
Numerical Solution of Initial-Value Problems for Ordinary

Differential Equations using Taylor Series with

Recursively Defined Coefficients

by

Raymond E. Flanery Jr.

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Mathematics

Program

y-fj&--- , 8/13 /si
~dv&or U Date

I, ill, dGtcLk2AJ :> \ <.\ r 27 19x6
Dean ok the Graduate School - - hate

YOUNGSTOWN STATE UNIVERSITY

August, 1986

ABSTRACT

Numerical Solution of Initial-Value Problems for Ordinary

Differential Equations using Taylor Series with

Recursively Defined Coefficients

Raymond E. Flanery Jr.

Master of Science

Youngstown State University, 1986

The Taylor series method has been neglected as a way

to solve numerical initial-value problems since obtaining

and evaluating the derivatives of a function is a complex

and time consuming process when one uses the traditional

methods to obtain the derivatives. If one instead uses

recurrence relations, obtained from the mathematical

operations which make up an equation, to evaluate the

derivatives at specific points, then the Taylor series

method is efficient and can be used to obtain information
-

about the behavior of a solution in the complex plane about

its singularities.

Software packages are available that utilize the

Taylor method-, In particular, the ATOMCC toolbox,-written

by Y.F. Chang, is a powerful package capable of handling

almost any initial-value problem or system with extreme

accuracy, even those that are stiff.

TABLE OF CONTENTS

... ABSTRACT.

.................................... TABLE OF CONTENTS.

....................................... LIST OF TABLES.

............................... LIST OF SYMBOLS........

CHAPTER

I. FINITE TAYLOR SERIES APPROXIMATIONS TO FIRST
ORDER INITIAL-VALUE PROBLEMS IN ORDINARY DIFF- ERENTIAL EQUATIONS

............................ Introduction....

Recursive Definition of Taylor Series Coef- ficients...

Derivation of the Recurrence Relations......

A General Algorithm for Evaluation of Taylor
Series Coefficients Using the Recurrence
Relations.........

11. TAYLOR SERIES VS. RUNGE-KUTTA
................................ Introduction

Runge-Kutta Order Four and its Operation
Counts........
Taylor Series Method Operation Counts.......

................................... Examples.

- - Summary
. 111. ERROR ANALYSIS OF TAYLOR SERIES..............

Introduc tion....
......................... Round-off Error....

......... Global and Local Truncation Error..

................... Stability and Convergence

PAGE

ii

iii

v

vi

.... IV . ATOMCC: UTILIZING THE TAYLOR SERIES METHOD

Introduc

Locating Non-Essential Singularities and
Their Order

V . SUMMARY
.. APPENDIX

........ Routines for Evaluating the Actual Solutions

... Routines for Evaluating the Runge-Kutta Functions

Routines for Evaluating the Taylor Recurrence
Relations ...
Main Program for Comparison of Taylor and Runge- Kutta Order Four

Taylor Routine to Estimate the Radius of Convergence
and Order of the Singularity

.. BIBLIOGRAPHY

LIST OF TABLES

TABLE PAGE

1. Operation Counts and Timing Analysis for
Example 2 35

2. Operation Counts and Timing Analysis for Example 3 36

3. Operation Counts and Timing Analysis for Example 4 37

4. Operation Counts and Timing Analysis for Example 5 38

5. Three-term Analysis Estimates for Radius of
Convergence and Order of Singularity at t-0.0 .. 59

6. Three-term Analysis Estimates for Radius of
Convergence and Order of Singularity at t-0.4 .. 60

7. Three-term Analysis Estimates for Radius of
Convergence and Order of Singularity at t-0.9 .. 60

................... 8. ATOMCC Results for Example 3

LIST OF SYMBOLS

SYMBOL

dny - or y(n) (x)
dx"

DEFINITION

The nth derivative of y with respect
to x.

The nth partial derivative of y with
respect to x.

n factorial = n(n-1) (n-2). 2.1.

Denotes the summation of the terms that
follow the symbol.

Denote real numbers.

Denotes 'element of'.

Denotes 'subset of'.

Two-dimensional space.

CHAPTER I

FINITE TAYLOR SERIES APPROXIMATIONS TO FIRST ORDER

INITIAL-VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS

Introduction

Finding the solution y(t) to the problem

y'(t) = f(t,y), a < t S b, y(a) = a , (1

where y(a) = at is referred to as the initial condition, is

called an initial-value problem. Numerical initial-value

problems are like (I), except that one is interested in

finding approximations of the solution y(t) at the points

tl, t2, , tN, where t i - - a + ih, h = (b-a)/N,

and i = 0, 1, . * a , N. Here h is a fixed step size for the

problem and to, tl, , tN are the mesh points. Any step

size used in this paper is assumed to be fixed, unless
-

otherwise stated.

Every student of Numerical Analysis has seen

problems like that in (I), along with several different

methods for finding numerical approximations to the solution

y(t). Treatment of initial-value problems usually begins

with Euler's method, Taylor series methods of order n, and

then Runge-Kutta methods [1;205-2071. These methods are all

referred to as one-step methods. This means that they derive

their approximation at any given mesh point using only

information available from the previous mesh point.

The Taylor methods have been used previously for

deriving lower order numerical methods, such as Euler's and

the Runge-Kutta methods [5;26], rather than for

approximating solutions to initial-value problems. This is

because most methods to find the Taylor series coefficients

involve some form of symbolic differentiation, which

produces the algebraic form of the coefficients. These

formulas become complex and require extensive computation

time to evaluate [5;26].

A process for deriving the necessary Taylor

coefficients through the use of recurrence relations can be

used instead of symbolic differentiation to make the use of

Taylor methods efficient [6;24]. Taylor methods utilizing

these recurrence relations are the basis for software

packages, including the ATOMCC toolbox [3;215], which will

be discussed later.

In the following sections the recurrence relations
-

used to derive Taylor series coefficients are developed, and

a simple, but general, algorithm for applying these

relations to solve a wide range of initial-value problems is

presented. - -

Recursive Definition of Taylor Series Coefficients

In order to define the recurrence relations

necessary to evaluate the Taylor series coefficients of a

function y(t), the derivative of the function must be-

composed of rational and/or elementary functions. It is also

necessary that y(t) be analytic (infinitely differentiable)

in some neighborhood of the point t = to. If these

conditions are satisfied, then one may define

and, in particular, one can see that

(YI0 = y(to) and (YI1 = ~ ' (t ~) . (3)

The finite Taylor series expansion for y(t) about t = to is

where

(t - tO)n+l
Rn = Y (n+l) (4 , for some O e (toft).

(n+l) !

This can be rewritten as

where (Y) ~ , as defined in (2) . is the kth Taylor

coefficient.

From equations (2) and (3) one has the recurrence
- -

relation

1 dk-l
= - [

a (- 1 dtk-I
(Y) ~ Ill

This relation is used in the derivation of the recurrence

relations of the different rational and elementary

functions.

Let u(t) and v(t) be arbitrary analytic functions

and p some real constant, then one has the following

recurrence relations [6;26], which will be derived later.

(sin t ~) ~ = -
k j=O

\ (COS u) ~ = - - (j+l) (u)j+l(sin U)k-l-jJ
k j=O

In addition to these recurrence relations, one also has

T' 3 (sinh u) ~ = L (1 - - (~) ~ _ ~ (c ~ s h u)
3-0 k j

and

From these recurrence relations it is a simple

matter to develop the relations for (tan u) ~ and (tanh u) ~ .

If t is the independent variable in an initial-value

problem and c is any constant, then there are the following

simple, but important relations:

(tl1 = 1,

(tIk = 0 if k > 1,

and

(elk ' 0 if k > 0,

(c u) ~ = c (u) ~ for all k.

Derivation of the Recurrence Relations

The recurrence relations, equations (5) to (15), in

the previous section can all be derived using the relations

in (4) , some calculus, and Leibniz's rule for the kth

derivative of the product of two functions:

dk k dk-j
T'

(u v) (t O) = L (u(tO)l [dtk- j v(to)l* (17)
dtk j-0 j! (k-j)! dtj

The derivation of these recurrence relations is as follows:

1. For equations (5) and (6) one has

= (u) ~ f (v) ~ .

2. For equation (7) one has

Applying-(17) to the right side this equation becomes

k
1

= 1 v(tO)l
0 k - j) ! dtj

1 d j
[

dk-j

= 1 - [- u(t01] v(tO)l
j=o j! dtj - dtk-j

u(t)
3. For equation (8) if one lets f(t) = - , then

v(t)

v(t)f(t) = u(t); hence,

(vf)k ' (u) ~ . (I8)

Now, if equation (7) is applied to the left side of

(18), one has

Notice that if j=0, then = (f)k = (u/v)~. Thus,

by separating the first term from the rest of the sum
- -

in (19) and replacing f by u/v one has

Solving this equation for (u / v) ~ produces:

4. For equation (9) notice that

Also, by reordering terms in the summation, one has

Now, from equation (4),

Now apply equation (8) to the quantity on the right.

