by

Terry R. Stanton

Submitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science in Engineering
in the
Civil Engineering
Program

YOUNGSTOWN STATE UNIVERSITY

ABSTRACT

KNOWLEDGE BASED EXPERT SYSTEM

TRUSS ADVISOR

Terry R. Stanton
Master of Science in Engineering
Youngstown State University, 1986

Recent successes of Applied Artificial Intelligence research in areas such as Medical Diagnostics (MYCIN), Geology (PROSPECTOR) and applied Mathematics (MACYSMA), has renewed the interest of people in several different areas in this newly emerging discipline. One area of much practical importance is the development of Expert System (ES) using the domain specific knowledge of a human expert and coding it in a form that is useable on a computer. These programs have proven themselves very effective in hand1ing i11-structured problems. However, this process takes thousands of man hours and usually requires a team effort.

On a smaller scale, ES programs which are highly task oriented are known as Knowledge Based Expert Systems (KBES) and can be developed for use on micro computers. This process can be speeded by the use of a KBES building tool now available commercially. The objective of this report is to develop a KBES prototype with applications in Civil Engineering. One such problem within the field of Civil Engineering is the preliminary selection of a wooden truss type given the loading and other design constraints. The prototype is developed using the KBES building tool "Expert Edge" which runs on the IBM PC AT micro computer.

Tools such as "Expert Edge" relieve the developer of the task of constructing an inference mechanism. These tools offer many features to assist in the development of a KBES. Some of these features include an explanation facility, a footnoting facility and a facility for altering data or entering data in advance.

The KBES prototype in its present stage can recommend a preliminary configuration of a wooden truss for the detailed design. To demonstrate the idea the prototype is confined to triangular trusses, but the knowledge base could very easily be expanded to include various other shapes of trusses by adding more rules to it. The information contained within the knowledge base was provided by the courtesy of the Inter-Lock Steel Company, Sharon, PA.

ACKNOWLEDGEMENTS

I wish to extend my deepest gratitude to Dr. J. Alam and Professor J. F. Ritter for their time and effort in the development and review of this thesis. I also would like to thank Dr. J. D. Bakos for serving on the review committee.

I would like to dedicate this thesis to my wife Terry, her understanding and encouragement has helped a great deal in the completion of this work.

TABLE OF CONTENTS
PAGE
ABSTRACT ii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES viii
CHAPTER
1 INTRODUCTION 1
1.1 General History 1
1.2 Purpose 4
1.3 Organization 4
2 OVERVIEW OF KNOWLEDGE BASED EXPERT SYSTEMS 6
2.1 Expert System Components 7
2.2 Knowledge Representation 8
2.2.1 Production Systems 10
2.2.2 Semantic Networks 11
2.2.3 Frames 12
2.3 Inference and Control Strategies 13
2.4 Procedure of Developing Small Know1edge Based Expert Systems 16
2.5 Existing Know1edge Based Expert Systems 17
2.6 Applications Within Civil Engineering 19
3 BUILDING TOOLS 22
3.1 General Purpose Programming Languages 22
3.2 Expert System Building Tools (She11s) 24
4 OVERVIEW OF EXPERT EDGE 28
4.1 System Environment 29
4.2 Rules 30
4.3 Text Information 35
4.4 Other System Features 35
4.5 Summary 36
5 PROTOTYPE DEVELOPMENT 38
5.1 Scope 38
5.2 Rule Development 39
5.3 Samp1e Runs 43
5.3.1 Sample 1 45
5.3.2 Sample 2 45
5.3.3 Sample 3 47
6 SUMMARY AND CONCLUSIONS 50
6.1 Summary 50
6.2 Conclusion 51
APPENDIX A. PROGRAMMING CONSIDERATIONS 53
A. 1 Rules 53
A. 2 Decision Tree 55
APPENDIX B. USER LANGUAGE FILE LISTING 58
REFERENCES 114
1-1. Artificial Intelligence Specializations and Areas of ---- Research Projects 2
2-1. Ideal Expert System Architecture 9
2-2. Sematic Network Representation of Truss Information 12
2-3. Classifications of Search Strategies 15
4-1. Expert Edge Menu Structure 31
4-2. Sample Name Tree for Truss Information 33
5-1. Truss Configurations contained within the Knowledge Base. 40
5-2. Rules required to recommend a Fink Truss 41
5-3. Sample 1 Input Data 44
5-4. Sample 2 Input Data 45
5-5. Sample 3 Input Data 48

