by
Faramarz Mossayebi

Submitted in Partial Fulfillment of the Requirments for the Degree of Master of Science in Engineering in the

Mechanical Engineering

Abstract

FINITE ELEMENT ANALYSIS OF HEAT CONDUCTION IN THE ABSORBER PLATE OF A SOLAR COLLECTOR

> Faramarz Mossayebi
> Master of Science in Engineering Youngstown State University, 1987

The Finite Element Method (FEM) is used to model the absorber plate of a flat plate solar collector. The Finite Element equations for steady-state temperature distribution are then derived by the Galerkin approach. Based on these formulations, a computer program is written in FORTRAN language to obtain the temperature field. The program contains all the necessary algorithms to handle twodimensional Laplace and Poisson's equations. Only some basic input data is essential to run the program.

The Finite Element solution is compared to the analytical solution and/or the solution by the Finite Difference Method, where possible. The results show good agreement.

ACKNOWLEDGEMENTS

The author wishes to express his thanks to his adviser, Dr. Hyun M. Kim of the Mechanical Engineering Department for his continuous assistance throughout the preparation and completion of the thesis. Thanks are also due to Dr. Frank A. D'Isa and Dr. Thomas I. Elias for their cooperation and patience in reading this thesis.

TABLE OF CONTENTS

PAGE
ABSTRACT II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF SYMBOLS VI
LIST OF FIGURES VII
LIST OF TABLES VIII
CHAPTER
I. INTRODUCTION 1
II. ABSORBER PLATE DESCRIPTION AND MATHEMATICAL MODEL 4
III. FORMULATION OF FINITE ELEMENT EQUATIONS FOR HEAT CONDUCTION IN THE ABSORBER PLATE 8
The Finite Element Formulation 8
Construction of Element Characteristic Matrices 12
Assemblage of Element Equations 21
Incorporation of Dirichlet Boundary Conditions 27
Solution of System Equations 29
IV. NUMERICAL ANALYSIS OF THE ABSORBER PLATE 33
V. CONCLUSION AND DISCUSSION 42
APPENDICES
A. TWO-DIMENSIONAL SIMPLEX ELEMENT 44
B. INTERPOLATION FUNCTIONS IN TERMS OF LOCAL COORDINATES 48
C. WEIGHTED RESIDUAL METHOD 52
D. CALCULATION OF HEAT GENERATION AND CONVECTION HEAT TRANSFER COEFFICIENT 55
E. CHOLESKI METHOD 59
F. INPUT FORMAT AND LISTING OF THE "HTAFEM" PROGRAM 62
BIBILIOGRAPHY 77
REFERENCES 78

LIST OF SYMBOLS

SYMBOL	DEFINITION	UNIT
A	Area	m^{2}
a_{1}, a_{2}, a_{3}	Coefficients of shape functions	
H	Monthly average, daily total horizontal radiation	$\mathrm{kW} \cdot \mathrm{hr} / \mathrm{m}^{2} \cdot \text { day }$
h_{c}	Average convection heat transfer coefficient	$\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}$
I_{0}	Solar constant	$\mathrm{W} / \mathrm{m}^{2}$
K	Thermal conductivity	W/m.K
L_{1}, L_{2}, L_{3}	Natural coordinate system for triangle	
$I_{x}{ }^{\prime} I_{y}$	Direction cosines of the outward drawn normal to the boundary	
$\mathrm{N}_{\mathrm{i}}, \mathrm{N}_{\mathrm{j}}, \mathrm{N}_{\mathrm{k}}$	Shape functions	
q	Heat generation	$\mathrm{W} / \mathrm{m}^{3}$
S	Net energy absorbed	$\mathrm{W} / \mathrm{m}^{2}$
T	Temperature	${ }^{\circ} \mathrm{C}$
T_{i}	Inlet temperature	$-0 \mathrm{C}$
T_{0}	Outlet temperature	${ }^{\circ} \mathrm{C}$
T_{∞}	Ambient temperature	${ }^{\circ} \mathrm{C}$
t	Thickness	m
W_{i}	Weighting functions	
$\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}$	Nodal coordinates	m
α	Absorptance	
ε	Residual	
Ω	Solution domain	
г	Surface that bounds the solution domain	
τ	Transmittance	

LIST OF FIGURES

FIGURE
PAGE

1. Liquid-cooled flat plate collector 4
2. A section of the absorber plate 5
3. Mathematical model of the absorber plate 7
4. Finite element modeling of the absorber plate 9
5. Boundary conditions for a triangular element 10
6. Discretization of the absorber plate 13
7. Possible mathematical models for the absorber plate 33
8. Isothermal lines for the model of Fig. 7-a 36
9. Isothermal lines for the model of Fig. 7-b 37
10. Isothermal lines for the model of Fig. 7-c 38
11. Temperature profile at fixed x and y for the model of Fig. 7-a 39
12. Two-dimensional simplex element 45
13. Natural coordinate system for a triangle 50
14. Organization of the computer program 67

LIST OF TABLES

TABLE PAGE

1. Fortran coding for calculation of element property matrices 20
2. Conduction and force matrices of element 1 22
3. Location of the coefficients of $\left[E C_{1}\right]$ and $\left\{E F_{1}\right\}$ in [GCM] and \{GFV\} 23
4. Conduction and force matrices of element 2 24
5. Assembly of $\left[E C_{1}\right],\left[E C_{2}\right],\left\{E F_{1}\right\}$ and $\left\{E F_{2}\right\}$ 24
6. Global conduction and force matrices 25
7. Fortran coding for assembly of element matrices. 27
8. Fortran coding for incorporation of the Dirichlet boundary conditions 30
9. Fortran coding for decomposition of global conduction matrix 31
10. Fortran coding for solution of system equations. 32
11. Comparison of finite element result for model of Fig. 7-b, to finite difference and approximate analytical solutions 40
12. Comparison of finite element and finite difference solutions for model of Fig. 7-C 41
13. Definition of the variables in the program 66

CHAPTER I

INTRODUCTION

Flat plate solar collectors are the most common unsophisticated device for harnessing solar energy at low cost. A typical collector consists of an absorber plate, piping for coolants, transparent cover glazing, thermal insulation and a casing. The heart of the system is the absorber plate. It is desired to determine the steady-state temperature distribution on the absorber plate. This type of problem belongs to one of the classical groups of problems in heat transfer analysis. Yet, an accurate prediction of temperature distribution on the absorber plate is quite difficult due to nonuniform boundary conditions and other uncertain conditions. The main objective of this thesis is focused on numerical analysis rather than mathematical modeling of an absorber plate. In other words, the methodology and procedure of finite element formulation, and its implementation to numerical computing, have been dealt with in detail.

Finite element method is an approximate method for solving differential equations of boundary and/or initial value problems. The name "Finite Element Method" first appeared in 1960, when it was used in a paper on a plane elasticity problem by Clough [1]. However, Turner, et al.[2]
were the pioneers with their paper on solution of plane stress problems by means of triangular elements, which was published in 1956. In 1965, Zienkviewicz and Cheung [3] reported that the method is applicable to all field problems. which can be cast into variational form.

The range of applications for the finite element method was greatly enlarged when Szabo and Lee [4] and Zienkiewicz [5] showed that the finite element equations could be derived by using a weighted residual procedure. The finite element method reduces a continuum problem, which theoretically has infinite number of unknowns, to one with finite number of unknowns by dividing the solution region to a finite number of subdomains called "finite elements". The field variable within each element is then expressed in terms of some assumed approximate functions. These approximate functions (also called interpolation functions, are defined in terms of the value of the field variables at "nodes". The nodes usually lie on the element boundaries where adjacent elements are connected. The finite element equations which govern all isolated elements are then derived. Finally these elements are assembled to form a global system of equations. After incorporation of the boundary conditions, the nodal value of the field variable is determined from the global system of equations.

In the process of solving the global system of equations, matrix technique combined with digital computer
is generally employed. A complete compact computer program which could handle the general heat conduction problem with various boundary conditions was written and applied to the problem.

CHAPTER II

ABSORBER PLATE DESCRIPTION AND MATHEMATICAL MODEL

When a flat plate solar collector absorbs solar radiation the temperature of the absorber plate gradually rises until it is high enough above ambient such that the rate of heat loss from the plate to the ambient just balances the rate of heat gain from absorbtion of solar rays. Practically a hot metal sheet is not of any value by itself. In a solar collector the collected heat is carried off by movement of a fluid, either as air blown over the plate or a fluid flowing through tubes attached to the plate. A typical liquid-cooled flat plate collector is illustrated in Fig. 1. Assuming that the spacings of the tubes attached to the absorber plate are equal, only one

Fig. 1. Liquid-cooled flat plate collector
section of the absorber plate is considered for analysis as shown in Fig. 2. Other major assumptions made are as follows [6]:

1. The absorber plate is made of aluminum with constant properties, and receives constant solar flux.
2. There is no convective and conduction heat loss in the vertical direction.
3. The inlet (T_{i}) and outlet (T_{0}) temperatures of fluid are constant.
4. The temperature variation of the fluid from T_{i} to T_{o} is linear.

Fig. 2. A section of absorber plate

Considering the symmetry of the absorber plate with respect to y axis (Fig. 2) and the above assumptions, the mathematical model of the plate can be constructed as shown in Figure 3. From Fourier's law of heat conduction, the governing differential equation of the model can be written as

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=0 \tag{1}
\end{equation*}
$$

Analysis of three dimensional problems by the finite element method (and, in general, any numerical method) requires extensive programming efforts and computational capabilities. However, due to the fact that the thickness of the absorber plate is small, temperature gradient in the z direction is assumed to be negligible. Hence, the lumping technique reduces the problem to a two dimensional problem (Fig. 3) as follows:

$$
\begin{gather*}
\int_{0}^{t}\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right) d z=-\int_{0}^{t}\left(\frac{\partial^{2} T}{\partial z^{2}}\right) d z \tag{2}\\
\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=-\frac{q}{K} \tag{3}
\end{gather*}
$$

where q is calculated in Appendix D. The boundary conditions for the above equation are as follows

$$
\begin{array}{ll}
\frac{\partial T}{\partial x}(0, Y)=0 & 0<y<0.6 \mathrm{~m} \\
-K \frac{\partial T}{\partial x}=h_{C}\left(T-T_{\infty}\right) & \text { at } x=0.15 \mathrm{~m} \\
T(x, 0)=T_{i}=50^{\circ} \mathrm{C} & \\
T(x, 0.6)=T_{0}=53^{\circ} \mathrm{C} &
\end{array}
$$

Fig. 3. Mathematical model of the absorber plate

CHAPTER III

FORMULATION OF FINITE ELEMENT EQUATIONS FOR HEAT CONDUCTION IN THE ABSORBER PLATE

In the finite element method, there are basically four different approaches in the formulation of element properties: direct approach, energy balance approach, variational approach, and weighted residual approach [7]. The most versatile approach for a continuum problem is the weighted residual approach which is adopted in this analysis. A brief discussion of the weighted residual approach is presented in Appendix C.