Then

and applying equation (7) to the term before the

summation the equation becomes

Applying equation (20) to the second summation-

transforms this equation into

One final transformation is required. Apply equation

(4) to the terms in both summations to produce the

equation

Notice that in the second summation, adding a term for

j = 0 adds only zero to the sum. Hence

-
and bringing the two summations together then produces

the equation

5. For equation (10) one can use the results of equation

(4) and the fact that (eUll = (e U) o (~) l to obtain

I

Now, if equation (7) is applied to the right side, this

becomes

and by applying equation (4) to the terms of the
-

summation this equation becomes

Hence,

6. For equation (11) one should note that

(log, u) = - (u),
(u),

By application of equation (4) one obtains

Using equation (8) this now becomes

If equations (4) and (21) are applied to the terms

of the summation, then the above equation becomes - -

Now, distributing l/k through the parenthesizes tepm

and applying equation (4) to the term before the

summation produces the equation

7. For equation (12) one has

hence, from equation (7) this becomes

8. For equation (13) one has

(cos u) ~ = - ((~ 0 s
k

Hence, from equation (7) this becomes

(COS u) ~ = - - 2i ((u) ~) j(sin u)k-l-j
k j=O

9. For equation (14), by definition

eu - e -u
(sinh u) ~ = [

2

so equation (6) implies that

1
u (sinh u) ~ = - ((e)k - (e-u)k) .

2

Applying equation (10) to the terms in parenthesis

produces

I 3
(sinh u) ~ = - [1 (1 - - u

)(e)j(u)k-j
2 j=o k

Bringing-the summations together gives the equatxon

1 k-1
j

(sinh u) ~ = - [1 (1 - - u
) (~) ~ - ~ ((e I j + (e

2 j=O k

10. For equation (15)

eU + e-'
(cosh u) ~ = [

2

so equation (5) implies that

Applying equation (10) to the terms in parenthesis

produces -

1 k-1
j i u (C O S ~ u) ~ = - [z (1 - -)(e)j(u)k-j

2 3-0 k

Bringing the summations together gives the equation

1
k-1

j
(C O S ~ u)k = - [1 (1 - -) (~) ~ - ~ ((e 1, -(e-U)j)]

2 j=O k

k-1
j

= 1 (1 - -) (u) k- (sinh u) .
j=O k j

A General Algorithm for Evaluation of Taylor Series
Coefficients Using the Recurrence Relations

In the previous sections recurrence relations were

introduced which enable one to evaluate Taylor series

coefficients for the arithmetic operators, trigonometric

functions, the logarithmic function, and the exponential

function. What is needed now is a way to combine these

recurrence relations to evaluate the coefficients of a
-

Taylor series which approximates the solution y(t) to an

initial-value problem, where y(t) is composed of a finite

combination of these functions and operators.

Consider the finite Taylor expansion - -

which is an approximation of the solution to the initial-

value problem (1) . The Taylor coefficients (y) k,

k=1,2, ,n, and the approximations at each mesh point can

be obtained using the following algorithm [6 ; 2 6] . An example

of applying the algorithm can be found at the end of the

section.

ALGORITHM 1

A. Initialize (Y) ~ = a.

B. Transform f(t,y), from problem (I), into postfix

notation.

C. Generate a list of auxiliary variables {Ti) in the

following manner:

1) Let m = the number of operators in f(t,y), this

includes the arithmetic operators and the elementary

functions.

2) Set TI = operatorl with its operands,

Set T2 = operator2 with its operands,

...
Set T, = operatora with its operands,

where operator through operator, are the operators
1

in f(t,y) in order of evaluation. These auxiliary

variables are generated as if one were evaluating

the postfix string.

3) If any of the above operators has recurrence - -
relations requiring the use of other operators,

such as the sine function, and if these operators

are not present in the list just created, then one

must generate additional auxiliary variables to

handle these new operators: -

Set Tm + l = ~perator,,~ with operands,

Set T
m + p

= operator
m+P

with operands.

D. Set (Y) ~ = T,.

E. For each i=1, ..*,m+p, generate the code for (Ti)k from

the recurrence relation corresponding to the operator

in each Ti.

1
F. For each k=l, I n-1, set (Y) ~ + ~ - - - (TmIk.

k+l

G. For each mesh point t 1 , . . .
j

, N, one can now

obtain the approximation of y(t.) by:
J

1) For each i-1, * * * , m+p, evaluate (Ti)0 at the

point tj-l.

2) Evaluate (Y) ~ .

3) For each k=l, , n-1

a) For each i=l, , m+p, evaluate (Ti)k,

b) Evaluate (Y) ~ + ~ .
-

4) Evaluate equation (22) with t=t and to=tj-l.
j

EXAMPLE 1

Consider the initial-value problem
- -

Y' = f(t,y) = sin(t)+exp(-t), 0 S t S 1, y(0) = 0.

Let n = 5, N = 10, then h = (1-0)/10 = 0.1. To find the

approximation at t = 0.1 will require one step of the

algorithm, which will be sufficient to see how to apply it.

A. Set (yI0 = 0. -

B. The postfix form of f(t,y) is:

where 0 represents the unary minus operation.

C. 1) Set m = 4, the number of operators in f(t,y).

2) Set T1 = sin(t), the postfix string is now:

(Tl,t,O,exp,+) .
Set TZ = -t, the postfix string is now:

(T1,TZ,exp,+) .
Set T3 = exp(TZ), the postfix string is now:

Set T4 = TI + T3.

3) Since T1 = sin(t), add an auxiliary variable for

Set T5 = cos(t), the variable p is set to 1.

D. Set (yI1 = T ~ .

E. 1) set (T ~) ~ = - 1 (j+l)(t) j+l(T5)k-l-jn (from (12)).
k j=O

By application of equation (16) this becomes

By application of equation (16) this becomes

(TZ)k = 0, for all k > 1.

Y' J
3) Set (Tg)k = L (1 - -)(T2)k-j(T3)j*

j=o k

By the definition in E.2 above, for j-0,- -,k-2

(T2)k-j = 0 and for j = k-1 (TZ)k-j = -1. Thus

1

5) Set (T5)k = - -
k j=O

By application of equation (16) this becomes

G . F o r j=1, tO=O.O, and tl=O.l:

2) (~ 1 ~ = (T4I0 = 1.

3) F o r k=1:

For k=2:

For k=3 :

For k=4 :

4) Now to approximate y(0.1) using the above values one

has

= 0.10017167, to 8 significant digits.

The actual solution for y(0.1) to 8 significant

digits is 0.10015842. - -

CHAPTER I1

TAYLOR SERIES VS. RUNGE-KUTTA

Introduction

One basis for comparing the efficiency of

approximating methods for IVPs is to compare the number of

functional evaluations required at each step [1;226].

Another method for comparing the efficiency of numerical

methods is to determine the total arithmetic operations and

elementary function evaluations required. The Taylor method

requires only one evaluation of the function f(t,y) in

problem (I), but the recurrence relations used to evaluate

the coefficients produce many arithmetic operations. Thus,

the latter comparison method will be used to evaluate the

performance of the Taylor method relative to some other

numerical method, in this case the Runge-Kutta Order our
method.

The operations to be counted are additions/

subtractions,- multiplications/divisions, and elementary

function evaluations. The operations are grouped this way

because of their similar computational times. To compare

the Runge-Kutta Order Four to the Taylor series method, it

is not realistic to consider only the total operations at

each step. One must instead consider the total operations-

required by each method over the entire interval of

solution. The total number of operations then becomes

dependent on the number of steps required to reach an

acceptable approximation, one within a given error

tolerance, as well as the number of operations required at

each step of the solution. The total operations required by

the Taylor series is determined by the length of the series

being used, the type of operations present in the initial-

value problem, and the number of steps involved in reaching

the final approximation. The total operation count for the

Runge-Kutta method is determined by the initial-value

problem being approximated and the number of steps involved

in the approximation.

Runge-Kutta Order Four and its Operation Counts

The Runge-Kutta Order Four method is the most

commonly used of the Runge-Kutta methods, its development

can be found in [1;225]. The following is a slight

modification of the procedure given in [I]. It is designed

to solve the initial-value problem in (I), where Nr is the

partition size of the interval [a,b].

