNENN(I,J),J=1,3),INBC(I),CIBCON(I,JJ),JJ=1,2),

*Q(I),QD(I),H(I),AT(I),I=l,NEL)

20

30

40

C

C

READ(S,20)TITLE
FORMAT(70Al)
WRITE(6,30)TITLE
FORMAT(' **** ',70Al,///)
WRITE(6,40)NNODE,NEL,NBW,CC
FORMAT('lTOTAL NUMBER OF NODES

1 ' TOTAL NUMBER OF ELEMENTS
2 'NUMBER OF BANDWIDTH
3 'THERMAL CONDUCTIVETY

=',SX,IS,/
=',5X,IS,/
=',SX,IS,/
=',FlS.8///)

C
50 FORMAT(3FIO.S,IS)
60 FORMATC'l',' NODE NUMBER',SX,'X COORDINATE',9X,'Y COORDINATE',9X

* ,'PRES. TEMPERATURE " 2X,'IDBC'/) -
70 FORMAT(4X,I3,lOX,F12.S,10X,F12.S,10X,F12.S,5X,IS)
80 FORMATC6I5,4FlO.S)
90 FORMAT(///33X,'E L E MEN T CON E C T I V I T Y AND

*'P R 0 PER TIE S'////,' ELMT I J K',3X,
*'INBC',2X,'IBCON',9X,'Q',14X,'QD',14X,'H',
*lSX,'AT',/29X,'I',4X,'J'///)

100 FORMATC7IS,4F15.S)
C
C

RETURN
END
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C***********************************************************************
C* THIS SUBROUTINE CALCULATES THE ELEMENT PROPERTY MATRICES AND *
c* ASSEMBLES THEM. *
C* *
c***********************************************************************
C
C

SUBROUTINE FEAECA(NNODE,NEL,NBW,NENN,XCORD,YCORD,CC,GCM,GF,A,INBC,
1 IBCON,Q,TEM,PT,IDBC,QD,H,AT)

DIMENSION XCORD(NNODE),YCORD(NNODE),NENN(NEL,3),GCM(NNODE,NBW),
1 GF(NNODE),A(NEL),INBC(NEL),IBCON(NEL,Z),Q(NEL),PTCNNODE),
Z GK(3,3),GKH(3,3),FQ(3),FQP(3),FH(3),TEM(NNODE),IDBC(NNODE)
3 ,QDCNEL),H(NEL),AT(NEL)

C DOUBLE PRECISION DIFF(1)
C
C..... INITIALIZE THE GLOBAL COEFFICIENT AND TEMPERATURE MATRICES
C

DO 10 I=I,NNODE
GF(I)=O.O
DO 10 J=l,NBW
GCM C1, J ) =0 . 0
CONTINUE10

C
C..... OBTAIN
C
C

LOCAL X & Y CORDI NATES

DO 100 I=l,NEL
N1=NENN(I,1)
NZ=NENNCI,Z)
N3=NENNCI,3)
Xl=XCORD(NU
XZ=XCORDCNZ)
X3=XCORDCN3)
Y1=YCORDCNU
YZ=YCORDCNZ)
Y3=YCORDCN3)
B1=YZ-Y3
B2=Y3-Yl
B3=Yl-Y2
Cl=X3-X2
C2=XI-X3
C3=X2-X1

C
C..... COMPUTE THE AREA OF EACH ELEMENT
C
C

ACI)=CC3*BI-C1*B3)/2.0
ACI)=ABSCAU»

C
C..... COMPUTE ELEMENT COEFFICIENT MATRIX
C

GKC1,1)=Bl**2+Cl**2
GKC1,2)=B1*BZ+C1*CZ
GKC1,3)=Bl*B3+Cl*C3
GKCZ,2)=B2**2+C2**Z
GK{Z,3)=BZ*B3+C2*C3
GKC3,3)=B3**2+C3**2
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GKC2,l) =GKCl, 2)
GKC 3,1) =GKCl, 3)
GKC3,2)=GKC2,3)

C
C
C..... INITIALIZE THE MATRICES AND INTRODUCE HEAT GENERATION
C

DO 20 M=l, 3
FQCM)=QDCI)*ACI)/3.0
FQPCM)=O.O
FHCM)=O.O
DO 20 N=l, 3
GKCM,N)=GKCM,N)*CC/C4.0*ACI»
GKHCM,N)=O.O

20 CONTINUE
C
C..... INTRODUCE THE HEAT FLUX AND CONVECTION BOUNDARY CONDITIONS
C

IF CINBCCI).EQ.O) GO TO 30
C
C..... DETERMINE WHICH SIDE OF ELEMENT IS SUBJECTED TO BOUNDARY CONDITION
C

NNI=IBCONCI,l)
IF CNNI.EQ.Nl) GO TO 40

IF CNNI.EQ.N3) GO TO 50

SEJK=SQRTCCX3-X2)**2+CY3-Y2)**2)
CT=HC 1) *SEJK/6 .0
GKHC2,2)=2.0*CON
GKHC2,3)=CT
GKH<3, 2) =CT
GKHC3,3)=2.0*CT
FQP(2)=QCI)*SEJK/2.0
FQP(3)=FQPC2)
FH(2)=HCI)*SEJK*ATCI)/2.0
FH(3)=FHC2)
GO TO 30