LIST OF TABLES

TABLE PAGE
2-1. Knowledge Based Expert System with Applications in Civil Engineering 20
3-1. A Partial List of Available Knowledge Based Expert System Shells 26
5-1. Types of Lateral Support and Respective Trusses 42

CHAPTER I

INTRODUCTION

Artificial Intelligence (AI) is defined as "that part of computer science concerned with designing intelligent computer sysems, that is, systems that exhibit the characteristics associated with intelligence in human behavior, understanding language, learning, reasoning, problem solving and so on" (1). AI research is currently sub-divided into several subject areas as shown in Figure 1.1. This figure is not the only way to divide the components of AI. Some topics may belong in more than one area.

1.1 GENERAL HISTORY

Research in AI for the most part began in the late 1940 's. The first systems were attempts to create computer programs that imitated the thinking processes of the human brain (2). The key idea behind this approach was the analogy between the connection wires providing input to the central processing unit (CPU), and the nerves in the human body serving the same purpose (using the central nervous system), to provide input to the human brain. The development of these systems was eventually abandoned because the estimated size of the required computer system far exceeded the capabilities of the time. In 1955 McCarthy developed the LISP programming language. This language is considered to be best suited for programming in AI and is used extensively today. In 1956 McCarthy,

Figure 1-1 ARTIFICIAL INTELLIGENCE SPECIALIZATIONS AND AREAS OF RESEARCH PROJECTS

Minsky, Shannon and Rochester organized the first conference in AI. The goal of this conference was to blend the ideas of the various researchers and to define the path of future AI research. During the following years of research much time was spent trying to develop domain independent methods of solving problems (3). These systems were referred to as General Problem Solvers (GPS). GPS used broadly applicable techniques of heuristic search and the strategy of means end analysis. For the most part these systems did not perform well and were restricted to solving simple problems. During the 1960's the development of domain specific knowledge based systems was first introduced. This led to the successful development of Knowledge Based Expert Systems (KBES). The first of these to be developed was the DENDRAL system. Other early systems included MACSYMA, HEARSAY I and II and MYCIN (a brief review of some of these systems is provided in a later section).

Major research following this was in the development of domain independent frameworks (also referred to as KBES building tools). Examples of these general purpose building tools include EMYCIN, KAS, EXPERT, and AGE. Early KBES were developed using large mainframe computers or a special LISP machine, and involved significant man hours to build. However, recent increased microcomputer capabilities and the availability of building tools have made the construction of KBES using microcomputers possible.

1.2 PURPOSE

The purpose of this report is to review the area of KBES and to identify the current applications of this technology in the field of Civil Engineering with an emphasis on the use of micro computers. A secondary objective of this report is to review and test the expert system building tool "Expert Edge", by developing a KBES prototype.

KBES have evolved from research in Artificial Intelligence and have proven themselves very effective in handling ill-structured problems. One such problem within the field of Civil Engineering is the preliminary selection of a truss type given normal design parameters. This prototype in its present state does not attempt to rival the decisions of experts in this field, instead it was developed to demonstrate the usefulness of this technology. The information contained within the knowledge base was provided by the courtesy of the Inter-Lock Steel Company, Sharon, PA 16146.

1.3 ORGANIZATION

The remainder of this report is separated into six chapters and two appendices. Chapter two provides an overview of expert systems technology, some of the earlier developed KBES and some KBES within the field of Civil Engineering. A discussion of system building tools is presented in Chapter three, including general purpose programming languages and expert system shells. Chapter four contains an overview of the building tool (Expert Edge), used to develop the expert system prototype. In Chapter five the development
of some of the rules and the decision tree used is discussed. Also included in this chapter is a discussion of some sample runs of the prototype. Chapter VI presents a summary and the conclusions of this report. Appendix A presents some of the programming considerations used in the development of the prototype. Appendix B contains a sample of a user language file listing of a KBES developed using Expert Edge.