ALGORITHM 2 - - -

Set h = (b-a)/Nr

to = a

W = a 0

For j = 1 to Nr do

Set t(') = t
j - 1

+ h/2

(1) K, = hf(t , w ~ - ~ + K1/2)

(1 1 K3 = hf(t ,wj-l + K2/2)

K4 = hf(tj-l + h,wj-l + 5)

W = w
j j-1 + (K1 + 2(K2 + K3) + K4)/6

t = a + jh
j

Here w is the approximation of y(t.). Now, notice that
j J

there are 10 additions/subtractions and 9 multiplications/

divisions required for each step, excluding operations

required to evaluate f(t,w).

Let Ar E the number of additions/subtractions in f(t,y),

Mr 3 the number of multiplications/divisions in

f(t*y) *
and

Er E the number of elementary functions in f(t,y).

Then the total number of operations required for the Runge-

Kutta method to approximate y(b) is as follows:

Total add/sub = (10 + 4Ar)Nr,

Total mult/div = (9 + 4M,)Nr,
-

Total elem. func. evaluations = 4ErNr.

From these formulas it is obvious that, if the

initial-value problem involves a fair amount of operations,
- -

a large number of steps (a very small step size) will

necessarily produce high operation counts.

Taylor Series Method Operation Counts

To compute the number of operations required by the
-

Taylor series method one must first answer these three

questions:

1. What degree Taylor polynomial will be used?

2. What recurrence relations will be required to find

each of the Taylor coefficients?

3. How many steps will be required to approximate the

solution to the problem?

The answers to these questions determine the total

operations required by the method.

The degree of the Taylor polynomial determines the

number of additions/subtractions and multiplications/

divisions required to evaluate the polynomial. A Taylor

polynomial of degree n contributes n additions/subtractions

and n multiplications/ divisions to the total operation

count of the method at each step of the solution.

Each recurrence relation requires different types of

operations to be performed, as well as different numbers of

these operations. To determine the number of operations

required to evaluate each of the Taylor coefficients, one

must consider the number of operations each different type

of recurrence relation contributes to this total.

The first coefficient, (Y) ~ , does not require any

operations, -its value is assigned. To evaluate the second

coefficient, (Y) ~ , each recurrence relation contributes

operations as follows:

1. Equations (5) and (6) contribute

1 add/sub.

2. Equations (7) and (8) contribute

1 mult/div.

3. Equations (9) through (15) contribute

1 functional evaluation.

To evaluate the other n-1 coefficients, (Y) ~ , k=2, . .. r n,

each recurrence relation contributes the following

number of operations:

1. Equations (5) and (6) contribute

1 add/sub,

for each of the coefficients.

2. Equations (7) and (8) contribute

k add/sub,

k+l mult/div.

The recurrence relation in equation (8) requires

1 mult/div for each of the k terms in the summation,

k-1 add/sub to sum the terms,

1 add/sub to finish evaluation of the brackets,

and

1 division by (v) ~ .

3. Equation (9) contributes

to evaluate the recurrence relation. - -

Since p and k are given initially, one can treat

8+1 - as a constant, to be evaluated before the
k

summation. This will require

and

1 mult/div.

To evaluate the summation requires

1 add/sub

and

3 mult/div for each of the k terms,

k-1 add/sub to sum the terms, and

1 division by (u) ~ .

4. Equations (lo), (14), and (15) have the same basic

structure. Thus, they each contribute

2k-1 add/sub,

3k mult/div.

If one considers the recurrence relation in equation

(lo), then it is easy to see that it requires

1 add/sub

and

3 mult/div for each of the k terms and

k-1 add/sub to sum these terms.

5. Equation (11) contributes

2k-2 add/sub,

3k-2 mult/div.

These totals come from the

1 add/sub

and

3 mult/div for each of the k-1 terms,

k-2 add/sub to sum the terms,

1 add/sub to finish the evaluation in the brackets,

and

1 division by (u) ~ .

6. Equations (12) and (13) are basically the same except

for the additional multiplication by -1 required in

(13). Their contribution is

2k-1 add/sub,

2k+l mult/div, equation (12),

2k+2 mult/div, equation (13).

Since only worst case operation counts are

considered, the recurrence relations are grouped into three

types, according to the types of operations that they

produce.

Type I - These are equations (5) and (6) , which

contribute only add/sub to the counts.

Type I1 - These are equations (7) and (8) , which

contribute both add/sub and mult/div to the

counts. -

Type I11 - These are equations (9) through (15), which

contribute add/sub, mult/div, and functional

evaluations to the count.

To determine the total number of operations for all n+l co-

efficients in the Taylor polynomial contributed from each of

these three types one has the following:

Type I - The second coefficient contributes
-

1 add/sub.

The remaining n-1 coefficients contribute

Thus, operations in f(t,y) using recurrence

relations of Type I contribute

to the total operation count.

Type I1 - The second coefficient contributes

and the remaining n-1 coefficients contribute

and

Thus, operations in f(t,y) using recurrence

relations of Type I1 contribute -

and

to the total operation count.

Type I11 - For these equations, the worst case operation

counts come from equation (9) , which requires -

more operations than any of the other Type I11

equations. The second coefficient contributes

1 functional evaluation,

and the remaining n-1 coefficients contribute

and

Thus, operations in f(t,y) using recurrence

relations of Type I11 contribute

and

1 functional evaluation

to the total operation count.

All three types of equations require an additional
-

mult/div to solve for the coefficients (Y) ~ , (Y) ~ , . .. I

(Y),. This is from step F of Algorithm 1.

In a particular problem being solved it is likely

that the actual number of operations required will-be much

smaller than the worst case counts just given. As an

example, consider the recurrence relation for equation (8).

If the analytic function v(t) is replaced by the independent

variable t, then one has the recurrence relation
-

If one now applies the results of (16) to the terms in the

summation, then

This new relation requires only 1 add/sub and 1 mult/div for

each coefficient after the second, which still requires only

1 mult/div. Thus, for an nth order Taylor polynomial. the

relation contributes a total of n-1 add/sub and n mult/div,

a definite savings over the operation counts of the original

relation.

To establish the operation counts for the Taylor

method, one will need the following variables:

At the number of elements of f(t,y) of Type I, - .

Mt E the number of elements of f(t,y) of Type 11,

Et s the number of elements of f(t,y) of Type 111, - ~

and

Nt I the number of steps required to obtain the solution.

The worst case total operation counts are then
- -

1. Total additions/subtractions:

For each of the Nt steps there are

a) n add/sub for evaluation of the Taylor

polynomial,

b) Atn add/sub from Type I equations,

n2+n-2
C) Mt() add/sub from Type I1 equations,

2

and

d) et(n2+n-2) add/sub from Type 111 equations.

Thus,

total add/sub

2. Total multiplications/divisions:

For each of the Nt steps there are

a) n mult/div for evaluation of the Taylor

polynomial,

b) n-1 mult/div for evaluation of the coefficients

C) Mt() mult/div from Type I1 equations,-
2

and
-

3n2+7n-10
d) Et() mult/div from Type I11 equations.

2

Thus,

total- mult/div - -

-
3. Total elementary function evaluations

For each of the Nt steps there will be Et elementary

function evaluations. Thus,

total func. eval. = E p t .

Examples

In the examples that follow, all results were

obtained on an IBM PC-AT in double-precision arithmetic,

using a Pascal Turbo-87 compiler, which utilized the 80287

mathematics coprocessor chip. Both the Runge-Kutta and the

Taylor series method were run using step sizes of (l/2)i,

for i=1,- . * , 1 4 . For both methods, the relative error of the

approximation was used to decide if the approximation was
*

within the given error tolerance. If y is the actual

solution and y the approximation to that solution, then the

relative error is

The Taylor series method was able to reach an
-

acceptable approximation for most of the step sizes used in

each of the problems. The table values were chosen from

these different results on the basis of which step size

produced the approximation most efficiently in respect to

the worst case operation counts.

While looking over the examples and comparing the

timing analysis, one should keep in mind that the run times

listed are for the routines in the Appendix, which were
-

designed to eliminate most of the unnecessary operations,

while the operation counts given are worst case. For this

reason one will sometimes find a time that is less for one

example than for another example having smaller operation

counts.

EXAMPLE 2

Consider the initial-value problem

2 y' = - y (2t + I), 0 S t d 1, y(0) = 4,

which has actual solution

Using Algorithm 1, the following list for f(t,y) = y' can be

constructed:

From this list one can see that the operation count

parameters for the Taylor method are

A t = 2, Mt = 3, and Et = 0,

and from f(tIy) one has the parameters for the Runge-Kutta
-

method

Ar = 2, Mr = 3, and Er = 0.

This example is non-linear in the dependent variable

y and has a singularity of order two in the solution at the

point t = -1/2. This singularity gives the Taylor method

problems at the larger step sizes, but after the step size

is within the radius of convergence for the Taylor series an

accurate approximation is quickly obtained.