The Finite Element Formulation

Assuming that the solution domain is divided into n triangular elements, the overall finite element equations can be obtained by deriving the equations for each element and assembling them.

The element equations are derived by assuming a linear variation of T in each element, as it is discussed in Appendix A. Therefore

$$
\begin{equation*}
T^{\prime}(x, y)=N(x, y) T^{e} \tag{5}
\end{equation*}
$$

where T^{e} and $N(X, Y)$ are given by equations (68) and (69) respectively as

$$
\begin{align*}
& N(x, Y)=\left[\begin{array}{lll}
N_{i} & N_{j} & N_{k}
\end{array}\right]=l / 2 A\left[\begin{array}{l}
a_{i}+b_{i} x+c_{i} Y \\
a_{j}+b_{j} x+c_{j} y \\
a_{k}+b_{k} x+c_{k} y
\end{array}\right]^{T} \tag{6}\\
& T^{e}=\left\{\begin{array}{l}
T_{i} \\
T_{j} \\
T_{k}
\end{array}\right\} \tag{7}
\end{align*}
$$

Substituting eq. (5) into the equation (3) yields

$$
\begin{equation*}
K \frac{\partial^{2} T^{\prime}}{\partial x^{2}}+K \frac{\partial^{2} T^{\prime}}{\partial y^{2}}+q=\varepsilon \neq 0 \tag{8}
\end{equation*}
$$

Applying the weighted residual(Galerkin) principle,

$$
\begin{equation*}
\int_{\Omega} N_{i} \varepsilon d \Omega=\int_{\Omega} N_{i}\left(K \frac{\partial^{2} T^{\prime}}{\partial x^{2}}+K \frac{\partial^{2} T^{\prime}}{\partial y^{2}}+q\right) d \Omega=0 \tag{9}
\end{equation*}
$$

where Ω is the domain. This equation can be transformed into a first degree equation by noting that
or

$$
\begin{equation*}
K \frac{\partial}{\partial x}\left(N_{i} \frac{\partial T^{\prime}}{\partial x}\right)=K N_{i} \frac{\partial^{2} T^{\prime}}{\partial x^{2}}+K \frac{\partial N_{i}}{\partial x} \frac{\partial T^{\prime}}{\partial x} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{K ~ N}_{\boldsymbol{i}} \frac{\partial^{2} T^{\prime}}{\partial x^{2}}=\mathbf{K} \frac{\partial}{\partial x}\left(\mathbf{N}_{\boldsymbol{i}} \frac{\partial T^{\prime}}{\partial x}\right)-\mathbf{K} \frac{\partial N_{i}}{\partial x} \frac{\partial T^{\prime}}{\partial x} \tag{II}
\end{equation*}
$$

Fig. 4. Finite element modeling of the absorber plate

Similarly,

$$
\begin{equation*}
K N_{i} \frac{\partial^{2} T^{\prime}}{\partial y^{2}}=K \frac{\partial}{\partial y}\left(N_{i} \frac{\partial T^{\prime}}{\partial y}\right)-K \frac{\partial N_{i}}{\partial y} \frac{\partial T^{\prime}}{\partial y} \tag{12}
\end{equation*}
$$

Substituting equations (11) and (12) into equation (9) Yields

$$
\begin{gather*}
-\int_{\Omega} N_{i}\left(\frac{\partial N_{i}}{\partial x} \frac{\partial T^{\prime}}{\partial x}+\frac{\partial N_{i}}{\partial y} \frac{\partial T^{\prime}}{\partial y}\right) d \Omega+\int_{\Omega} K\left\{\frac{\partial}{\partial x}\left(N_{i} \frac{\partial T^{\prime}}{\partial x}\right)\right. \\
\left.+\frac{\partial}{\partial y}\left(N_{i} \frac{\partial T^{\prime}}{\partial y}\right)\right\} d \Omega+\int_{\Omega} N_{i} q d \Omega=0 \tag{13}
\end{gather*}
$$

Applying Gauss theorem to the second integral of equation (13) yields

$$
\begin{gather*}
-\int_{\Omega} N_{i}\left(\frac{\partial N_{i}}{\partial x} \frac{\partial T^{\prime}}{\partial x}+\frac{\partial N_{i}}{\partial y} \frac{\partial T^{\prime}}{\partial y}\right) d \Omega+\int_{\Gamma} K N_{i}\left(\frac{\partial T^{\prime}}{\partial x} \ell_{x^{\prime}}+\right. \\
\left.\frac{\partial T^{\prime}}{\partial y} \ell_{y}\right) d \Gamma+\int_{\Omega} N_{i} q d \Omega=0 \tag{14}
\end{gather*}
$$

where Γ is the surface which bounds the region Ω, and ${ }^{{ }_{x}}$ and ℓ_{y} are direction cosines of the outward drawn normal to the boundary. The surface can have a combination of two different kinds of boundaries, convection and prescribed temperature. For instance, the element number 72 in the mesh of Fig. 4 is subjected to convection and a prescribed temperature. This element is redrawn as shown in Fig. 5,

Fig. 5. Boundary conditions for a triangular element
where Γ_{1} and Γ_{2} denote prescribed temperature and convection boundaries, respectively. The surface integral of (14) can be written as

$$
\begin{align*}
& \int_{\Gamma} K N_{i}\left(\frac{\partial T^{\prime}}{\partial x} \ell_{x}+\frac{\partial T^{\prime}}{\partial y} \ell_{Y}\right) d \Gamma=\int_{\Gamma_{1}} K N_{i}\left(\frac{\partial T^{\prime}}{\partial x} \ell{ }_{x}+\right. \\
& \left.\frac{\partial T^{\prime}}{\partial y} \ell_{y}\right) d \Gamma_{1}+\int_{\Gamma_{2}} K N_{i}\left(\frac{\partial T^{\prime}}{\partial x} \ell_{x}+\frac{\partial T^{\prime}}{\partial y} \ell_{y}\right) d \Gamma_{2} \tag{15}
\end{align*}
$$

Because the temperature over Γ_{1} is prescribed and constant, the surface integral over Γ_{1} is zero. Since

$$
\mathbf{K}\left(\frac{\partial T^{\prime}}{\partial x} \ell \mathbf{x}^{+} \frac{\partial T^{\prime}}{\partial y} \ell Y^{\prime}\right)=-h\left(T-T_{\infty}\right),
$$

it follows that

$$
\begin{equation*}
\int_{\Gamma_{2}} K N_{i}\left(\frac{\partial T^{\prime}}{\partial y} \ell_{\mathbf{x}}+\frac{\partial T^{\prime}}{\partial y} \ell_{y^{\prime}}\right) d \Gamma_{2}=-\int_{\Gamma_{2}} h N_{i}\left(T^{\prime}-T_{\infty}\right) d_{\Gamma_{2}} \tag{16}
\end{equation*}
$$

Substituting equation (16) into equation (14) yields

$$
\begin{align*}
& -\int_{\Omega} K N_{i}\left(\frac{\partial N_{i}}{\partial x} \frac{\partial T^{\prime}}{\partial x}+\frac{\partial N_{i}}{\partial y} \frac{\partial T^{\prime}}{\partial y}\right) d \Omega+\int_{T_{2}} h N_{i}\left(T_{\infty}-T\right) d \Gamma_{2}+ \\
& \int_{\Omega} N_{i} q d \Omega=0 . \tag{17}
\end{align*}
$$

Expanding the second integral and rearranging yields

$$
\begin{align*}
& -\int_{\Omega} K N_{i}\left(\frac{\partial N_{i}}{\partial x} \frac{\partial T^{\prime}}{\partial x}+\frac{\partial N_{i}}{\partial y} \frac{\partial T^{\prime}}{\partial y}\right) d \Omega-\int_{\Gamma_{2}} h N_{i} T d \Gamma_{2}+ \\
& \int_{\Gamma 2} h N_{i} T_{\infty} d \Gamma_{2}+\int_{\Omega} N_{i} q d \Omega=0 \quad . \tag{18}
\end{align*}
$$

The partial derivatives of T with respect to x and y are obtained from equation (5) as

$$
\begin{align*}
& \frac{\partial T^{\prime}}{\partial x}=\frac{\partial}{\partial x}\left(N_{i} T^{\mathbf{e}}\right)=\frac{\partial N_{j}}{\partial x} T^{\mathbf{e}} \\
& \frac{\partial T^{\prime}}{\partial y}=\frac{\partial}{\partial y}\left(N_{i} T^{\mathbf{e}}\right)=\frac{\partial N_{i}}{\partial y} T^{\mathbf{e}} . \tag{19}
\end{align*}
$$

Substituting equation (19) into equation (17) and writing it in terms of matrices yields

$$
\begin{equation*}
[K] T^{\prime e}+\left[K_{h}\right] T^{\prime e}-f_{q}-f_{h}=0 \tag{20}
\end{equation*}
$$

where

$$
\begin{aligned}
& {[\mathrm{K}]=\int_{\Omega} \mathrm{K}[\mathrm{~B}]^{\mathrm{T}}[\mathrm{~B}] \mathrm{d}_{\Omega},} \\
& {\left[\mathrm{K}_{\mathrm{h}}\right]=\int_{\Gamma 2} \mathrm{~h}[\mathrm{~N}]^{T}[\mathrm{~N}] \mathrm{d}_{\Gamma_{2}},} \\
& \mathrm{f}_{\mathrm{q}}=\int_{\Omega} \mathrm{q}[\mathrm{~N}]^{T} \mathrm{~d}_{\Omega}, \\
& \mathrm{f}_{\mathrm{h}}=\int_{\Gamma 2} \mathrm{~h} T[\mathrm{~T}]^{T} \mathrm{~d}_{\Gamma 2},
\end{aligned}
$$

and

$$
[B]=\left[\begin{array}{lll}
\frac{\partial N_{1}}{\partial x} & \frac{\partial N_{2}}{\partial x} & \frac{\partial N_{3}}{\partial x} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{3}}{\partial y}
\end{array}\right]
$$

Construction of element characteristic matrices

The element conduction and force matrices are calculated from equation (20). Matrix [K] is calculated for each element while $\left[K_{h}\right.$] is calculated for those elements which are subjected to convection heat loss. The vectors f_{q} and f_{h} are calculated for the elements which are subjected to internal heat generation and convection, respectively.