CHAPTER II

OVERVIEW OF KNOWLEDGE BASED EXPERT SYSTEMS

Know1edge Based Expert Systems (KBES), are a class of computer programs that can advise, analyze, categorize, communicate, consult, design, diagnose, explain, explore, forcast, form concepts, identify, interpret, justify, learn, manage, monitor, plan, present, retrieve, schedule, test and tutor (4). These expert systems have demonstrated a proficiency in coping with unstructured and il1-defined problems. That is, expert systems are best suited to address problems normally thought to require human specialists or experts for their solution. Individuals whose speciality is assessing such problems, acquiring knowledge and building the KBES are referred to as Knowledge Engineers. In this report the term "expert system" shall refer to any computer system that can perform at or near the level of a human expert and the term 'knowledge based expert system' shall refer to any computer system that contains knowledge of a difficult decision making situation that is useful, but hardly equivalent of a human expert. There are several basic differences between conventional programming and KBES. Conventional programming is composed of algorithms and data. KBES are composed of a knowledge base and an inference mechanism. The data base of a conventional program is numerically structured and the programs are oriented towards numerical processing. A knowledge base is symbolically structured and these programs are oriented towards symbolic reasoning. Conventional programs are sequential and batch processed
whereas, KBES are highly interactive with the user. KBES can also provide explanations of its line of reasoning and of terms used by the KBES at any time during a session. This is not easily accomplished with conventional programming.

2.1 EXPERT SYSTEM COMPONENTS

Expert systems are composed of three general components, the knowledge base (static memory), the context (dynamic or working memory), and the inference mechanism (control mechanism) (5). Figure 2-1 shows the components of an ideal expert system (6). It should be noted that actual systems usually do not contain all the features shown, but one or more features are present in every system.

The knowledge base contains the encoded knowledge specific to the domain of the problem. This is usually comprised of facts, heuristic planning and problem solving rules. The context or blackboard accumulates the dynamic knowledge (intermediate results or current .state), of the problem at hand. Figure $2-1$ shows the blackboard can contain the three decision recorders plan, agenda and solution. Plan refers to the knowledge that describes the strategy the system will pursue for the current problem. Recording of the next action to be executed is done by the agenda (usually knowledge based rules that seem relevant to prior decisions placed on the context). The solution represents the current hypothesis and decisions the system has generated. The inference mechanism refers to the components that manipulate the context using the knowledge base. Usually the inference mechanism is provided by the programming environment and contains no domain specific knowledge (7). Any of the three modules shown in

Figure 2-1 may be contained in the inference mechanism. The schedule maintains control over the agenda and determines which pending action should be addressed next. This is performed by assigning a príority to each agenda item according to its relationship to the plan. Execution of the chosen agenda item by applying appropriate rules is controlled by the interpreter. The consistency enforcer maintains a consistent representation of the emerging solution. This is often performed by the use of certainty factors, which are assigned according to the validity of the statement.

The language processor (user interface), and the justifier are desirable but not required features. The language processor mediates information exchanges between the expert system and the user. The justifier explains the actions of the system to the user. Generally the more features included in the system the more user friendly the system is.

2.2 KNOWLEDGE REPRESENTATION

Knowledge representation techniques involve routines for manipulating the specialized data structures to make intelligent inferences. The list of these techniques include state-space search, logic, procedural representation, semantic net, production systems, special purpose representation techniques and frames (1). From this list production systems, semantic nets and frames are most commonly used in developing expert systems. However, before these are discussed, a brief review of the other methods follows. The earliest representation formalism used in AI programs was the state-space representation. The primary use for this technique was problem solving and game playing

Figure 2-1 IDEAL EXPERT SYSTEM ARCHITECTURE (6)
programs. Logic is a representation method that relies on the rules of symbolic logic. The advantage of this method is that deductions are guaranteed correct to an extent that other schemes of knowledge representation cannot match. Procedural representation uses explicit control of the theorem proving process within a logic based system. A disadvantage of this technique is the difficulty in verifying and changing the procedural representations of an AI program. The special purpose representation technique involves the development of a combination of representation methods explicitly for the problem at hand. This technique is useful in large $A I$ systems.