The results of the Taylor method and the Runge-Kutta

method applied to this example can be found in TABLE 1. In

this example the Runge-Kutta method is superior to the

Taylor method for the larger tolerance, which is usually the

case, but the Taylor method is superior when more accuracy

is required in the approximation.

TABLE 1

OPERATION COUNTS AND TIMING ANALYSIS FOR THE
TAYLOR AND RUNGE-KUTTA METHODS FOR EXAMPLE 2. THE
UNIT OF TIME IS SECONDS.

method to1 # of # of add/ mult/ time
limit steps terms sub div

EXAMPLE 3

Consider the initial-value problem

y' = - y + t2 + 1, 0 d t d 1, y(0) = 1,

which has actual solution

y = - 2 C t + t2 .

This example is linear in the dependent variable y so the

solution has no singularities which could cause possible

problems for the Taylor method. TABLE 2 shows that the

Taylor method requires only a small number of steps and

terms to reach an accurate solution, even at the smaller

tolerance. At the larger tolerance the performance of both

methods is excellent, but for the smaller tolerance the

Taylor method is superior.

The operation count parameters are

At = A r = 3, Mt = Mr = 1, and Et = E, = 0.

TABLE 2

OPERATION COUNTS AND TIMING ANALYSIS FOR THE
TAYLOR AND RUNGE-KUTTA METHODS FOR EXAMPLE 3. THE
UNIT OF TIME IS SECONDS.

method to1 # of # of add/ mult/ time
limit steps terms sub div

TS 5x10-~ 2 4 50 32 0.01

EXAMPLE '4
- -

Consider the initial-value problem

y 1 = sin(t)+e-t, 0 6 t C 1, y(0) = 0,

which has actual solution

y = -cos t - e-t + 2.
-

This example was chosen to show how the presence of

elementary functions affects the two methods. In TABLE 3

the worst case operation counts for the Taylor method are

misleading. The actual operation counts are much lower since

both of the elementary functions involve only the

independent variable t. The reduced recurrence relations

can be found in EXAMPLE 1. TABLE 3 does show that the

Runge-Kutta method is slightly better at the larger

tolerance, but the Taylor method is definitely superior for

the smaller tolerance. This is principally due to the number

of functional evaluations required by the Runge-Kutta

method.

TABLE 3

OPERATION COUNTS AND TIMING ANALYSIS FOR THE TAYLOR
AND RUNGE-KUTTA METHODS FOR EXAMPLE 4. THE UNIT OF TIME
IS SECONDS.

method to1 # of # of add/ mult/ func. time
limit steps terms sub div eval .

EXAMPLE 5
- -

For this last example, the initial-value problem is

from [1;284], where it is used as a test problem to observe

how a method handles stiff differential equations. The

problem is

The actual solution

has a moderately large negative exponent, which causes the

solution to decrease at a rapid rate. In TABLE 4 it is

obvious that the Runge-Kutta method has a very difficult

time with this problem even at the larger tolerance. At the

smaller tolerance the Runge-Kutta requires an extremely

small step size. Thus, the time required to reach an

acceptable approximation is unreasonable. The Taylor method

requires relatively little computational time at either

tolerance to reach an acceptable approximation.

TABLE 4

OPERATION COUNTS AND TIMING ANALYSIS FOR THE
TAYLOR AND RUNGE-KUTTA METHODS FOR EXAMPLE 5. THE
UNIT OF TIME IS SECONDS.

method to1 # of # of add/ mult/ time
limit steps terms sub div

Summary

The examples in the previous section show that the

Taylor method is capable of producing results superior to

those of the Runge-Kutta method, especially if one is

interested in highly accurate approximations. The main

problem in applying the Taylor method efficiently is the

need for a way to choose an appropriate step size and order

for the method. The choice of these two parameters will be

investigated in CHAPTER 4.

Assuming that one can choose the ideal step size and

order for the method, the examples show that the Taylor

method is most useful when one needs high accuracy in the

approximation, or when the solution to the problem decays,

or grows, rapidly.

CHAPTER I11

ERROR ANALYSIS OF TAYLOR SERIES

Introduction

Using the Taylor series method to approximate (1)

will involve a certain amount of error. The amount of error

will depend upon two different types of error - round-off

error and truncation error.

Round-off error is the result of finite-digit

arithmetic and is a cause of error for any computations

performed on a computer. Truncation error is the result of

using a finite number of the Taylor series terms to

approximate the value of the infinite expansion.

Round-off Error

-

In [1;10-161 one will find a complete discussion of

round-off error. Since this type of error is unavoidable,

one should be familiar with some ways to reduce its effects

on computer - calculations. Two of the ways to reduce this

error are :

1. Reformulation of the problem to be solved,

and

2. Reduction of the number of operations that must be
-

performed.

Reformulation of the problem is used to avoid the

subtraction of nearly equal numbers, the division by numbers

with small magnitude, or the multiplication of numbers with

large magnitude. In the following example [1;18] one can

see the result of reformulating a problem to avoid

catastrophic subtractions.

EXAMPLE 6

Consider the problem of approximating eV5 using the

Taylor polynomial of degree 9 with the formula:

= -1.827, to 4 significant digits,

or with the formula

= 6.959~10-~, to 4 significant digits.

The actual solution, to 4 significant digits, is

6.738~10-~. The reason that (24) is more accurate than (23)
-

is that the equation for (24) does not involve any

subtractions.

Concerning the number of operations, one way to

reduce them is to place polynomials into nested form before

they are evaluated.

EXAMPLE 7

Consider the nth degree Taylor polynomial for y(t)

with h=t-to,

To evaluate this polynomial directly one could use the

following Pascal code:

for k := 1 to n do

begin

hl := hl * h;

y := y + yt[kJ * hl

end ; -

The final value for y is the approximation to y(t), and

yt [k] represents the kth Taylor coefficient . This algorithm

requires n additions and 2n multiplications. However, - -

suppose one used instead the Pascal code:

Y := ytCn1;

for k := n-1 downto 0 do

which evaluates the polynomial in nested form. Then

evaluation of the Taylor polynomial requires only n

additions and n multiplications.

Global and Local Truncation Error

Suppose y(t) is the solution to the initial-value

n+l n+l problem in (1) and y e C [a,b], where C [a,b] denotes

the class of functions that are n+l times continuously

differentiable on [a,b]. Expand y(t) about the point t=t
i

to obtain the nth degree Taylor polynomial:

where ti < t i < ti+,. Since y(t) is the solution to (I),

~ (~) (t) = f(k-l)(t,y(t)), for each k=1,2, * * . ,n+l.

Substituting for the appropriate derivatives in (25) gives

By neglecting the term involving f one can form the

Taylor method of order n [1;216]:

Set wo = a - -
and

hn
Set w ~ + ~ = wi + hf(ti,wi) +..a+ - f(n-l) (ti,wi) (27)

n!

The global error associated with the Taylor method of order

n is the difference between the actual solution y(ti) and

the approximation wi. This is the error accumulated from

each of the steps taken prior to, and including, the ith

step.

To obtain a bound on this error it is necessary to

present the following three lemmas.

Lemma 1

For all x 2 -1 and any positive m,

The proof of this lemma can be found in [1;208].

The following lemma is a generalization [1;208]:

Lemma 2

If s and t are positive real numbers, n is a

positive integer, and {ailiz0 is a sequence satisfying

t
n

a o 2 - - , and ai+l 6 (l+s) ai + t for i=o,l,...,k,
S

then

Proof

If i is fixed, then

a
i + l 6 (i+slnai + t

6 (l+s)" I (l + ~) " a ~ - ~ + tl - -
...

which is a geometric series with ratio (l+s)" and sums to

Thus,

therefore, by Lemma 1,

Lemma 3

Let y E cl[a,b] be a solution to the initial-value
-

problem in (1) , where f is defined on D c R' ,

D = {(t,y) I a < t 6 b, -- < y < = 1 ,

and f has continuous partial derivatives of all orders less
- -

than or equal to n. Then for each k=O , 1 , , n-1 there

exists a non-negative real constant Lk such that

I f'k'(try2) - f (k) (t l ~ l) I Lk(y2 - Y1l
whenever (t,yl),(t,yZ) e D.

Proof

It follows immediately that

for some constant Lk > 0 and for all k=O,l,.. *,n-1. With t

held fixed, each f(k)(t,y) is a function of the single

variable y and thus, applying the Mean Value Theorem, there

exists a number 4 , yl < 5 < y2 , such that

ay y2 - Yl
whenever (t r ~ ~) ~ (t , y ~) e D.

This implies that

' L k 1 ~ 2 ' Y1l -.
A definition is required before the following

theorem [1;209] can be used to derive the desired bound for
-

the global error of the Taylor method.