Assuming that the solar absorber plate is discretized by 9 nodes and 8 elements as shown in Fig. 6, the matrix K must be calculated for all eight elements, while K_{h} is calculated for element numbers 6 and 8 which are subjected to convection heat loss. In order to determine matrix K, the matrix B must be evaluated. However, to calculate B, the partial derivatives of shape functions N_{i}

Fig. 6. Discretiziation of the absorber plate
with respect to x and y should be derived. From equation (69) ,
$N_{e}=\left[\begin{array}{lllll}N_{i} & N_{j} & N_{k}\end{array}\right]=1 / 2 A\left[\quad a_{i}+b_{i} x+c_{i} Y \quad a_{j}+b_{j} x+c_{j} Y \quad a_{k}+b_{k} x+c_{k} Y\right]$
Therefore

$$
\begin{array}{ll}
\frac{\partial N_{i}}{\partial x}=\frac{b_{i}}{2 A} & \frac{\partial N_{j}}{\partial y}=\frac{c_{i}}{2 A} \\
\frac{\partial N_{j}}{\partial X}=\frac{b_{j}}{2 A} & \frac{\partial N_{j}}{\partial y}=\frac{c_{j}}{2 A} \\
\frac{\partial N_{k}}{\partial X}=\frac{b_{k}}{2 A} & \frac{\partial N_{k}}{\partial y}=\frac{c_{k}}{2 A}, \tag{21}
\end{array}
$$

where $b_{i}, b_{j}, \ldots . .$, and c_{k} are given by equation (63) and A is the area of the triangle. Substituting equation into equation (20) yields

$$
[B]=1 / 2 A\left[\begin{array}{lll}
b_{i} & b_{j} & b_{k} \tag{22}\\
c_{i} & c_{j} & c_{k}
\end{array}\right]
$$

Since B is constant and independent of x and y,

$$
[K]=\int_{A} k\left[\begin{array}{lll}
\mathrm{K}
\end{array}\right]^{T}\left[\begin{array}{ll}
\mathrm{B}
\end{array}\right] \mathrm{dA}=\mathrm{k}\left[\begin{array}{lll}
\mathrm{B}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{lll}
\mathrm{B} \tag{23}
\end{array}\right] \int_{A} d A
$$

Preforming the integration gives

$$
[K]=k /(4 A)\left[\begin{array}{lrl}
b_{i}+c_{i} & b_{i} b_{j}+c_{i} c_{j} & b_{i} b_{k}+c_{i} c_{k} \tag{24}\\
& b_{j}+c_{j} & b_{j} b_{k}+c_{j} c_{k} \\
\text { symmetric } & & b_{k}+c_{k}
\end{array}\right]
$$

Considering element number 1 ,

$$
\begin{array}{ll}
x_{i}=y_{i}=0.0 & \\
x_{j}=0.075 & y_{i}=0.0 \\
x_{k}=0.0 & y_{k}=0.3
\end{array}
$$

Substituting into equation (63) yields

$$
\begin{array}{ll}
b_{i}=-0.3 & c_{i}=-0.075 \\
b_{j}=0.3 & c_{j}=0.0 \\
b_{k}=0.0 & c_{k}=0.075
\end{array}
$$

Substituting into equation (24) results

$$
\mathrm{K}_{1}=k / 4 \mathrm{~A}_{1}\left[\begin{array}{ccc}
0.09562 & -0.09 & -0.00562 \tag{25}\\
\text { symmetric } & 0.09 & 0.0 \\
& 0.00562
\end{array}\right]
$$

Since element number 1 is not subjected to convection heat loss,

$$
\left[K_{h l}\right]=\left\{f_{h 1}\right\}=0
$$

If the Element Conduction Matrix (ECM) is defined as

$$
\begin{equation*}
[E C M]_{e}=[K]_{e}+\left[K_{h}\right]_{e} \tag{26}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[E C M_{1}\right]=\left[K_{1}\right] \tag{27}
\end{equation*}
$$

Since all the elements have constant heat generation, from equation (20)

$$
f_{q l}=\int_{\Omega^{1}} q[N]^{T} d \Omega^{1}=q \int_{\Omega^{1}}\left\{\begin{array}{l}
N_{i} \tag{28}\\
N_{j} \\
N_{k}
\end{array}\right\} d \Omega^{1}
$$

where Ω^{1} is the domain of element number 1. The evaluation of this integral is painless if the area coordinates are employed. The concept of area coordinates and its relating integral formulas are discussed in Appendix B. Assuming that L_{1} is measured from the side opposite to node i,

$$
\begin{align*}
& L_{1}=N_{i}, \\
& L_{2}=N_{j}, \text { and } \\
& L_{3}=N_{k} \tag{29}
\end{align*}
$$

Substituting into equation (28) and using equation (76) with the assumption that the thickness is unity, yields

$$
f_{q 1}=q \int_{A_{1}}\left\{\begin{array}{l}
L_{1} \tag{30}\\
L_{2} \\
L_{3}
\end{array}\right\} d A_{1}=q A_{1} / 3\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}
$$

If the Element Force vector (EF) is defined as

$$
\begin{equation*}
\{E F\}=f_{q}+f_{h} \tag{31}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\{E F_{1}\right\}=f_{q 1} \tag{32}
\end{equation*}
$$

The heat generated within the absorber plate (q) is approximated to be $139433 \mathrm{~W} / \mathrm{m}^{3}$ (Appendix D). Therefore

$$
\left\{E F_{1}\right\}=A_{1}\left\{\begin{array}{l}
46477.68 \tag{33}\\
46477.68 \\
46477.68
\end{array}\right\}
$$

Since element numbers $2,3,4,5$, and 7 are not subjected to convection heat loss, repeating the above procedure yields
the following element property matrices for aforementioned elements:

$$
\begin{align*}
& {\left[\mathrm{ECM}_{2}\right]=\mathrm{k} /\left(4 \mathrm{~A}_{2}\right)\left[\begin{array}{ccc}
0.09 & 0.0 & -0.09 \\
\text { symmetric } & 0.00562 & -0.09562 \\
0.00562
\end{array}\right]} \tag{34}\\
& {\left[E M_{3}\right]=\mathrm{k} /\left(4 \mathrm{~A}_{3}\right)\left[\begin{array}{ccc}
0.00562 & -0.00562 & 0.0 \\
\text { symmetric } & 0.09562 & -0.09 \\
0.09
\end{array}\right]} \tag{35}\\
& {\left[\mathrm{ECM}_{4}\right]=\mathrm{k} /\left(4 \mathrm{~A}_{4}\right)\left[\begin{array}{ccc}
0.09 & 0.0 & -0.09 \\
\text { symmetric } & 0.00562 & -0.00562 \\
& 0.09562
\end{array}\right]} \tag{36}\\
& {\left[E C M_{5}\right]=\mathrm{k} /\left(4 \mathrm{~A}_{5}\right)\left[\begin{array}{lrr}
0.00562 & -0.00562 & 0.0 \\
\text { symmetric } & 0.09562 & -0.09 \\
& 0.09
\end{array}\right]} \tag{37}\\
& {\left[\mathrm{ECM}_{7}\right]=\mathrm{k} /\left(4 \mathrm{~A}_{7}\right)\left[\begin{array}{ccc}
0.00562 & -0.00562 & 0.0 \\
\text { symmetric } & 0.09562 & -0.09 \\
\text { sym }
\end{array}\right] .} \tag{-38}
\end{align*}
$$

Since the areas of all the elements and the heat generated within each element are equal,
$\left\{E F_{1}\right\}=\left\{E F_{2}\right\}=\left\{E F_{3}\right\}=\left\{E F_{4}\right\}=\left\{E F_{5}\right\}=\left\{E F_{7}\right\}=A_{1}\left\{\begin{array}{l}46477.63 \\ 46477.63 \\ 46477.63\end{array}\right\}$.
Since element numbers 6 and 8 are subjected to convection, $\left\{K_{h}\right\}$ and f_{h} matrices are not zero. Considering element number $6,\left[K_{6}\right]$ and $f_{q 6}$ are calculated as

$$
\begin{align*}
& {\left[K_{6}\right]=k / 4 A_{6}\left[\begin{array}{ccc}
0.00562 & -0.00562 & 0.0 \\
\text { symmetric } & 0.09562 & -0.09 \\
f_{q 6}=A_{6}\left\{\begin{array}{l}
46477.63 \\
46477.63 \\
46477.63
\end{array}\right\}
\end{array}, .\right.} \tag{40}
\end{align*}
$$

However, $\left[K_{h}\right]$ is given by
$\left[K_{h}\right]=\int_{\Gamma} h[N]^{T}[N] d \Gamma=h \int_{\Gamma}\left[\begin{array}{ccc}N_{i}{ }^{2} & N_{i} N_{j} & N_{i} N_{k} \\ & N_{j}{ }^{2} & N_{j} N_{k} \\ \text { symmetric } & N_{k}{ }^{2}\end{array}\right] d \Gamma \quad$,
which must be evaluated over the surface from which the element is subjected to convection. For element number 6, side $i-j$ is subjected to convection. Since N_{k} is zero along this side, equation (42) reduces to

$$
\left[\mathrm{K}_{\mathrm{h} 6}\right]=\mathrm{h} \int_{\Gamma_{i j}}\left[\begin{array}{ccc}
\mathrm{N}_{\mathrm{i}}^{2} & \mathrm{~N}_{\mathrm{i}} \mathrm{~N}_{j} & 0.0 \tag{43}\\
& \mathrm{~N}_{\mathrm{j}}^{2} & 0.0 \\
\text { symmetric } & 0.0
\end{array}\right] \mathrm{d}_{\Gamma}
$$

Employing the area coordinates and using related integral formulas gives

$$
\left[K_{h 6}\right]=h \Gamma_{i j} / \sigma\left[\begin{array}{lll}
2 & 1 & 0 \tag{44}\\
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where $\Gamma_{i j}$ is the length of side $i-j$ and is calculated by

$$
\begin{equation*}
r_{i j}=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}=0.3 \tag{45}
\end{equation*}
$$

Substituting rij $=0.3$ and $\mathrm{h}=304.0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ (Appendix D) into equation (43) and then forming the element conduction matrix gives

$$
\left[E C M_{6}\right]=\left[\mathrm{K}_{6}\right]+\left[\mathrm{K}_{\mathrm{h} 6}\right]=\left[\begin{array}{ccc}
59.92 & -14.28 & 0.0 \tag{46}\\
531.92 & -471.99 \\
\text { symmetric } & 471.99
\end{array}\right]
$$