40 SEIJ=SQRTCCX2-Xl)**2+CY2-Yl)**2)
C

CT=HC 1)*SEIJ/6 . 0
GKHCl,1) =2. O*CT
GKHCl,Z)=CT
GKHC 2,1) =CT
GKHC2,2)=2.0*CT
FQPCl)=QCI)*SEIJ/Z.O
FQP(2) =FQPCl)
FHCl)=HCI)*SEIJ*ATCI)/2.0
FH C2) =FH Cl )
GO TO 30

50 SEKI=SQRTCCXI-X3)**Z+CYI-Y3)**Z)
CT=HCI)*SEKI/6.0
GKH Cl, 1) =2. O*CT
GKHCl, 3) =CT
GKH <3, 1) =CT
GKHC3, 3) =2. O*CT
FQPCl)=QCI)*SEKI/Z.O
FQPC 3) =FQPCl)
FHCl)=HCI)*SEKI*ATCI)/2.0
FHC 3) =FHCl)



72

30 CONTINUE
C
C..... ASSEMBLE THE GLOBAL PROPERTY MATRICES
C

DO 60 M=1,3
IM=NENNCI,M)
GFCIM)=GFCIM)-FQPCM)+FHCM)+FQCM)
DO 60 N=1,3
IN=NENNCI,N)-IM+l
IF CIN.LE.O) GO TO 60
GCMCIM,IN)=GCMCIM,IN)+GKCM,N)+GKHCM,N)
CONTINUE
CONTINUE

60
100
C
C..... INTRODUCE THE DIRICHLET BOUNDARY
C

DO 70 M=l, NNODE
IFCIDBCCM).EQ.O) GO TO 70
ST=PHM)

CONDITIONS

C
C..... CALL SUBROUTINE DIRBC
C

CALL DIRBC CGCM,GF,NNODE,NBW,M,ST)
70 CONTINUE
C
C..... SOLVE THE SYSTEM OF EQUATIONS
C

DO 80 M=l, NNODE
80 TEMCM)=GFCM)
C
C

C

CALL DECOM CNNODE,NBW,GCM)
CALL CHOLE CNNODE,NBW,GCM,TEM)

RETURN
END

C**********************************************************************
C* THIS SUBROUTINE MODIFIES THE CONDUCTION MATRIX CGCM) BY *
C* INTRODUCING THE SPECIFIED NODAL TEMPERATURES,IE DIRICHLET *
C* BOUNDARY CONDITIONS. *
C**********************************************************************

SUBROUTINE DIRBCCGCM,GF,NNODE,NBW,M,PT)
DIMENSION GCMCNNODE,NBW),GFCNNODE)
DO 10 K=2,NBW
Il=M-K+l
I2=M+K-l
IFCIl.GE.l) GFCIl)=GFCIl)-GCMCIl,K)*PT

10 IFCI2.LE.NNODE) GFCI2)=GFCI2)-GCMCM,K)*PT
GFCM)=PT
DO 20 J=l,NBW
Il=M-J+l
IF CIl.GE.l) GCMCI1,J)=O.D

20 GCMCM,J)=O.O
GCMCM,1)=1.0
RETURN
END
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C**********************************************************************
c* THIS SUBROUTINE PERFORMS THE DECOMPOSITION OF THE GLOBAL *
C* CONDUCTION MATRIX INTO AN UPPER TRIANGULAR MATRIX. *

C* COPIED FROM REFERENCE 9, WITH SOME MODIFICATIONS. *

C**********************************************************************
C

SUBROUTINE DECOMCNNODE,NBW,A)
DIMENSION ACNNODE,NBW)
DOUBLE PRECISION D
AC1,1)=SQRTCAC1,1»
DO 10 I=2,NBW

10 AC1,1)=AC1,1)/AC1,1)
DO 20 I=2,NNODE
Il=I+1
12=1-1
D=AC I, 1)

DO 30 J=1,I2
I3=I+I-J
IF CI3.GT.NBW) GO TO 30
D=D-ACJ,I3)**2

30 CONTINUE
AU, 1) =DSQRH D)
DO 40 1J=2,NBW
IFC1+1J-1.GT.NNODE) GO TO 20
D=AU, IJ)
DO 50 J=1,I2
I3=1+I-J
14=I-J+1J
IF CI4.GT.NBW)GO TO 50
IF CI3.GT.NBW)GO TO SO
D=D-ACJ,I3)*A(J,I4)

50 CONTINUE
40 A(I,IJ)=D/A(I,1)
20 CONTINUE

RETURN
END

C***********************************************************************
C* THIS SUBROTINE WRITES THE FINAL SOLUTION.
C*

*

C***********************************************************************
SUBROUTINE FEAOUTCNNODE,TEM)
DIMENSION TEMCNNODE)