Definition 1

A function f(t,y) is said to satisfy a Lipschitz
- -

condition in the variable y on a set D C R ~ , provided a

constant L > 0 exists with the property that

whenever (t,yl),(t,y2) e D. The constant L is called a

Lipschitz constant for f. [1;201]
-

Theorem 1

Let y(t) denote the unique solution to the initial-

value problem

and wO,wl,.- ,wN be the approximations generated by the

Taylor method of order n for some positive integer N. If in

addition y satisfies the hypotheses of Lemma 3, then there

exists non-negative constants M and L such that

~~("+')(t)l C M, for all t e [a,b]

and

h " ~
IY, - wil d [,nL(ti-a) -11, for i = ~ , l , . - * , ~ . (28)

L(n+l) !

By assumption , y(ntl) is continuous, so there exists

M 2 0 such that
- .

~y(~+')(t)l d M, for all t c [a,b].

When i=0, y(tO) = wO = a, so inequality (28) is true for

From (2 5) , for i=O,ma *,N-1,

and from the equations in (27),

Using the notation yi = y(ti) one finds that

Hence,

Applying Lemma 3 and using the fact that

~y("+')(t) 1 6 M I equation (29) becomes

Let L = max { Lo, L ~ , ..., Ln-l, 1) , then

Applying Lemma 2 with ai = lyi - wil for each

h"+l~
i=O,*..,N, s = hL, and t = , one has

(n+l) !

and since (y - w0(= 0, and h(i+l)=(ti+l-tO)=(ti+l-a),

for each i=O,... ,N-1 -m

The bound given in Theorem 1 shows that, neglecting

round-off error, the global error for the Taylor method of

order n is O(hn) . - -

The local truncation error for the Taylor method of

order n [1;218] is the difference between the exact solution

y(ti) and the approximation at the ith step, assuming that

the value from the previous step is exact. Under the same

assumptions as in Theorem 1, the local truncation error,

7
i + l l at the (i+l) th step is defined as

for each i=O,.*.,N-1, where

Thus, the local truncation error for this method is

such that ri=O(hn).

Stability and Convergence

In this section the following definition is

required.

Definition 2

The Taylor method of order n is said to be

convergent with respect to the differential equation it

approximates if

lim max lyi - wil = 0,
h -' 0 l<idN

where yi and wi are the same as in Theorem 1. [1;271]

To see that the Taylor series method is convergent - -

under the hypothesis of Theorem 1 one requires inequality

(28), which gives

Since h is the only non-constant, this tends to zero with h.-

Hence the Taylor method of order n is convergent as long as

the differential equation being solved satisfies the

conditions of Theorem 1.

Definition 3

A method is stable if small changes in the initial

conditions of an initial-value problem produce

correspondingly small changes in the approximations of the

problem. [1;272]

The following theorem [1;272], whose proof is not

given therein, can be used to establish stability.

Theorem 2

Suppose the initial-value problem

y ' = f(t,y), a $ t $ b, y(a) = a

is approximated by a one-step method in the form

W i + l = wi + h+(ti,wi,h).
(31 - .

If a number ho > 0 exists and +(t,w,h) is continuous and

satisfies a Lipschitz condition in the variable w on the set
-

D = {(t,w,h) I a d t < b, -a < w < =, 0 < h $ ho) ,

then the method is stable.

Proof

- -
N

Let {Ui)i=l and { v ~) ~ = ~ satisfy (31) and let i be

fixed, then upon subtraction one obtains

1 ui + 1 - ~ ~ + ~ l S Iui - viJ + hl+(ttuith) - +(t.vi,h)lg (32)
Since +(t,w,h) satisfies a Lipschitz condition in

the variable w, there exists a positive constant L such that

I+(t,ui,h) - +(t.vi,h)l C Llui - vile

So inequality (32) becomes

i + 1 d IuO - v O ((1 + hoL) .
Now let K = (1 + hoL) it'. Then

I U i + l - vi+1l Kluo - vol
Thus, any small changes in the initial conditions uo and vo

produce correspondingly small changes in the approximations

u
i + l and v ~ + ~ . m

The Taylor method of order n defined in (27) is

stable when the initial-value problem being solved satisfies

the hypothesis of Lemma 3. For this method define

where T(") is defined in (30). Then for any ho > 0, +
continuous on

Since the method does satisfy the hypothesis of - -
Lemma 3 and slnce

the results of Lemma 3 lead to

Thus + satisfies a Lipschitz condition in the variable w on
the set D for any ho > 0 with Lipschitz constant

So Theorem 2 implies that the Taylor method of order n is

stable. - -

CHAPTER IV

ATOMCC: UTILIZING THE TAYLOR SERIES METHOD

Introduction

Y.F. Chang [2;80-1381 has derived methods used in

the ATOMCC toolbox [3;215] to locate the position and order

of non-essential singularities in the solution of an

ordinary differential equation (ODE). He also discusses

some heuristic approaches to finding the optimum step size

in the case that the solution of the ODE, or system of ODEs,

is either an entire function or possesses an essential

singularity.

ATOMCC uses a thirty term series, unless the user

specifies some other number of terms or ATOMCC discovers

that the ODE, or system of ODEs, is stiff, in which case the
-

number of terms used in the series is reduced to fifteen. A

thirty term series allows ATOMCC to use a very large step

size, relative to most numerical methods, which decreases

the chance of computer round-off error. This long- series

length also enables ATOMCC to accurately estimate the radius

of convergence for the series at each step, thus allowing

for accurate control of the local truncation error [2;141].

ATOMCC allows one to solve ODEs in the complex

plane, thus enabling one to obtain information about the-

behavior of the system near singularities other than just

along the real axis [3;222].

The input for ATOMCC is structured so as to be

easily used, and all inputs are in the form of FORTRAN code.

There are several input blocks to allow one to

1. specify the ODE or system of ODEs,

2. specify the initial conditions or input statements to

be inserted into the FORTRAN source code to be

generated,

3. redefine some of the default parameters of the package,

such as the error limit or the number of terms in the

series,

and

4. structure the output of information from the package.

After the input to the system has been specified,

the ATOMCC program generator is used to produce a FORTRAN

source program to be compiled and linked with certain

subroutine libraries in the ATOMCC toolbox.
-

The program generated by ATOMCC contains most of the

code necessary for solving the ODEs, the recurrence

relations, structure of the system, etc. There are two

external program calls to the routines RDCV and RSEE- RDCV

contains the routines to estimate the radius of convergence

of the truncated Taylor series. RSET contains the routines

necessary to choose the optimum step size for a particular

expansion based upon the radius of convergence, the length

of the Taylor series being used, and the error tolerance-

specified for the problem.

The RDCV routines estimate the radius of convergence

if the problem has a single singularity on the circle of

convergence, a conjugate pair of singularities on the circle

of convergence, an essential singularity on the circle of

convergence, or if the solution is an entire function.

Locating Non-Essential Singularities and Their Order

When a Taylor polynomial is used to approximate the

solution to an initial-value problem it is effected by

singularities occuring in the solution of the problem.

These singularities, if the solution is real valued on the

real axis, occur only on the real axis or in conjugate pairs

[4;122-1231.

In the methods to be discussed, it is assumed that

only the primary singularities, those on the circle of

convergence, have any significant effect on the terms of the

problem's Taylor series. This assumption is accurate if a
-

sufficiently long series is used [4;123].

Only two of Changls methods are described here, the

two-term analysis [2;89] and the three-term analysis [2;91-

92). Both of these methods are able to find the raaius of

convergence for a series when the solution has only a single

singularity on the circle of convergence. In addition to

the radius of convergence, the three-term analysis also

gives the order of the singularity, whereas the two-term
-

analysis requires that this order be known beforehand to

obtain the radius of convergence. These methods are both

derived through analysis of the model problem

y(t) = (t - a ~ - ~ . (33)

This equation adequately approximates the solution to the

initial-value problem being solved as long as there is a

single singularity on the circle of convergence and the

series Is evaluated at a point near the singularity [2;83-

841. For a complete analysis of Chang's methods one should

consult [2;80-1381.

The two term analysis is derived by considering the

recurrence relations one obtains for the Taylor coefficients

of (33). The derivatives of (33) have the form

y' = -s(t-a) -s-1 I

y H = -s(-s-l)(t-a) -s-2

= -s(t-a) -s-1 (-s-l)/(t-a)

so that the general recurrence relation for the Taylor

coefficients, evaluated at t = to, is

Solving for d a-to this equation becomes

Since the radius of convergence, p, is la-tol one has

This is the formula for the two-term analysis.