Furthermore, $f_{h 6}$ is obtained as follows:
$f_{h 6}=\int_{\Gamma_{i j}}^{h} T_{\infty}[N]^{T} d \Gamma_{i j}=h T_{\infty} \int_{\Gamma_{i j}}\left\{\begin{array}{c}N_{i} \\ N_{j} \\ N_{k}\end{array}\right\} d \Gamma_{i j}$.
Using the area coordinates and integrating yields
$f_{h 6}=h T_{\infty} F_{j} / 2\left\{\begin{array}{l}1 \\ 1 \\ 0\end{array}\right\} \quad$.
Substituting $T \infty=51^{\circ} \mathrm{c}$,
$f_{h 6}=\left\{\begin{array}{l}2328.58 \\ 2328.58 \\ 0.0\end{array}\right\}$
The element force matrix is then obtained as
$\left\{E F_{6}\right\}=f_{q 6}+f_{h 6}=\left\{\begin{array}{l}2851.45 \\ 28251.45 \\ 522.87\end{array}\right\}$
Similarly, the element conduction and force matrices for element number 8 are calculated as $\left[E C M_{8}\right]=\left[\mathrm{K}_{8}\right]+\left[\mathrm{K}_{\mathrm{h} 8}\right]=\left[\begin{array}{lll}59.92 & -14.28 & 0.0 \\ \text { symmetric } & 531.92 & -471.99 \\ \text { sym.99 }\end{array}\right]$,
and
$\left\{E F_{8}\right\}=f_{q 8}+f_{h 8}=\left\{\begin{array}{l}2851.45 \\ 2851.45 \\ 522.87\end{array}\right\} \quad$.
The FORTRAN coding for calculation of these element property matrices is shown in Table 1. The variables are defined as follows:

GK = element conduction matrix,
FQ = heat generation force vector,
$\mathrm{FH}=$ convection force vector,
GKH = element convection matrix, $C C=$ thermal conductivity, H = coefficient of convection heat loss, SEIJ = length of I-J side of the element, and $A=$ area of the element.

Table 1. Fortran coding for calculation of property matrices

```
    C.....
    C... obtain nodal coordinates
    C.....
        B1=Y2-Y3
        B2=Y3-Y1
        B3=Y1-Y2
        Cl=X3-X2
        C2=X1-X3
        C3=X2-X1
    C... calculate area
    A(I)=(C3*Bl-Cl*B3)/2
    GK(1,1)=Bl**2+Cl**2
    GK(1,2)=B1*B2+Cl*C2
    GK(1,3)=Bl*B3+Cl*C3
    GK(2,2)=B2**2+C2**2
    GK (2,3) =B2 *B3+C2 *C3
    GK(3,3)=B3**2+C3**2
    GK(2,1)=GK(1,2)
    GK(3,1)=GK(1,3)
    GK}(3,2)=\operatorname{GK}(2,3
    DO 20 M=1,3
    FQ(M)=QD(I)*A(I)/3.0
    FH(M)=0.0
    DO 20 N=1,3
    GK(M,N)=GK(M,N)*CC/(4*A(I))
    GKH(M,N)=0.0
20 CONTINUE
    IF(INBC(I).EQ.O) GO TO 30
C...boundary on ij side of element
    SEIJ=SQRT((X2-XI)**2+(Y2-Y1)**2)
    CT=H(I)*SEIJ/6.0
    GKH(1,1)=2.0*CT
    GKH (1,2)=CT
    GKH(2,1)=GKH (1,2)
    GKH(2,2)=GKH(1,1)
    FH(1)=H(I) *SEIJ*AT (I)/2.0
    FH(2)=FH(1)
30 CONTINUE
C....
C....
```


Assemblage of Element Equations

Once the element properties are determined, the next step is to construct the overall system equations which in a sense is equivalent to constructing the solution domain with the elements that comprise it. The assembly is based on the principle of compatibility; that is, at the nodes the value of the unknown field variable is the same for all elements joining at that node.

The element conduction matrix and force vector for element 1 are rewritten in Table 2 . The location of any coefficient $E C_{i j}$ in the global conduction matrix, [GC], is identified by the global degrees of freedom corresponding to the local degrees of freedom. The location of the coefficients $E C_{i j}$ in [GC] and $E F_{i}$ in $\{G F\}$ for element 1 is shown in Table 3 . The conduction matrix and the force vector of the second element are shown in Table 4 . These elements are placed in [GC] and \{GF\} at appropriate locations as shown in Table 5 .

The final global conduction matrix and force vector are obtained by adding the contributions of elements 3 through 8 to those shown in Table 5 . If there is no contribution from any elements to any coefficient of [GCM], then that coefficient will be taken as zero. The final global conduction matrix and force vector are shown in Table 6. The matrix [GCM] is written in a symmetric banded form.

Table 2. Coduction and force matrices of element 1

Table 3. Location of the coefficients of $\left[E C_{1}\right]$ and $\left\{E F_{1}\right\}$
in [GCM] and $\{G F\}$.

Table 4. Conduction and force matrices of element 2

Table 5. Assembly of $\left[E C_{1}\right],\left[E C_{2}\right],\left\{E F_{1}\right\}$, and $\left\{E F_{2}\right\}$

Table 5. (Continued)

Table 6. Global conduction and force matrices
$[\mathrm{GCM}]=\left[\begin{array}{llll}501.49 & -29.49 & 0.0 & -471.99 \\ 1002.99 & -29.49 & 0.0 & -943.99 \\ 501.49 & 0.0 & 0.0 & -471.99 \\ 1002.99 & -58.99 & 0.0 & -471.99 \\ 2005.99 & -58.99 & 0.0 & -943.99 \\ 1002.99 & 0.0 & 0.0 & -471.99 \\ 531.93 & -14.28 & 0.0 & \\ 1063.87 & -14.28 & & \\ 531.93 & & & \end{array}\right]$

Table 6. (Continued)

$$
\{G F\}=\left\{\begin{array}{l}
522.87 \\
1568.62 \\
1045.74 \\
1568.62 \\
3660.11 \\
1045.74 \\
3374.32 \\
5702.9 \\
3374.32
\end{array}\right\}
$$

Table 7 shows the FORTRAN coding that has been used for the assembly process. Since the matrix [GCM] is banded and symmetric, only the upper triangular matrix is calculated and stored. The variables are defined as follows:

NEL = number of elements
NNODE $=$ total number of nodes
NBW $=$ number of band width
GCM $=$ global conduction matrix
ECM $=$ element conduction matrix
$G F=$ global force vector
$E F=$ element force vector
NENN $(i, j)=$ global node number corresponding to the $j^{\text {th }}$ corner of $i^{\text {th }}$ element.

Table 7. Fortran coding for assembly of element matrices

```
C....
C initialize the matrices
C...
    DO 5 I=l,NNODE
    GF = 0.0
    DO 5 J=1,NBW
    GCM (I,J)=0.0
5 CONTINUE
C...
C...
    DO 10 I=1,NEL
    DO 15 M=1,3
    IM=NENN (I,M)
    GF(IM)=GF(IM)+EF(M)
    DO 15 N=1,3
    IN=NENN (I,N) -IM+1
    IF(IN.LE.O) GO TO }1
    GCM(IM,IN)=GCM(IM,IN) + ECM(M,N)
15 CONTINUE
10 CONTINUE
```

Incorporation of Dirichlet Boundary Conditions

After all the element characteristic matrices have been assembled into the global conduction matrix and force vector, the system equations can be written as
$[G C M]\{T\}=\{G F\}$
This system of equations must be modified whenever some of the nodal temperatures are prescribed. If the ith coefficient of $\{T$ \} is prescribed, then the modification proceeds as follows:

1. Subtract the product of the (j, i) coefficient of [GCM] times the known ith coefficient of \{ GF \} from the jth coefficient of \{ GF \}.
2. Replace the ith row and the ith column of [GCM] by zero.
3. Set the (i,i) coefficient of [GCM] to unity.
4. Make the ith coefficient of \{ GF \} equal to the prescribed value [8].

The temperatures of nodes $1,3,4,6,7$, and 9 of the mesh of Fig. 6 are prescribed and are

$$
\begin{aligned}
& T_{1}=T_{4}=T_{7}=T_{i}=50.00^{\circ} \mathrm{C} \\
& T_{3}=T_{6}=T_{9}=T_{0}=53.0{ }^{\circ} \mathrm{C}
\end{aligned}
$$

The system of equations is given by
where all,al2,......, and f9 are the same as those shown in Table 6. Considering node number 1 and implementing the above procedures yields

Repeating the procedure for the remaining nodes will result in the following system of equations:

To implement incorporation of the Dirichlet boundary conditions according to the aforementioned procedure, a subroutine is written which is shown in Table 8 . The program assumes that the matrix [GCM] is stored in band form. The subroutine is called for each prescribed nodal degree of freedom by the following FORTRAN statement CALL DIRBC (GCM, GF,NNODE,NBW,ND, PT)
where

$$
\begin{aligned}
& \text { ND }=\text { node subjected to prescribed temperature } \\
& S T=\text { value of the prescribed temperature. }
\end{aligned}
$$

Solution of System Equations

The last step of the finite element method is the solution of system equations. Although there are many methods available for solving a system of linear equations, the Choleski's method is used. This method is briefly discussed in Appendix E.

Table 8. Fortran coding for incorporation of the Dirichlet boundary conditions.

5 10	SUBROUTINE DIRBC (GCM, GF,NNODE,NBW,M,ST) DIMENSION GCM (NNODE,NBW), GF (NNODE) DO $5 \mathrm{~K}=2$, NBW $I I=M-K+1$ $I 2=M+K-1$ IF (II.GE.I) GF(II)=GF(II)-A(II,K)*ST IF (I2.LE.NNODE) GF(I2)=GF(I2)-A (M, K) *ST $G F(M)=S T$ DO $10 \mathrm{~J}=1$, NBW Il $=\mathrm{M}-\mathrm{J}+1$ IF(II.GE.1) A(II,J)=0.0 $A(M, J)=0.0$ $A(M, 1)=1.0$ RETURN END

The Choleski's method is implemented by using two subroutines which are shown in Tables 9 and 10. The subroutine DECOM performs the decomposition of the global conduction matrix [GCM] into an upper triangular matrix, while the subroutine CHOLE solves the system equations and stores the results in array TEM. The subroutines are called by the following FORTRAN statements

CALL DECOM (NNODE,NBW,GCM)
CALL CHOLE (NNODE,NBW,GCM,TEM)
Using Choleski's method to solve the system of equations given by equation (57) yields

$$
\left\{\begin{array}{l}
\mathrm{T}_{1} \tag{58}\\
\mathrm{~T}_{2} \\
\mathrm{~T}_{3} \\
\mathrm{~T}^{4} \\
\mathrm{~T}^{4} \\
\mathrm{~T}^{5} \\
\mathrm{~T}_{7} \\
\mathrm{~T}_{8} \\
\mathrm{~T}_{9}
\end{array}\right\}=\left\{\begin{array}{l}
50.0 \\
73.32 \\
53.0 \\
50.0 \\
73.02 \\
53.0 \\
50.0 \\
71.53 \\
53.0
\end{array}\right\}
$$

Table 9. Fortran coding for decomposition of global conduction matrix.