2.2.1 PRODUCTION SYSTEMS

Production systems are best described by the notion of conditionaction pairs, also referred to as production rules. A production rule is a statement made up of an, IF this condition holds, THEN this action is appropriate. The IF part of the rule, also referred to as the condition part or left-hand side, states the conditions that must be present for the production to be applicable. The THEN part, also referred to as the action part or right-hand side, is then taken as an appropriate action. An example of a rule that could be used to select a Howe truss is:

IF: the intended class is residential

AND: the truss is triangular
AND: the truss is symmetrical
AND: the span is greater than 30 feet
AND: the span is less than or equal to 40 feet
THEN: the recommended truss type is a Single Howe

During the execution of the production system if the IF clauses are false the system stops. On the other hand if the IF clauses are true, then the action part can be executed by the interpreter. Once this is accomplished the interpreter then determines which rule to try next.

Production systems are most often used in AI programs to represent knowledge about how an expert would perform a specific task. An example of a production system in the Civil Engineering field is SACON. It is a KBES designed to provide advice in the field of structural analysis (8). Some of the advantages of production systems include: production rules can be added, deleted, or changed independently (changing one rule can be accomplished without having direct effects on other rules), information must be encoded within a rigid structure of production rules (making the information easily understandable), and its easy adaptation to heuristic knowledge. Disadvantages of this type of representation include inefficiency of program execution and poor adaptation or flow of control in problem solving algorithms as compared to conventional programming.

2.2.2 SEMANTIC NETWORKS

This scheme of representation takes advantage of knowledge that can be grouped together because it shares a common notation. These are usually illustrated by nodes and arcs, the nodes representing objects, concepts, or situations and the arcs representing relations between them. Figure 2-2 shows how to represent a few simple facts using this method:

FIGURE 2-2 SEMANTIC NETWORK REPRESENTATION OF TRUSS INFORMATION

Semantic networks as a knowledge representation method are popular where it is possible to make use of the hierarchy of information. An interesting advantage of the semantic network scheme is its ability to represent knowledge about properties of objects. Some disadvantages of this scheme include computational problems when the database becomes very large, lack of ability to easily represent time dependent knowledge and difficulties in representing uncertainty of the knowledge.

2.2.3 FRAMES

Representing knowledge about the objects and events typical to specific situations is the focus of representation by frames. A frame is a description of an object that contains slots for all the information associated with the object. These slots may be stored values or expected values. One of the significant advantages of frame representation is the use of the default or inherited values. The following is an example of a frame layout:

REPRESENTATION OF A SISSOR	TRUSS IN A FRAME TYPE LAYOUT
cype	sissor
group	triangular
class	residential
symmetrical	yes (default)
normal use	church
roof pitch	(value)
feature	high ceiling

Frames are also being used where large amounts of knowledge is needed to perform a task. Much research is expected in this area in the coming years.

2.3 INFERENCE AND CONTROL STRATEGIES

Inference and control strategies guide the expert system as it uses facts and rules stored in its knowledge base, and information acquired from the user (9). The inference mechanism performs two important tasks. First it examines existing facts and rules, and adds new facts when possible. Second, it decides the order in which inference is made. The most common systems are either consequence-driven (backward chaining), or antecedent driven (forward chaining). The process of working backward through the rules from consequence to antecedent to consequence in search of a casual chain that will satisfy the goal is called backward chaining (4). Backward chaining systems are very efficient if the possible outcomes are known and they are reasonably small in number. A forward chaining system executes a continuous sequence of cycles terminating when a rule's action dictates
a halt. These systems are useful where the goal or solution needs to be constructed or the number of possible outcomes is large.