When one does not possess a priori knowledge of the

singularity's order, then two copies of equation (34) can be

solved simultaneously to yield the radius of convergence, p,

and the order of the singularity, s. The two equations to

be solved are

and

-

Multiplying the equations by n/(~),-~ and

(~-I)/(Y),-~ , respectively, produces the pair of equations

and

Subtracting the second equation from the first produces

Thus,

Now, by solving equation (34) for s, one has the equation

where d is obtained from equation (36).

EXAMPLE 8

Consider the initial-value problem of Example 3

(Chapter 2). The solution has a singularity of order 2 at

the point t = -1/2. Tables 5,6, and 7 show the results of

applying the three term analysis to the Taylor coefficients

for this problem using series lengths of 6, 11, 16,*- , 41

(ie. n=5, 10, 1 5 , * - * , 40 in equations (36) and (37)).

TABLE 5

THREE-TERM ANALYSIS ESTIMATES FOR THE RADIUS OF CONVERGENCE
AND ORDER OF THE SINGULARITY FROM THE TAYLOR SERIES
EXPANSION ABOUT THE POINT t = 0.0 FOR THE INITIAL-VALUE
PROBLEM :

y' = -(2t+l)y2, 0 C t (1, y(0)=4

radius
oE convergence

estimate

order
of singularity--

estimate

TABLE 6

THREE-TERM ANALYSIS ESTIMATES FOR THE RADIUS OF CONVERGENCE
AND ORDER OF THE SINGULARITY FROM THE TAYLOR SERIES
EXPANSION ABOUT THE POINT t = 0.4 FOR THE INITIAL-VALUE
PROBLEM :

2 y' = -(2t+l)y , 0 S t d 1, y(0)=4

radius
of convergence

estimate

order
of singularity

estimate

One can see from the tables that the approximations

for the radius of convergence and order of the singularity

by the three-term analysis is extremely good, even when

taken from points not very close to the singularity.

TABLE 7

THREE-TERM ANALYSIS ESTIMATES FOR THE RADIUS OF CONVERGENCE
AND ORDER OF THE SINGULARITY FROM THE TAYLOR SERIES
EXPANSION ABOUT THE POINT t = 0.9 FOR THE INITIAL-VALUE
PROBLEM :

2 y' = -(2t+l)y , 0 d t d 1, y(0)=4

radius
of convergence

estimate

order
of singular it<-

estimate

If the three-term analysis fails (i.e. two different

estimates do not agree), then it is assumed that there is a

conjugate pair, or more complex structure, of singularities

on the circle of convergence. Chang derives the four-term

analysis [2;104] and the six-term analysis [2;108] to handle

this situation. In a manner similar, but more complex, to

the development of the two and three-term analysis, these

methods are derived from the model problem

y(t) = (t - a)-' (t - a)- ' ,
where a is the complex conjugate of a. Chang also derives a

method for finding the radius of convergence if the problem

contains an essential singularity [2;135].

Once the radius of convergence for a particular step

has been estimated, the optimum step size can be computed.

If 6 is the error tolerance specified at the start of the
- .

problem and p is the radius of convergence found for the

problem, then Chang [2;141-1431 shows that

is a good estimate of the optimum step size for the problem,

where n+l is the number of terms in the Taylor series being
- -

used.

EXAMPLE 9

This example considers using the ATOMCC toolbox to

solve Example 3. The error tolerances used are 1.OE-4,

1.OE-8, and 1.OE-12. The ATOMCC results are in TABLE 8.
-

Using the information above to find the optimum step size,

and knowing that the solution to the problem has a

singularity at t = -0.5, the initial step size used for each

of the tolerances should be

1. h = 0.5(1.OE-4) = .363947 ,

2. h = 0.5(1.OE-8) = -264915 ,

and

3. h = 0.5(1.OE-12) = .I92831 .

TABLE 8

RESULTS OF ATOMCC APPLIED TO THE INITIAL-VALUE PROBLEM

y' = -(2t + Uy2 , 0 6 t s 1, y(0) = 4

- - ---

error number initial relative
tolerance of steps step size global error

- -- - -- - - - -

TABLE 8 shows that the ATOMCC package can solve an

initial-value problem in very few steps while maintaining

tight control over the global error.

CHAPTER V

Summary

As seen in the first two chapters, the recurrence

relations used to obtain the Taylor coefficients are not

difficult to understand or to implement. These relations

make it possible to efficiently use the Taylor method to

solve initial-value problems. Using long Taylor series to

solve the initial-value problems allows for very good error

control and also allows one to obtain information about the

behavior of the system near singularities in the solution's

complex plane.

Y.F. Changls ATOMCC toolbox utilizes the Taylor

method to do much more than the standard software packages

available for solving initial-value problems and is

efficient in terms of computer time. -

APPENDIX

Pascal Routines for Comparison of the Taylor Series Method
and the Runqe-Kutta Order Four Method

function actuall(alpha,lend,rend:real):real;
begin
actual := alpha * exp(300 * rend)

end ;

function actual2(alpha,lend,rend:real):real;
begin
actual := 1 / (rend * rend + rend + l/alpha)

end ;

function actual3(alpha,lend,rend:real):real;
begin
actual:= -2*exp(-rend) + rend*rend - 2*rend + 3

end ;

function actual4(alpha,lend,rend:real):real;
begin
actual := 1 - exp(-rend)

end ;

function actual5(alpha,lend,rend:real):real;
begin
actual := rend + exp(-rend)

end ;

function actual6(alpha,lend,rend:real):real;
begin
actual := rend/(l-ln(rend))

end ;

function actual?(alpha,lend,rend:real):real;
begin
actual := -cos(rend)-exp(-rend)+2

end ;

function actual8(alpha,lend,rend:real):real;
begin
actual := rend*rend*(exp(rend)+exp(l)) - 2*exp(l)

end ;

function actual9(alpha,lend,rend:real):real;
begin
actual := alpha * exp(-30 * rend)

end ;

function actuallO(alpha,lend,rend:real):real;
begin
actual := alpha * exp(-300 * rend)

end ;

function fl(t,y:real):real;
begin { f)

f := 300 * y
end; { f)

function f2(t,y:real):real;
begin { f)

f := - (2 * t + 1) * y * y
end; { f)

function f3(t,y:real):real;
begin { f)

f := -y+t*t+l
end; { f)

function f4(t,y:real):real;
begin { f)

f := -y+l
end; { f)

function f5(t,y:real):real;
begin { f)

f : = - y + t + l
end; { f)

function f6(tfy:real):real;
begin { f)

f := (y/t)*(y/t) + y/t
end; { f)

function f?(t,y:real):real;
begin { f)

f := sin(t) + exp(-t)
end; { f)

function f8(t,y:real):real;
begin { f)
f := 2*(y+2*exp(l))/t + t*t * exp(t)

end; { f)

function fg(t,y:real):real;
begin { f) -

f := -30 * y
end; { f)

function flO(t,y:real):real;
begin { f)
f := -300 * y

end; { f)

procedure ytl(k:integer);

{ probl: y' = 300*y, 0 <= t <= 1, y(0)=1)

begin { yt
if k = 0 then

ayt[O] := y
else

ayt[k] := 300 * ayt[k-l]/k
end; { yt

atl1at2,at3,at4,att:array [0 .. 341 of real;
procedure yt2(k:integer);

procedure tt(k:integer);
begin
if k = 0 then

att[O]:= t
else

if k = 1 then
att[l] := 1

else
att[k] := 0

end ;
procedure tl(k:integer);
begin
atl[k] := 2*att[k];

end ;
procedure t2(k:integer);
begin

if k = 0 then
at2[k] := atl[k] + 1

else
at2[k] := atl[k]

end ;
procedure t3(k:integer);
var

j:integer;
begin

at3[k] := 0;
for j := 0 to k do
at3[k] := at3[k] + ayt[j]*ayt[k-j]

end ;
procedure t4(k:integer);
var j:integer;
begin

at4[k] := 0;
for j := 0 to k do

at4[k] := at4[k] + at2[j]*at3[k-j]
end ;
begin { main yt)
if k = 0 then

ayt[k] := y
else

begin
tt(k-1) ;
tl(k-1) ;
t2(k-1) ;
t3(k-1) ;
t4(k-1) ;
ayt[k] := -at4[k-l]/k

end
end; { yt)

atl1at2,at3,att:array [0 .. 341 of real;
procedure yt3(k:integer);

procedure tt(k:integer);
begin
if k = 0 then

att[O]:= t
else

if k = 1 then
att[l] := 1

else
att[k] := 0

end ;
procedure tl(k:integer);
var j,m:integer;
begin
if k > 2 then

m := 2
else

m := k;
atl[k] := 0;
for j := 0 to m do

atl[k] := atl[k] + att[j]*att[k-j]
end ;
procedure t2(k:integer);
begin
at2[k] := atl[k] - ayt[k]