Table 10. Fortran coding for solution of system equations.

SUBROUTINE CHOLE (NNODE,NBW,A,B)
DIMENSION A (NNODE, NBW), B (NNODE)
DOUBLE PRECISION D
$B(1)=B(1) / A(1,1)$
DO 10 I=2,NNODE
$D=B(I)$
DO $20 \mathrm{~J}=2, \mathrm{NBW}$
Il=I+1-J
IF (Il.LT.I) GO TO 20
I2=I+1-I1
IF (I2.GT.NBW) GO TO 20
$\mathrm{D}=\mathrm{D}-\mathrm{A}(\mathrm{Il}, \mathrm{I} 2) * \mathrm{~B}(\mathrm{I} 1)$
20 CONTINUE
$B(I)=D / A(I, I)$
10 CONTINUE
$B($ NNODE $)=B($ NNODE $) / A($ NNODE, 1$)$
c
compute the system unknowns
C
C
DO 30 I=2,NNODE
I3=NNODE+1-I
$\mathrm{D}=\mathrm{B}$ (I3)
DO $40 \mathrm{~J}=2$,NBW
I4 $=13-1+J$
IF (I4.GT.NNODE) GO TO 40
$\mathrm{D}=\mathrm{D}-\mathrm{A}(\mathrm{I} 3, \mathrm{~J}) * \mathrm{~B}(\mathrm{I} 4)$
40 CONTINUE
$B(I 3)=D / A(I 3, I)$
30 CONTINUE
RETURN
END

CHAPTER IV

NUMERICAL ANALYSIS OF THE ABSORBER PLATE

The mesh of Fig. 6, which was used to illustrate the formulation of the problem by the finite elements method, does not produce an accurate solution to the problem.

However, the solution is expected to converge as the size of the elements are reduced. On the other hand, there are two more possible mathematical models for representation of the absorber plate. These models, along with the initial model of Fig. 2, are shown in Fig. 7. For the model of Fig. 7-b,

Fig. 7. Possible mathematical models for absorber plate
the mean temperature of the fluid flowing through the tubes is used as the ambient temperature $\left(51.5^{\circ} \mathrm{C}\right.$). The model of Fig. 7-c assumes that the ambient temperatures around the top and bottom of the plate are equal to the outlet and inlet fluid temperatures, respectively. Again, the temperature variation of the fluid from T_{i} to T_{o} is assumed to be linear.

In order to achieve an accurate solution to the problem, a fine mesh with 451 nodes and 800 elements was constructed. The finite element solutions of the aforementioned problems are illustrated by means of the isothermal lines within the absorber plate, as shown in pages 36,37 , and 38 . The temperature distribution along the vertical and horizontal axes are also shown in page 39. Note that this is done only for the original mathematical model, since for this case the isothermal lines do not visualize the solution of the problem as good as the other two cases.

In order to investigate the accuracy of the finite element method, the well-known method of finite differences was used. The finite difference solution of the problems along with the finite element results are tabulated in Tables 11 and 12. The finite difference solution was obtained by dividing the solution region into 8 rectangles (9 nodes). The finite element solution was also obtained by using the same number of nodes (9 nodes and 16 elements) and the mesh with 451 nodes and 800 elements. The results are
very close to each other, which implies that an excessive number of elements is not necessary for a reasonably accurate solution. It may be noted that for this particular problem, the finite difference solution converges faster than finite element because of the simple geometry of the problem.

Fig. 8. Isothermal lines for model of Fig. 7-a

Fig. 9. Isothermal lines for model of Fig. 7-b

Fig. 10. Isothermal lines for model of Fig. 7-c

(a) Fixed Y

(b) Fixed X

Fig. ll. Temperature profiles for model of Fig. 7-a

Table 11. Comparison of finite element results for model of Fig. 7-b to finite difference and approximate analytical solutions.

FDM (9 nodes)	FEM (9 nodes)	FEM (451 nodes)	Analytical
105.551	105.6827	105.3435	105.3521
104.376	104.5124	104.1686	104.1778
100.829	100.9697	100.6223	100.6331
103.604	103.6134	103.3452	103.3655
102.473	102.5289	102.2146	102.2360
99.057	99.1745	98.8011	98.8236
96.419	96.9271	97.0306	97.0417
93.417	96.3323	95.9984	96.0526

Table 12. Comparison of finite element and finite difference solutions for model of Fig. 7-c

F.E.M.(15 nodes)	F.E.M.(451 nodes)	F.D.M. (15 nodes)
97.1582	96.5292	96.845
95.6068	95.5512	95.836
92.8418	92.5343	92.779
103.5136	103.1205	103.284
102.3752	101.9811	102.144
98.5172	98.5371	98.699
105.6827	105.4169	105.551
104.5124	104.2413	104.376
100.9697	100.6928	100.829
103.9211	103.7367	103.924
102.8457	102.6155	102.803
99.5199	99.2302	99.415
97.4695	97.6632	97.978
96.8873	96.6643	97.003
94.2087	93.7057	94.055

CHAPTER V

CONCLUSION AND DISCUSSION

The finite element formulation for determination of temperature distribution in the absorber plate of a flat plate solar collector has been demonstrated and a computer program written based on these formulations.

This demonstration has shown that the finite element analysis is a valid and versatile method. The finite element solution of those problems which have analytical solutions, shows excellent agreement with the corresponding analytical solutions.

The finite element program used in this thesis is written based on the formulation of the equations by the Galerkin approach. It has several features which make it easy to use and economical. Storing the stiffness matrix in a symmetric banded form reduces the storage requirement of the program by more than half. For a numerical analysis the modification of the program, in general, may be a necessity when a new problem or a new mesh is constructed. The program is written to accommodate various problems with minimum modifications so that the human errors arising in the allocation of required memory storage for the array are greatly reduced.

When comparing the finite element and the finite
difference solutions it seems that the latter method yields slightly more accurate values. This is to be anticipated because of the simplicity in the geometry of the problem and the triangular element used in this finite element formulation, which is based on the linear variation. The accuracy of the solution by the finite element method should increase if quadratic or isoparametric elements are used. Therefore, a general statement in favor of the finite difference method over the finite element method can not be justified. This is due to the fact that the versatility of the finite element method, especially the ability of the method to realistically model any geometric configuration, is far beyond that of the finite difference method.

Another versatility of this finite element program is the fact that it could be used to solve any field problem which is goverened by the Laplace or Poisson's equation and has the same type of boundary conditions.

For more general applications, the computer program can be improved by accommodating portions of programming or subroutines (1) to handle variable material properties, (2) to calculate the convection matrix for elements which have more than one side exposed to convective heat loss, (3) to renumber the node numbering in order to minimize the number of bandwith and therefore to minimize the size of the conduction matrix, and (4) to make automatic mesh generation.

APPENDIX A

Two dimensional simplex element is a triangle with three nodes, one at each corner, and straight sides [9]. As shown in Fig. 12, the nodes are labled counterclockwise from node i, which is specified arbitrarily. The global coordinates of nodes i, j, and k are $\left\{x_{i}, Y_{i}\right\},\left\{x_{j}, y_{j}\right\}$, and $\left\{x_{k}, Y_{k}\right\}$. The nodal values of the scalar field variable are denoted as T_{i}, T_{j}, and T_{k}. The interpolation polynomial is

$$
\begin{equation*}
T(x, y)=a_{1}+a_{2} x+a_{3} y \tag{59}
\end{equation*}
$$

with the nodal conditions

$$
\begin{align*}
& T=T_{i} \text { at } x=x_{i}, y=y_{i^{\prime}} \tag{60}\\
& T=T_{j} \text { at } x=x_{j}, y=y_{j}, \text { and } \tag{61}\\
& T=T_{k} \text { at } x=x_{k}, y=y_{k} \tag{62}
\end{align*}
$$

Substituting the nodal conditions into equation (59) gives

$$
\begin{align*}
& T_{i}=a_{1}+a_{2} x_{i}+a_{3} y_{i} \\
& T_{j}=a_{1}+a_{2} x_{j}+a_{3} y_{j} \\
& T_{k}=a_{1}+a_{3} x_{k}+a_{3} y_{k} \tag{63}
\end{align*}
$$

Fig. 12 Two dimensional simplex element

Solving the system of equations for the polynomial coefficients yields

$$
\begin{align*}
& a_{1}=\left(a_{i} T_{i}+a_{j} T_{j}+a_{k} T_{k}\right) /(2 A) \\
& a_{2}=\left(b_{i} T_{i}+b_{j} T_{j}+b_{k} T_{k}\right) /(2 A) \\
& a_{3}=\left(c_{i} T_{i}+c_{j} T_{j}+c_{k} T_{k}\right) /(2 A) \tag{64}
\end{align*}
$$

where

$$
\begin{align*}
& a_{i}=x_{i} y_{k}-x_{k} y_{j} \\
& a_{j}=x_{k} y_{i}-x_{i} y_{k} \\
& a_{k}=x_{i} y_{j}-x_{j} y_{i} \\
& b_{i}=y_{j}-y_{k} \\
& b_{j}=y_{k}-y_{i} \\
& b_{k}=y_{i}-y_{j} \\
& c_{i}=x_{k}-x_{j} \\
& c_{j}=x_{i}-x_{k} \\
& c_{k}=x_{j}-x_{i} \tag{65}
\end{align*}
$$

and A is area of the triangle. A is calculated by

$$
A=1 / 2\left|\begin{array}{lll}
1 & x_{i} & y_{i} \tag{66}\\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right|
$$

Substituting equation (64) into equation (59) yields $T(x, y)=\left\{\left(a_{i}+b_{i} x+c_{j} y\right) T_{i}+\left(a_{j}+b_{j} x+c_{j} y\right) T_{j}+\left(a_{k}+b_{k} x+c_{k} y\right) T_{k}\right\} /(2 A)$,
which can be written in matrix form as

$$
T(x, y)=\left[\begin{array}{lllll}
N_{i} & N_{j} & N_{k}
\end{array}\right]\left\{\begin{array}{l}
T_{i} \tag{67}\\
T_{j} \\
T_{k}
\end{array}\right\}=[N(x, y)] T^{e}
$$

where T^{e} is the nodal unknown vector of element e, and the
shape functions, $N(x, y)=\left[N_{i} N_{j} N_{k}\right]$ are

$$
\begin{align*}
& N_{i}=\left(a_{i}+b_{i} x+c_{i} y\right) /(2 A) \\
& N_{j}=\left(a_{j}+b_{j} x+c_{j} y\right) /(2 A) \\
& N_{k}=\left(a_{k}+b_{k} x+c_{k} y\right) /(2 A) \tag{69}
\end{align*}
$$

APPENDIX B

INTERPOLATION FUNCTIONS IN TERMS OF LOCAL COORDINATES

The determination of the system equations involves the integration of the interpolation functions and/or their derivatives over the element. If the interpolation functions are written in terms of the local coordinate system, then the evaluation of these integrals will be easier. The local coordinate system is one located on or within the boundaries of the element. A special local coordinate system is a natural coordinate system whose coordinates range between zero and one.