WRITEC6,10)
FORMAT C///' NODE NUMBER',10X,' TEMPERATURE'//)
DO 20 I=1,NNODE
WRITEC6,30)1,TEMCI)
FORMATC4X,I5,13X,F13.6)

RETURN
END
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C***********************************************************************
C* THIS SUBROUTINE PERFORMS THE SOLUTION OF THE SYSTEM EQUATIONS *
C* USING THE UPPER TRIANGULAR MATRIX WHICH IS OBTANIED BY "DECOM". *
c* COPIED FROM REFERENCE 9, WITH SOME MODIFICATIONS. *
C***********************************************************************
C

SUBROUTINE CHOLE (NNODE,NBW,A,B)
DIMENSION A(NNODE,NBW),B(NNODE)
DOUBLE PRECISION D

C
C

B(l)=B(l)/A(l,l)
DO 10 I=2,NNODE
D=BCI )

C
C

DO 20 J=2,NBW
Il=I+l-J
I2=I+l-Il
IF (Il.LT.l) GO TO 20
IF (I2.GT.NBW) GO TO 20
D=D-A(I1,I2)*B(I1)

20 CONTINUE
B(1)=D/A(I,1)

10 CONTINUE
B(NNODE)=B(NNODE)/A(NNODE,l)
DO 30 I=2,NNODE
13=NNODE+l-I
D=B(13)
DO 40 J=2,NBW
I4=I3-1+J
IF(I4.GT.NNODE) GO TO 40
D=D-A(I3,J)*B(I4)

40 CONTINUE
BCI3) =D/ACI3, 1)

30 CONTINUE
RETURN
END



THE ABSORBER PLATE HITH 9 NODES AND 8 ELEMENTS ] Section I

COORDINATES PRES. flAG
X Y TEMP.

0.0 0.0 50.0 1
0.0 0.30 0.0 0
0.0 0.6 53.0 1

0.015 0.0 50.0 1
0.015 0.30 0.0 0 ) Section II
0.015 0.6 53.0 1

0.15 0.0 50.0 1
0.15 0.30 0.0 0
0.15 0.6 53.0 1

ELEMENT CONEC. FLAG SIDE HEAT HEAT CONVECTION AMBIENT
I .f I( ,I J flUX GENER. COEfFICIENT TEMP .

1 4 2 0 0 0 0.0 139433.07 0.0 0.0
2 If 5 0 0 0 0.0 139433.01 0.0 0.0
3 2 5 0 0 0 0.0 139433.07 0.0 0.0
3 5 6 0 0 0 0.0 139433.07 0.0 0.0 ) Section III5 If 7 0 0 0 0.0 139433.07 0.0 0.0
7 8 5 1 7 8 0.0 139433.01 304.39 51.00
5 8 6 0 8 9 0.0 139433.01 304.39 51.50
8 9 6 1 8 9 0.0 139433.01 304.39 51.0

"'-l
U1



DMSL101~01 EXfCUIION BEGINS ...
MMMM SOLAR PLAIE. 9 NODES AND 8 ELEMENts

10lAL NUMBER or NonE5
1111 AL NUtlDER OF El EMEN t S
NUI'IDER or MIIONI DI"
I tlERttAL CIINOUC t I VI: t y

9
8(,

256.0011000

NODE NUMBER

1
2
5
4
5
6
1
8
9

X_COORDINAIE

0.0
0.0
0.0
0.01500
0.01500
0.01500
0.15000
0.15000
0.15000

y _CIIORDINAIE

0.0
0.50000
0.60000
0.0
0.50000
0.60000
0.0
0.30000
0.60000

PRFS. If"PERAtURE

50.00000
0.0

53.00000
50.00000
0.0

53.00000
IiO.Ooooo
0.0

55.00000

IDBC

1
o
I
I
o
I
I
o
1

E L E MEN T CON Eel I V I I Y AND PRO PER TIE S

ElMt I J K INBC IDCON Q QD II AT
I J

1 1 4 2 0 0 0 0.0 1.J9433.062 0.0 0.0
2 2 4 5 0 0 0 0.0 1.J9433.062 0.0 0.0
5 5 2 5 0 0 0 0.0 139433.062 0.0 0.0
4 3 5 6 0 0 0 0.0 139433.062 0.0 0.0
5 5 4 1 0 0 0 0.0 139433.062 0.0 0.0
6 1 8 5 1 1 8 0.0 139433.062 304.38989 51.00000
1 5 8 6 0 a 9 0.0 1.J9~H.062 504.38989 51.50000
8 8 9 6 I 8 9 0.0 1394H.062 50'i.58989 51.00000

NODE NUMBER IEHPERATURE

1 50.000000
2 13 .121613
5 55.000000

" 50.000000
5 12.811249
6 55.000000
1 50.000000
8 1l.8'tl~51

9 55.000000 .......
en
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