end ;
procedure t3(k:integer);
begin
if k = 0 then

at3[k] := at2[k] + 1
else

at3[k] := at2[k]
end ;
begin { main - yt)

if k = 0 then
ayt[k] := y

else
begin

tt(k-1) ;
tl(k-1) ;
t2(k-1) ;
t3(k-1) ;
ayt[k] := at3[k-l]/k

end
end; { yt)

atl,at2,att:array [0 . . 341 of real;
procedure yt4(k:integer);

procedure tt(k:integer);
begin
if k = 0 then

att[O]:= t
else

if k = 1 then
att[l] := 1

else
att[k] := 0

end ;
procedure tl(k:integer);
begin
atl[k] := -ayt[k];

end ;
procedure t2(k:integer);
begin
if k = 0 then

at2[k] := atl[k] + 1
else

at2[k] := atl[k]
end ;
begin { main - yt)

if k = 0 then
ayt[k] := y

else
begin

tt(k-1) ;
tl(k-1) ;
t2(k-1) ;
ayt[k] := at2[k-l]/k

end
end; { yt)

atl,at2,at3,att:array [0 .. 341 of real;
procedure yt5(k:integer);

procedure tt(k:integer);
begin
if k = 0 then

att[O]:= t
else

if k = 1 then
att[l] := 1

else
att[k] := 0

end ;
procedure tl(k:integer);
begin
atl[k] := -ayt[k];

end ;
procedure t2(k:integer);
begin
at2[k] := atl[k] + att[k]

end ;
procedure t3(k:integer);
begin

if k = 0 then
at3[k] := atZ[k] + 1

else
at3[k] := at2[k]

end ;
begin { main - yt)

if k = 0 then
ayt[k] := y

else
begin

tt(k-1) ;
tl(k-1) ;
t2(k-1) ;
t3(k-1) ;
ayt[k] := at3[k-l]/k

end
end; { yt) -

atl,at2,at3,att:array [0 . . 341 of real;
procedure yt6(k:integer);

procedure tt(k:integer);
begin

if k = 0 then
att[O]:= t

else
if k = 1 then

att[l] := 1
else

att[k] := 0
end ;
procedure tl(k:integer);
begin

if k = 0 then
atl[k] := ayt[k]/att[k]

else
atl[k] := (ayt[k] - atl[k-l])/att[O]

end ;
procedure t2(k:integer);
var j:integer;
begin

at2[k] := 0;
for j := 0 to k do

at2[kl := at2[k] + atl[j]*atl[k-j]
end;
procedure t3(k:integer);
begin
at3[k] := at2[k] + atl[k]

end ;
begin { main - yt }

if k = 0 then
ayt[k] := y

else
begin

tt(k-1);
tl(k-1) ;
t2(k-1) ;
t3(k-lj ;
ayt[k] := at3[k-l]/k

end
end; { yt

atl,at2,at3,at4,att:array [0 .. 341 of real;
procedure yt?(k:integer);

{ prob?: y 1 = sint + exp(-t), 0 <= t (=I, y(O)=O)

procedure tt(k:integer);
begin
if k = 0 then

att[O]:= t
else

if k = 1 then
att[l] := 1

else
att[k] := 0

end ;
procedure tl(k:integer);
begin

if k = 0 then
atl[k] := sin(att[k])

else
atl[k] := at4[k-l]/k

end ;
procedure t2(k:integer);
begin
if k = 0 then

at2[k] := exp(-att[k])
else

at2[k] := -at2[k-1]/k
end ;
procedure t3(k:integer);
begin
at3[k] := atl[k] + at2[k]

end ;
procedure t4(k:integer);
begin
if k = 0 then

at4[k] := cos(att[k])
else

at4[k] := -atl[k-l]/k
end ;
begin { main - yt)

if k = 0 then
ayt[k] := y

else
begin

tt(k-1) ;
tl(k-1) ;
t2(k-1) ;
t3(k-1) ;
t4(k-1) ;
ayt[k] := at3[k-l]/k

end
end; { yt)

atl,at2,at3,at4,at5,att:array [O .. 341 of real;
procedure yt8(k:integer);

procedure tt(k:integer);
begin

if k = 0 then
att[O]:= t

else
if k = 1 then

att[l] := 1
else

att[k] := 0
end ;
procedure tl(k:integer);
begin
if k = 0 then

atl[O] := 2*(ayt[0]+2*exp(l))/att[O]
else

atl[k] := (2*ayt[k] - atl[k-l])/att[O]
end ;
procedure t2(k:integer);
var j,m:integer;
begin

if k > 2 then
rn := 2

else
m := k;

at2[k] := 0;
for j := 0 to m do

at2[k] := at2[k] + att[j]*att[k-j]
end ;
procedure t3(k:integer);
begin

if k = 0 then
at3[k] := exp(att[kJ)

else
at3[k] := at3[k-l]/k

end ;
procedure t4(k:integer);
var j : integer-;
begin

at4[k] := 0;
for j := 0 to k do

at4[kJ := at4[k] + at2[j]*at3[k-j]
end ;
procedure t5(k:integer);
begin
at5[k] := at4[k] + atl[k]

end ;
begin { main - yt)

if k = 0 then
ayt[k] := y

else
begin

tt(k-1) ;
tl(k-1) ;
t2(k-1) ;
t3(k-1) ;
t4(k-1) ;
t5(k-1) ;
ayt[k] := at5[k-l]/k

end
end; { yt 1

procedure yt(k:integer);

{ prob9: y' = -30*y, 0 <= t <= 1, y(0)=1/3)
begin { yt)
if k = 0 then

ayt[O] := y
else

ayt[k] := -30 * ayt[k-l]/k
end; { yt)

procedure ytlO(k:integer);

{ probl0: y' = -300*y, 0 <= t <= 1, y(0)=1)
begin { yt)

if k = 0 then
ayt[O] := y

else
ayt[k] := -300 * ayt[k-l]/k

end; { yt)

program ivpt(input,output);
cons t

formfeed=#12;
type

vector=array [0 .. 201 of integer;
var

tay1orarray:array [4 .. 35,l . . 14,O .. 21 of real;
rk4array:array [I .. 14,O .. 21 of real;
lowerlimit,value,a,b,alpha:real;
partition,psize,i,j,k,accuracy,maxdepth,p:integer;
maxpartiti0n:integer;
printflag,rkflag,tyflag,tyflagl,rkflagl:boolean;
answer:char;
workfile,rktime,tytime:text;
hour:vector;
min:vector;
sec:vector;
frac:vector;
time,count,hourl,secl,minl,fracl:integer;

procedure timer(var hour,min,sec,frac:integer);
type
regpack = record

ax,bx,cx,dx,bp,si,di,ds,es,flags:integer;
end ;

var
regs: regpack;

begin
with regs do

begin
ax := $2~00;
msdos(regs);
hour := hi(cx);
min := lo(cx);
sec := hi(dx);
frac := lo(dx);

end
end ;

procedure rk4(lend,rend,alpha:real; psize:integer);
var

i:integer;
h,t,tl,w,kl,k2,k3,k4:real;

begin { rk4)
writeln('rk4 ',psize);
for count := 1 to 10 do
begin

timer(hour[count],min[count],sec[count],frac[count]);

h := (rend - lend)/ psize;
t := lend;
w := alpha;
for i := 1 to psize do

begin
kl := h * f(t,w);
tl := t + h/2;
k2 := h * f(t1,w + k1/2);
k3 := h * f(t1,w + k2/2);
k4 := h * f(t + h,w + k3);
w := w + (kl + 2 * (k2 + k3) + k4)/6;
t : = t + h

end ;
timer(hour[count+10],min[count+10],sec[count+10],

frac[count+lO])
end ;

rk4array[partition10] := abs(va1ue - w)/abs(value);
rk4array[partitionIl] := abs(va1ue - w);
rk4array[partition12] := w;
if (rk4array[partitionIO] <= lowerlimit) or

(partition = maxpartition) then
begin
hour1 := 0;
minl := 0;
secl := 0;
fracl := 0;
for count := 1 to 10 do

begin
hour[count-11 := hour[count+lO] - hour[count];
if min[count+lO] < min[count] then

begin
hour[count-1] := hour[count-1] - 1;
min[count+lO] := min[count+lO] + 60

end ;
min[count-11 := min[count+lO] - min[count]; -

if sec[count+lO] < sec[count] then
begin
minlcount-11 := min[count-l] - 1;
sec[count+lO] := sec[count+lO] + 60

end ;
sec[count-11 := sec[count+lO] - sec[count];
if- frac[count+lO] < frac[count] then - -

begin
sec[count-11 := sec[count-11 - 1;
frac[count+lO] := frac[count+lO] + 100

end ;
frac[count-11 := frac[count+lO] - frac[count];
minl := minl + min[count-11;
secl := secl + sec[count-11;
fracl := fracl + fractcount-1]

end ;
min[O] := minl div 10;
sec[OJ := secl div 10;
frac[O] := fracl div 10;

writeln(rktime,psize,' ,min[O],l:',sec[O],l:l,
frac[O])

end
end; { r k 4)

procedure taylor(lend,rend,alpha:real; psize:integer);
var

ayt:array [0 .. 353 of real;
depth,term,j:integer;
hl,error,app,t,y,h:real;