For the triangular element the natural coordinate system is obtained by defining three coordinate ratios L_{1}, L_{2}, and L_{3} as shown in Fig. 13. Each coordinate is the ratio of a perpendicular distance from one side, s, to the altitude, h, of that same side. These coordinates are also called area coordinates, because their value gives the area of subtriangles relative to the total area. Considering an arbitrary point B within the element, the total area is

$$
\begin{equation*}
A_{t}=b h / 2 \tag{70}
\end{equation*}
$$

while the area of the triangle formed by Bjk is

$$
\begin{equation*}
\mathrm{A}_{1}=\mathrm{bs} / 2 \tag{71}
\end{equation*}
$$

Forming the ratio of these areas yields

$$
\begin{equation*}
A_{1} / A_{t}=s / h=L_{1} \tag{72}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
L_{2}=A_{2} / A_{t} \text { and } L_{3}=A_{3} / A_{t} \tag{73}
\end{equation*}
$$

Fig. 13. Natural coordinate system for a triangle

Since

$$
\begin{align*}
& A_{1}+A_{2}+A_{3}=A_{t} \tag{74}\\
& L_{1}+L_{2}+L_{3}=1 \tag{75}
\end{align*}
$$

The natural coordinate in terms of the Cartesian Coordinates are given by [10]

$$
\begin{align*}
& L_{1}(x, y)=\left(a_{i}+b_{i} x+c_{i} y\right) /(2 A) \\
& L_{2}(x, y)=\left(a_{j}+b_{j} x+c_{k} y\right) /(2 A) \\
& L_{3}(x, y)=\left(a_{k}+b_{k} x+c_{k} y\right) /(2 A) \tag{76}
\end{align*}
$$

where A is the area and the coefficients $a_{i}, a_{j} \ldots, c_{k}$ are the same as those defined by (63). Since equations (76) and (69) are identical, the natural coordinates are precisely the interpolation functions for linear interpolation over a triangle. Thus

$$
\begin{equation*}
N_{i}=L_{i} \tag{77}
\end{equation*}
$$

The advantage of using the area coordinate is the existence of integration equations which simplify the evaluation of length and area integrals. These equations are [ll]

$$
\int_{\Gamma} L_{1}{ }^{a} L_{2}^{b} d \Gamma=(a!b!)(\Gamma) /(a+b+1)!
$$

$$
\begin{align*}
& \qquad \int_{A} L_{1}{ }^{a} L_{2}{ }^{b} L_{3}^{c} d A=(a!b!c!)(2 A) /(a+b+c+2)! \tag{78}\\
& \text { where } \quad A=\text { area of triangle } \\
& \quad \Gamma=\text { length along an edge of element. }
\end{align*}
$$

APPENDIX C

WEIGHTED RESIDUAL METHOD

The method of weighted residual is an approximate technique for solution of partial differential equations. In this method, an approximate solution to the problem which satisfies the boundary conditions is assumed. Substitution of this approximate solution into the original differential equation results in some error or residual. This residual is then required to vanish in some average sense over the solution domain.

Suppose the governing equation for a problem is

$$
\begin{equation*}
L(T)-f=0 \text { in } \Omega \tag{79}
\end{equation*}
$$

and its boundary conditions are

$$
\begin{equation*}
c_{r}=g_{r} \text { in } \Gamma \tag{80}
\end{equation*}
$$

The solution to equation (79) is then approximated by

$$
\begin{equation*}
T^{\prime}=N_{i} T_{i}, \tag{81}
\end{equation*}
$$

in which N_{i} are trial functions which satisfy the boundary conditions, and T_{i} are unknown parameters. Since T 'is an approximate solution, substitution of T ' into equation (79) results in
$L\left(T^{\prime}\right)-f=\varepsilon=0$.
The method of weighted residual requires that m unknown parameters T_{i} be determind by satisfying

$$
\begin{equation*}
\int_{\Omega} W_{i} \varepsilon d \Omega=\int_{\Omega} W_{i}\left(L\left(T^{\prime}\right)-f\right) d \Omega=0 \tag{83}
\end{equation*}
$$

where W_{i} are m linear independent weighting functions [12]. There are numerous means to choose the weighting function W_{i}, leading to Galerkin method, least-square method, method of moments, and collocation method. In the Galerkin method, the trial functions N_{i} are used as
weighting functions. Thus

$$
\begin{align*}
& W_{i}=N_{i} \\
& \text { and } \\
& \int_{\Omega} W_{i}\left(L\left(T^{\prime}\right)-f\right) d \Omega=\int_{\Omega} N_{i}\left(L\left(T^{\prime}\right)-f\right) d \Omega \tag{85}
\end{align*}
$$

APPENDIX D

CALCULATION OF HEAT GENERATION AND CONVECTION HEAT TRANSFER COEFFICIENT

Because it was assumed that the problem is at steady state condition, the average solar heat flux reaching the solar collector can be assumed to be constant and equal to $10,000.0 \mathrm{KJ} / \mathrm{m}^{2} \mathrm{hr}$. Thus, the solar constant can be calculated as

$$
\begin{equation*}
I_{0}=10,000,000.0 / 12(3600)=231.48 \mathrm{w} / \mathrm{m}^{2} \tag{86}
\end{equation*}
$$

If the collector has transmittance (τ) and absorptance (α) of 0.85 and 0.9 respectively, then the net energy absorbed by the plate is

$$
\begin{equation*}
S=I_{0}\left(\bar{\tau} \pi_{\alpha}\right)=231.48 \times 0.85 \times 0.9=177.1 \mathrm{w} / \mathrm{m}^{2} . \tag{87}
\end{equation*}
$$

Finally, the rate of heat generation per unit volume is

$$
\begin{equation*}
q=s / t=177.1 / 0.00127=139,448.82 \mathrm{w} / \mathrm{m}^{3} . \tag{88}
\end{equation*}
$$

In order to calculate the convection heat transfer coefficient, one must determine whether the flow of fluid through the cooling tube is laminar or turbulent. If the coolant fluid is water, then the velocity of water through the tube can be determined from

$$
\begin{equation*}
V=4 \dot{\mathrm{~m}} / \rho\left(\pi D^{2}\right) \tag{89}
\end{equation*}
$$

where $\dot{\mathrm{m}}$ is the mass flow rate of water, ρ the density, and D the diameter of the tube. The mass flow rate is determined from following relationship :

$$
\begin{equation*}
Q=\dot{m} \quad c_{p} \quad\left(T_{0}-T_{i}\right) \tag{90}
\end{equation*}
$$

where Q is total heat generation in the plate, and c_{p} is specific heat of water. The total heat generated in the plate is

$$
\begin{equation*}
Q=S \quad A=177.48 \quad(0.6 \times 0.15)=15.97 \mathrm{~W} . \tag{91}
\end{equation*}
$$

If the diameter of the tube is 1.0 cm , then

$$
\begin{equation*}
\dot{m}=Q / C_{p}\left(T_{0}-T_{i}\right)=15.97 / 4175(53-50)=0.00127 \mathrm{~kg} / \mathrm{s} \tag{92}
\end{equation*}
$$

Thus, the velocity of water is

$$
\begin{equation*}
\mathrm{V}=4(0.00127) /(992.2)(0.01)^{2}(3.14)=0.0163 \mathrm{~m} / \mathrm{s} \tag{93}
\end{equation*}
$$

Once the velocity of the water through the tube is determined, the Reynolds number can be calculated from

$$
\begin{equation*}
\operatorname{Re}=\mathrm{VD} / \mathrm{V} \tag{94}
\end{equation*}
$$

where v is the Kinematic Viscosity. Substituting the appropriate values into equation (94) yields

$$
\begin{equation*}
\operatorname{Re}=(0.0163)(0.01) /\left(0.658 \times 10^{-6}\right)=247.7 \tag{95}
\end{equation*}
$$

Since the Reynolds number is less than 2300 , the flow may be assumed to be laminar. The heat transfer coefficient for laminar flow can be evaluated from the emprical correlation of

$$
\begin{equation*}
N u_{D}=1.86\left(\operatorname{Re}_{D} \operatorname{Pr}\right)^{0.33}\left(\frac{D}{L}-\right)^{0.33}\left(\frac{\mu_{b}}{\mu_{S}}\right)^{0.14} \tag{96}
\end{equation*}
$$

if $\left(\operatorname{Re}_{D} \operatorname{Pr} D\right) / L$ is less than 10 [13]. In the above equation Pr is the Prandtl number, and μ_{b} and μ_{s} are the viscosity at the average bulk temperature and the wall temperature, respectively. If the empirical correction factor $\left(-\frac{\mu_{\mathrm{b}}}{\mu_{\mathrm{s}}}-\right) \cdot 14$ which is to account for the effect of temperature variation, is assumed to be unity, then

$$
N u_{D}=1.86\left(\operatorname{Re}_{D} \operatorname{Pr} D / L\right)^{0.33}
$$

or

$$
\begin{gather*}
N u_{D}=1.86(247.7 \times 4.3 \times 0.01 / 0.6)^{0.33} \\
=1.86(17.75)^{0.33}=4.805 \tag{97}
\end{gather*}
$$

Therefore
$h_{c}=N u_{D} K / D \quad$,
where h_{c} is the average heat transfer coefficient and K the
thermal conductivity of the fluid. Substituting equation (97) into equation (98) yields the average convection heat transfer coefficient as

$$
\begin{equation*}
h_{c}=(4.8)(0.633) / 0.01=304 \mathrm{~W} / \mathrm{m}^{2} \mathrm{k} \tag{99}
\end{equation*}
$$

APPENDIX E

CHOLESKI METHOD

The Choleski method, also called the Banachiewicz
method, uses the fact that a symmetric matrix can be expressed as the product of two triangular matrices, as [14]

$$
\begin{equation*}
A=s^{T} s \tag{100}
\end{equation*}
$$

or

Considering the rules of matrix multiplication,

$$
\begin{array}{ll}
a_{i j}=s_{1 i} s_{1 j}+s_{2 i} s_{2 j}+\ldots+s_{i i} s_{j j} & i<j \\
a_{i i}=s_{1 i}^{2}+s_{2 i}^{2}+\ldots \ldots+s_{i i}^{2} & i=j \tag{102}
\end{array}
$$

Therefore the coefficients of the first row of s can be determined by

$$
\begin{equation*}
s_{11}=a_{11} ; s_{1 i}=a_{1 j} / a_{11} \tag{103}
\end{equation*}
$$

and in general,

$$
\begin{align*}
& s_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} s_{k i}^{2}} \tag{104}\\
& s_{i j}=\left(a_{i j}-\sum_{k=1}^{i-1} s_{k i} s_{k j}\right) / s_{i i} \tag{105}
\end{align*}
$$

Furthermore, the solution of the system

$$
\begin{equation*}
A X=F \tag{106}
\end{equation*}
$$

reduces to

$$
\begin{equation*}
S^{T} S X=F \tag{107}
\end{equation*}
$$

or

$$
\begin{align*}
& S^{T} C=F \\
& S X=C \tag{108}
\end{align*}
$$

The elements of C are determined from

$$
\begin{align*}
& c_{1}=f_{1} / s_{11} \tag{109}\\
& \text { and } \\
& c_{i}=\left(f_{i}-\sum_{k=1}^{i-1} s_{k i} c_{k}\right) / s_{i i} \quad(i>1) \tag{110}
\end{align*}
$$

Once C is known, X can be found as

$$
\begin{align*}
& x_{n}=c_{n} / s_{n n} \tag{lll}\\
& \text { and } \\
& x_{i}=\left(c_{i}-\sum_{k=i+1}^{n} s_{i k} x_{k}\right) / s_{i i} \quad(i<n)
\end{align*}
$$

APPENDIX F

INPUT FORMAT AND LISTING OF THE "HTAFEM" PROGRAM

The purpose of this appendix is to define the input data which are needed in order to run the HTAFEM program. Moreover, other parameters which must be initially supplied to the program such that the input data are properly read by the program are defined.

The input is divided into three different sections. The number of the data card and the information which is provided to the program in each of these sections is :

I-TITLE CARD (format; 20A4)

Note	Columns	Variable	Entry
$1-80$	TITLE	Enter the title for use	
		in labeling the output.	

II-NODAL POINT DATA CARDS (format; 3F10.5,I5)

Note	Columns	Variable	Entry
(1)	$1-10$	X-CORD	x-cordinates
	$11-20$	Y-CORD	Y-coordinates
	$21-30$	PT	value of prescribed
			temperature
			Flag of Dirichilet
			boundary condition

NOTES :
(1) The total number of nodes (NNODE) controls the amount of data to be read in this section. This information must be supplied to the main program prior to the execution of the program (see page 66). The flag of Dirichilet boundary condition can only be assigned the following values :

IDBC=1; The node is subjected to prescribed temperature (PT),

IDBC=0; There is no prescribed temperature.

III-ELEMENTS DATA CARDS (format;6I5,4F10.5) (1)

Notes	Columns	Variable	Entry
(2)	1-5	$\operatorname{NENN}(1,1)$	Node 1 of the element 1.
	6-10	$\operatorname{NENN}(1,2)$	Node 2 of the element I.
	11-15	NENN (1,3)	Node 3 of the element I.
(3)	16-20	INBC	Flag of Neumann boundary condition.
	21-25	IBCON(I)	Node I of the element which lies on the boundary.
	26-30	IBCON(J)	Node J of the element which lies on the boundary.
(4)	31-40	QD	Heat flux.
	41-50	Q	Heat generation within the element.

Notes	Columns	Variable	Entry
$51-60$	H	Convection coefficient.	
	$61-70$	TA	Ambient temperature.

NOTES :
(1) The total number of elements (NEL) controls the amount of data to be read in this section. This must be supplied to the main program prior to the execution of the program (see page 66). The heat flux into the body is negative.

A sample input data which corresponds to the mathematical model of Fig. 2, is shown in Fig. 13.

The HTAFEM program has been organized in a way that modifications to the program are localized. This is done by dividing the program into several subroutines. The organization of the program is illustrated in Fig. 14. When
a problem is desired to be solved, the necessary parameters which control the memory allocation of the arrays and amount of input data to be read must be supplied to the main program. These parameters are : number of nodes (NNODE), number of elements (NEL), and number of the bandwidth (NBW). These parameters along with the thermal conductivity of the material (CC) are supplied to the main program by means of a DATA card, which has the following structure :

DATA NNODE,NEL,NBW,CC/ ---,---,---,---/ .
The arrays and their memory allocations which must be defined in the main program are summarized in Table 13.

The complete listing of the program, the flow
charts, and a sample out-put which corresponds to the sample input illustrated in this appendix concludes this Appendix.

Table 13. Definition of the variables in the program

Name	definition
NNODE	number of nodes
NEL	number of elements
NBW	band width
CC	thermal conductivity
NENN(NEL, 3)	element connectivity matrix
XCORD(NNODE)	x coordinates
YCORD(NNODE)	y coordinates
PT(NNODE)	prescribed temperature
IDBC(NNODE)	flag of Dirichilit b.c.'s
Q(NEL)	heat generation
QD(NEL)	heat flux
H(NEL)	convection heat-transfer coefficient
AT(NEL)	ambient temperature
IBCON(I,2)	location of Neumann b.c.'s for element
INBC(NNODE)	flag of Neumann b.c.'s
A(NEL)	area of element
GCM(NNODE,NBW)	global conduction matrix
GF(NNODE)	global force vector
TEM(NNODE)	nodal temperature

Fig. 14. Organization of the computer program


```
C* THIS SUBROUTINE READS AND WRITES THE INPUT DATA.
        SUBROUTINE FEARW(NNODE,NEL,NBW,CC,NENN,XCORD,YCORD,GCM,GF,A,INBC,
        *
                        IBCON,Q,PT,TEM, IDBC,QD,H,AT)
        DIMENSION NENN(NEL,3),XCORD(NNODE),YCORD(NNODE),GCM(NNODE,NBW),
        *GF(NNODE),A(NEL),INBC(NEL),IBCON(NEL,2),Q(NEL),PT(NNODE),QD(NEL),
        天H(NEL),AT(NEL),IDBC(NNODE),TEM(NNODE),TITLE(70)
C
DO 10 I=1,NEL
        DO 10 J=1,3
10 NENN(I,J)=0
C
    READ(5,20)TITLE
20 FORMAT(7OAL)
    WRITE(6,30)TITLE
30 FORMAT(; 天天关草,70A1,///)
WRITE(6,40)NNODE,NEL,NBW,CC
40 FORMAT\:ITOTAL NUMBER OF NODES =',5X,I5,/
    l % TOTAL NUMBER OF ELEMENTS =',5X,I5,',
    2 \ NUMBER OF BANDWIDTH =',5X,I5,\prime
C
    READ(5,50)(XCORD(I),YCORD(I),PT(I),IDBC(I),I = , NNODE)
        WRITE(6,60)
        WRITE(6,70)(I,XCORD(I),YCORD(I),PT(I),IDBC(I),I=1,NNODE)
        READ(5,80)((NENN(I,J),J=1,3),INBC(I),(IBCON(I,K),K=1,2),Q(I),
    xQD(I),H(I),AT(I),I=1,NEL)
C
        WRITE(6,90)
        WRITE(6,100)(I,(NENN(I,J),J=1,3),INBC(I),(IBCON(I,JJ),JJ=1,2),
    *Q(I),QD(I),H(I),AT(I),I=1,NEL)
C
50 FORMAT(3F10.5,I5)
    FORMAT('1',' NODE NUMBER',5X, 'X_COORDINATE',9X,'Y_COORDINATE', 9X
    * ,'PRES. TEMPERATURE ', 2X,'IDBC'/)
    FORMAT(4X,I3,10X,F12.5,10X,F12.5,10X,F12.5,5X,I5)
    FORMAT(6I5,4FIO.5)
    FORMAT(///33X,'E L EMENT C ONEC T I V I TYY AND D ',
```



```
    *'INBC',2X,'IBCON',9X,'Q',14X,'QD',14X,'H',
    *l5X,'AT','29X,'I',4X,'J'////)
100 FORMAT(7I5,4F15.5)
C
    RETURN
    END
```



```
C* ASSEMBLES THEM. *
```



```
C
        SUBROUTINE FEAECA\NNODE,NEL,NBW,NENN, XCORD,YCORD,CC,GCM,GF,A,INBC,
        1 IBCON,Q,TEM,PT,IDBC,QD,H,AT)
            DIMENSION XCORD(NNODE),YCORD(NNODE),NENN(NEL,3),GCM(NNODE,NBW),
        1 GF(NNODE),A(NEL),INBC(NEL),IBCON(NEL,2),Q(NEL),PT(NNODE)
        2 GK(3,3),GKH(3,3),FQ(3),FQP(3),FH(3),TEM(NNODE),IDBC(NNODE)
        3 ,QD(NEL),H(NEL),AT(NEL)
C DOUBLE PRECISION DIFF(I)
C
    DO 10 I=1,NNODE
    GF(I)=0.0
    DO 10 J=1,NBW
    GCM (I, J)=0.0
10 CONTINUE
C
C
    DO 100 I=1,NEL
    NI=NENN(I,I)
    N2=NENN(I,2)
    N3=NENN(I,3)
    X1 = XCORD(N1)
    X2 = XCORD(N2)
    X3=XCORD(N3)
    YI=YCORD(N1)
    YZ=YCORD(N2)
    Y3=YCORD(N3)
    B1=Y2-Y3
    B2=Y3-Y1
    B3=Y1-Y2
    C1=X3-X2
    C2=X1-X3
    C3=x2-X1
C
    A(I) =(C3*B1-CI*B3)/2.0
    A(I)=ABS(A(I))
C
    GK(1,1)=B1**2+Cl**2
    GK}(1,2)=B1*B2+C1*C
    GK(1,3)=B1*B3+C1*C3
    GK (2,2)=B2**2+C2**2
    GK(2,3)=B2*B3+C2*C3
    GK(3,3)=B3**2+C 3**2
```

```
GK(2,1)=GK(1,2)
GK(3,1)=GK(1,3)
GK(3,2)=GK(2,3)
C
C.....INITIALIZE THE MATRICES AND INTRODUCE HEAT GENERATION
DO 20 M=1,3
FQ(M)=QD(I)*A(I)/3.0
FQP(M)=0.0
FH(M)=0.0
DO 20 N=1,3
GK(M,N)=GK(M,N)*CC/(4.0*A(I))
GKH(M,N)=0.0
20 CONTINUE
C
C.....INTRODUCE THE HEAT FLUX AND CONVECTION BOUNDARY CONDITIONS
IF (INBC(I).EQ.O) GO TO }3
C.....DETERMINE WHICH SIDE OF ELEMENT IS SUBJECTED TO BOUNDARY CONDITION
C NNI=IBCON(I,I)
    IF (NNI.EQ.NI) GO TO 40
C
C
    SEJK=SQRT( (X3-X2)**2+(Y3-Y2) ※*2)
    CT=H(I)*SEJK/6.0
    GKH(2,2)=2.0*CON
    GKH(2,3)=CT
    GKH(3,2)=CT
    GKH(3,3)=2.0*CT
    FQP(2)=Q(I)*SEJK/2.0
    FQP(3)=FQP(2)
    FH(2)=H(I)*SEJK*AT(I)/2.0
    FH(3)=FH(2)
    GO TO }3
40 SEIJ=SQRT ( (X2-X1) **2+(Y2-Y1)**2)
            CT=H(I)*SEIJ/6.0
            GKH(1,1)=2.0*CT
            GKH(1,2)=CT
            GKH(2,1)=CT
            GKH(2,2)=2.0*CT
            FQP(1)=Q(I)*SEIJ/2.0
            FQP(2)=FQP(1)
            FH(1)=H(I)*SEI J*AT (I)/2.0
            FH(2)=FH(1)
            GO TO 30
50 SEKI=SQRT ( (X1-X3)**2+(Y1-Y3)**2)
    CT=H(I)*SEKI/6.0
    GKH(1,1)=2.0夫CT
    GKH(1,3)=CT
    GKH(3,1)=CT
    GKH(3,3)=2.0*CT
    FQP(I)=Q(I j *SEKI/2.0
    FQP(3)=FQP(1)
    FH(I)=H(I)*SEKI*AT(I)/2.0
    FH(3)=FH(1)
```

```
30 CONTINUE
C.....ASSEMBLE THE GLOBAL PROPERTY MATRICES
    DO 60 M=1,3
    IM=NENN{I,M)
    GF(IM)=GF(IM)-FQP(M)+FH(M)+FQ(M)
    DO }60\quadN=1,
    IN=NENN(I,N)-IM+1
    IF (IN.LE.0) GO TO }6
    GCM(IM,IN)=GCM(IM,IN)+GK(M,N)+GKH(M,N)
    60 CONTINUE
    100 CONTINUE
    C
    C
    DO 70 M=1,NNODE
    IF(IDBC(M).EQ.O) GO TO 70
    ST=PT(M)
C
CALL DIRBC (GCM,GF,NNODE,NBW,M,ST)
70 CONTINUE
C.....SOLVE THE SYSTEM OF EQUATIONS
C.....SOLVE THE SYSTEM OF EQUATIONS
    DO }80\textrm{M}=1,NNOD
    80 TEM(M)=GF(M)
C
    CALL DECOM (NNODE,NBW,GCM)
    CALL CHOLE (NNODE,NBW,GCM,TEM)
C
    RETURN
    END
```