($1 yt.pas)

begin { taylor)
writeln('tay1or ',psize);
depth := 4;
repeat
for count := 1 to 10 do

begin
timer(hour[count],min[count],sec[count],

frac[count]);
t := lend;
h := (rend-lend)/psize;
y : = alpha;
for j := 1 to psize do

begin
app := 0;
for term := 0 to depth do

yt (term) ;
for term := depth downto 1 do

app := (app + ayt[term])*h;
y := app + ayt[O];
t : = t + h

end ;
timer(hour[count+l0],min[count+lO],sec[count+lO]I

frac[count+lO]) -

end ;
taylorarray[depth,partition,O] := abs(va1ue-y)/

abs(va1ue);
taylorarray[depth,partition,l] := abs(va1ue-y);
taylorarray[depth,partition,2] := y;
depth := depth + 1

until (taylorarray[depth-l,partition,O] <= lowerlim3t) or
(depth > maxdepth);

hour1 := 0;
minl := 0;
secl := 0;
fracl := 0;
for count := 1 to 10 do

begin
hour[count-11 := hour[count+lOl - hour[count];
if min[count+lO] < min[count] then

begin
hour[count-l] := hour[count-l] - 1;
min[count+lO] := min[count+lO] + 60

end ;
min[count-11 := min[count+lO] - min[count];
if sec[count+lO] < sec[count] then

begin
min[count-l] := min[count-11 - 1;
sec[count+lO] := sec[count+lO] + 60

end ;
sec[count-1] := sec[count+lO] - sec[count];
if frac[count+lO] < frac[count] then

begin
sec[count-11 := sec[count-11 - 1;
frac[count+lO] := frac[count+lO] + 100

end ;
frac[count-1] := frac[count+lO] - frac[count];
minl := minl + min[count-11;
secl := secl + sec[count-11;
fracl := fracl + frac[count-1]

end ;
min[O] := minl div 10;
sec[O] := secl div 10;
frac[O] := fracl div 10;

end; { taylor)

begin { main - ivp)
assign(rktime,'rktimel);
rewrite(rktime);
assign(tytime,Itytime');
rewrite(tytime);
assign(workfile,~ivpout');
rewrite(workfi1e);
write('Runge Kutta (y/n): I) ;

readln(answer);
if answer = ' y l then

rkflag := true
else

rkflag := false;
write('Tay1or series (y/n): I) ;

readln(answer);
if answer = 'y' then

tyflag := true
else

tyflag := false;
if tyflag then

begin
write('enter maximum series length: I) ;

readln(maxdepth);
if maxdepth < 4 then

maxdepth := 4;
if maxdepth > 35 then

maxdepth := 35
end

else

maxdepth := 3;
write('enter accuracy: I) ;

readln(accuracy);
lowerlimit := 5*exp(accuracy * ln(10));
writeln(~orkfile,~lowerlimit ',lowerlimit);
write('enter maximum # of subdivisions for partition1,

size: I) ;

readln(maxpartiti0n);
if maxpartition < 1 then

maxpartition := 1;
if maxpartition > 14 then

maxpartition := 14;
write('enter endpoints: I) ;

readln(a,b);
write('enter initial condition: I) ;

readln(a1pha);
writeln(workfile,a,b,alpha);
writeln(workfi1e);
value := actual(alpha,a,b);
writeln(workfile,~actual ',value);
for j := 1 to maxpartition do

begin
for i := 4 to maxdepth do

begin
taylorarray[i,j,O] := 0;
taylorarray[i,j,l] := 0;
taylorarray[i,j,2] := 0

end ;
rk4array[j,O] := 0;
rk4array[j,l] := 0;
rk4array[j,2] := 0

end ;
psize := 1;
tyflagl := tyflag;
rkflagl := rkflag;
partition := 1;
while (partition <= maxpartition) and

(rkflagl or tyflagl) do
begin
psize := psize * 2;
if rkflagl then - -

rk4(a,b,alpha,psize);
if tyflagl then

taylor(a,b,alpha,psize);
~riteln(workfile,psize:5,~ absolute error1,

7 , relative error',' 7 , approximation1);
for k := 3 to maxdepth do
begin

printflag := true;
if (k = 3) and (rk4array[partition,O]<>O) then

writeln(workfile,'RK 4':5, -
rk4array[partition,l],
rk4array[partition,O],
rk4array[partition,2]);

if (k>3) and (taylorarray[k,partition,O]<>O) then
writeln(workfile1

1TY':2,k:3,
taylorarray[k,partition,l],
taylorarray[k,partitionI0lI
taylorarray[k,partition,21)

end ;
writeln(workfi1e);
writeln(workfi1e);
writeln(workfi1e);
if taylorarray[4,partition,OI <= lowerlimit then

tyflagl := false;
if rk4array[partition,O] <= lowerlimit then

rkflagl := false;
partition := partition + 1

end ;
close(workfi1e);
close(rktime);
close(tytime);

end. { main - ivp)

program taylor(input,output);
type

al=array[O .. 401 of real;
const

formfeed=#12;
var

tay1orarray:real;
psize:integer;
lowerlimit,value,a,b,alpha:real;
error:real;
outfile,workfile,termfile:text;

procedure rc(t:real;term:al);
var

rml,rm2:real;
i:integer;
rc,order:array[3 .. 401 of real;

begin {rc.pas)
for i := 3 to 40 do

begin
rml := term[i]/term[i-11;
rm2 := term[i-l]/term[i-2);
rc[i] := 1/((i-1) * rml - (i-2) * rm2) ;
order[i] := (i-2) * rc[i] * rm2 - i + 3

end ;
writeln(outfi1e);
writeln(outfi1e);
writeln(outfile,~radius of converge and order1,

'estimates from expansion point t=I,t);
writeln(outfi1e);
for i := 3 to 40 do
writeln(outfile,i,' rc= ',abs(rc[i]),I order= I ,

order [i])
end; (rc.pas)

procedure taylor(lend,rend,alpha:real; psize:integer);
var

ayt:al;
k,depth,term,j:integer; - -
hl,app,t,y;h:real;

begin { taylor)
depth := 40;
t := lend;
h := (rend-lend)/psize;
y := alpha;
for j := 1 to psize do
begin

hl := 1;
app := 0;

for term := 0 to depth do
yt (term) ;

for term := depth downto 1 do
app := (app + ayt[term])*h;

y := app + ayt[O];
if j < 4 then
begin
for k := 0 to 40 do

writeln(termfile,ayt[k]:40:15);
writeln(termfi1e)

end ;
rc(t,a~t);
t : = t + h

end ;
taylorarray := y;
error := abs(va1ue - y)/abs(value)

end; { taylor)

begin { main)
assign(outfile,~order.rc');
rewrite(outfi1e);
assign(termfile,'termfill);
rewrite(termfi1e);
as~ign(workfile,~ivpout~);
rewrite(workfi1e);
write('enter number of partions: I) ;

readln(psize);
write('enter endpoints: I) ;

readln(a,b);
write('enter initial condition: I) ;

readln(a1pha);
writeln(workfile,a,b,alpha);
writeln(workfi1e);
value := actual(alpha,a,b);
taylor(a,b,alpha,psize); -

writeln(workfile,'appr: ',taylorarray,' error: ',error);
close(workfi1e);
close(termfi1e);
close(outfi1e)

end. { main)

BIBLIOGRAPHY

1. Burden, Richard L. and Faires, J. Douglas. Numerical
Analysis. Third Edition. Boston: Prindle, Weber,
and Schmidt, 1985.

2. Chang, Y.F. The Automatic Taylor Series (ATS) Method of
Analysis. Unpublished, Claremont McKenna College,
Claremont, California, 1984.

3. Chang, Y.F. "The ATOMCC Toolbox," BYTE, Vol. 11, No. 4,
April 1986, 215-224.

4. Corliss, George and Chang, Y.F. "Solving Ordinary Dif-
ferential Equations Using Taylor Series," ACM
Transactions on Mathematical Software, Vol. 8,
No. 2, June 1982, 114-144.

5. Gear, C. William. Numerical Initial Value Problems in
Ordinary Differential Equations. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1971.

6. Moore, Ramon E. Methods and Applications of Interval
Analysis. Philadelphia: SIAM Studies in Applied
Mathematics, 1979.