Cx THIS SUBROUTINE MODIFIES THE CONDUCTION MATRIX (GCM) BY
C* INTRODUCING THE SPECIFIED NODAL TEMPERATURES,IE DIRICHLET B

SUBROUTINE DIRBC(GCM, GF, NNODE, NBW, M, PT)
DIMENSION GCM(NNODE, NBW), GF (NNODE)
DO $10 \mathrm{~K}=2$, NBW
II $=M-K+1$
I2 $=M+K-1$
IF(II.GE.1) GF(II)=GF(II)-GCM(II,K) $\neq P T$
10 IF (I2.LE.NNODE) GF(I2)=GF(I2)-GCM $(M, K) \times P T$
$G F(M)=P T$
DO $20 \mathrm{~J}=1$, NBW
$I 1=M-J+1$
IF (II.GE.I) GCM(II,J) $=0.0$
$20 \operatorname{GCM}(M, J)=0.0$
$\operatorname{GCM}(M, 1)=1.0$
RETURN
END


```
C* THIS SUBROUTINE PERFORMS THE DECOMPOSITION OF THE GLOBAL
C* CONDUCTION MATRIX INTO AN UPPER TRIANGULAR MATRIX. *
C* COPIED FROM REFERENCE 9, WITH SOME MODIFICATIONS. *
```



```
C
    SUBROUTINE DECOM(NNODE,NBW,A)
    DIMENSION A(NNODE,NBW)
    DOUBLE PRECISION D
    A(1,1)=SQRT (A(1,1))
    DO 10 I =2,NBW
10 A(1,I)=A(I,I)/A(1,1)
DO 20 I=2,NNODE
I = I +1
I2=I-I
D=A(I,1)
DO 30 J=1, I2
I3=I+1-J
IF (I3.GT.NBW) GO TO 30
D=D-A(J,I 3)**2
30 CONTINUE
A(I,I)=DSQRT(D)
DO 40 IJ=2,NBW
IF(I+IJ-1.GT.NNODE) GO TO 20
D=A(I,IJ)
DO 50 J=1, I2
I3=I+1-J
I4=I-J+IJ
IF (I4.GT.NBW)GO TO 50
IF (I3.GT.NBW)GO TO 50
D=D-A(J,I 3) ※A(J,I4)
50 CONTINUE
40 A(I,IJ)=D/A(I,I)
20 CONTINUE
RETURN
END
```



```
C* THIS SUBROTINE WRITES THE FINAL SOLUTION.
C*
```



``` SUBRQUTINE FEADUT (NNODE,TEM) DIMENSION TEM(NNODE)
\(c\)
10 FORMAT (///' NODE NUMBER',IOX,' TEMPERATURE'//) DO 20 I = I, NNODE
20 WRITE 6,30\() I\), TEM (I)
30 FORMAT( \(4 X, I 5,13 X, F 13.6\) )
C
RETURN
END
```



```
C* THIS SUBROUTINE PERFORMS THE SOLUTION OF THE SYSTEM EQUATIONS *
C* USING THE UPPER TRIANGULAR MATRIX WHICH IS OBTANIED BY TDECOM". *
C* COPIED FROM REFERENCE 9, WITH SOME MODIFICATIONS. *
```



```
C
    SUBROUTINE CHOLE (NNODE,NBW,A,B)
    DIMENSION A(NNODE,NBW),B(NNODE)
    DOUBLE PRECISION D
C
    B(1)=B(1)/A(1,1)
    DO 10 I=2,NNODE
    D=B(I)
C
    DO 20 J=2,NBW
    I1=I+1-J
    I2=I+1-Il
    IF (II.LT.1) GO TO 20
    IF (I2.GT.NBW) GO TO 20
    D=D-A(II, I2)*B(II)
    CONTINUE
    B(I)=D/A(I,I)
10 CONTINUE
    B(NNODE)=B(NNODE)/A(NNODE,1)
    DO 30 I=2,NNODE
    I3=NNODE+1-I
    D=B(I3)
    DO 40 J =2,NBW
    I4=13-1+J
    IF(I4.GT.NNODE) GO TO 40
    D=D-A(I3,J)*B(I4)
40 CONTINUE
    B(I3)=D/A(I3,1)
30 CONTINUE
    RETURN
    END
```


DMSLIO1G10I EXFCUIION BEGINS
*HEX SOLAR PLATE, 9 NODES AMD 8 ELEMENIS

BIBLIOGRAPHY

1. Clough, R.W. "The Finite Element Method in Plane Stress Analysis", proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, Pa., September 8 and 9, 1960.
2. Turner, M.J., et al." Stiffness and Deflection Analysis of Complex Structure", Journal of Aeronautical Sciences, 23, 1956.
3. Zienkiewicz, O.C. and Cheung, Y.K. "Finite Element in the Solution of Field problems", The Engineer, vol. 220, 1965.
4. Szabo, A. Barnce and Lee, George C. "Derivation of Stiffness Matrices for Problems in Plane Elasticity by Galerkin's Method", International Journal of Numerical Methods in Engineering, vol. 1, 1969.
5. Zienkiewicz, O.C. The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.
6. Kreith, frank and Kreider, Jan F. Principles of Solar Engineering, Mcgraw-Hill, London, 1978, pp. 204-208.
7. Huebner, Kenneth A. The Finite Element Method for Engineers, John wiley and Sons, New York, 1975, p. 6.
8. Brebbia, C.A. and Ferrante, A.J. Computational Methods for the Solution of Engineering Problems, Pentech press, New York, 1978, p. 123.
9. Rao, S.S. The Finite Element Method in Engineering, Pergmon Press, New York, 1982, pp. 119-121.
10. Segerlind, L.J. Applied Finite Element Analysis, second edition, John Wiley and Sons, New York, 1984, pp. 73-77
ll. Segerlind, L.J. Applied Finite Element Analysis, second edition, John Wiley and Sons, New York, 1984, pp. 77-78
11. Stasa, Frank L. Applied Finite Element Analysis For Engineers, CBS College Publishing, 1985, pp. 121-129.
12. Kreith, Frank and Black, William Z. Basic Heat Transfer, Harper and Row, New York, 1980, pp. 243-245.
13. Brebbia, C.A. and Ferrante, A.J. Computational Methods for the Solution of Engineering Problems, Pentech press, New York, 1978, pp. 57-61

Akin, J.E. Application and Implementation of Finite Element Method. New York : Academic Press, 1982.

Hetter, Robert I. and Prawel, Sherwood P. Modern methods of Engineering Computations. New York : McGraw-Hill, 1969.

Rao, S.S. The Finite Element Method in Engineering. New York : Pergman Press, 1982.

Segrelind, L.J. Applied Finite Element Analysis, Second Edition. New York : John Wiley and Sons, 1984.

Zienkiewicz, O.C. The Finite Element Method in Engineering Science. London : McGraw-Hill, 1971