The control portion of the inference mechanism must address two problems. First, the system must have a way to start and second the inference mechanism must resolve conflicts that occur when alternative lines of reasoning emerge. Techniques used to resolve these problems are depth-first search or breadth-first search strategy. In a depthfirst search, the inference follows one path until either a goal is found or a dead end is reached. A breadth-first search looks at all nodes (rules or conclusions) on one level before going deeper. The breadth-first search will find the shortest path to the goal. However, because depth-first search has the effect of pursuing a particular path as compared to breadth-first search which appears to be jumping from topic to topic, the depth-first search is the most common technique. Figure 2-3 shows the major classifications of search and control strategies used by inference mechanism (9). In this figure the darker lines and numbered nodes refer to a path the inference mechanism would follow for a particular strategy. Because backward chaining depthfirst search is the most common, a brief discussion of it is presented. This strategy attempts to follow a path from a conclusion to the rules that support it. If the inference encounters a rule it cannot prove during this process, it backtracks to a previously proven evidence and selects an alternate path (ie when rule \#4 could not be proved the inference backtracks to rule \#3 and then tries rule \#5). This is continued until all the rules in a path are proved or no more paths exist.

A
BACKWARD CHAINING

Figure 2-3 CLASSIFICATIONS OF SEARCH STRATEGIES (9)
2.4 PROCEDURE OF DEVELOPING SMALL KNOWLEDGE BASED EXPERT SYSTEMS

The purpose of this section is to review the steps involved in building a small KBES. The following list shows six steps that are recommended for this process (9):
-Selecting a tool and a commitment to a particular problem solving strategy.
-Identify the problem and analyze the information to be contained in the knowledge base.
-Design the KBES. In this step it is helpful to describe the KBES or paper and to make a flow diagram of the possible lines of reasoning.
-Develop the KBES prototype using the tool. This is best accomplished by developing a small version first to be sure it works and then gradually adding to it.
-Expand, test and revise the KBES prototype until it performs the required task.
-Maintain and update the KBES as needed.
The most significant of these steps is the first one. This is because the tool selected will play a major role in the development of the KBES (specific tools are designed to solve particular problems). The steps listed above are only a suggested method of developing a KBES. This technology lends itself to a wide variety of problems and an alternative method may be better suited to others.

2.5 EXISTING KNOWLEDGE BASED EXPERT SYSTEMS

This section contains a brief discussion of the more common early systems. These discussions only consider the development of these systems and some of the key characteristics of the systems. It does not describe the system components, knowledge representation scheme or the inference mechanism. An excellent outline of this information is presented in (10). The KBES to be discussed include: DENDRAL, MYCIN, MACSYMA, PROSPECTOR and PUFF.

DENDRAL was the first KBES to be developed and its developers are credited with the discovery of knowledge engineering. This system was developed at Stanford University in the late 1960^{\prime} s. DENDRAL was designed to assist experts in the field of organic chemistry in the task of identification of chemical compounds. This system was constructed using the LISP programming language. DENDRAL is currently maintained at Stanford University and has become a standard tool for chemists to determine probable molecular structures.

MYCIN is a KBES designed to diagnose certain bacterial infections and prescribe therapy. This system was developed at Stanford University in the mid 1970^{\prime} s. MYCIN is attributed as the first large KBES to perform at the level of a human expert. Various evaluations of this system suggested that MYCIN is as good as or better than most human experts in this field (9). This system also led to the development of the first expert system building tool (EMYCIN). Some of the features of MYCIN are its ability to provide the user with an explanation of its reasoning, the ability to work with unknown or uncertain information and the ability
to easily add rules or modify reasoning. MYCIN was constructed using the LISP programming language and uses a backward-chaining control strategy. This system is maintained at a major medica1 center and is continually updated with state of the art medical information.

MACSYMA is a KBES used to assist in solving complex mathematical problems. This system was originally developed at MIT in the late 1960's and has been under continual development to date. MACSYMA is considered to be the most powerful program in solving complex algebraic problems with computers. It also provides closed form solutions for complex differentiation and integration problems found in calculus. This system was con-. structed using the LISP programming language and is currently being rewritten by its developers for use on personal computers. PROSPECTOR is a KBES that was developed at Stanford Research Institute in the late 1970^{\prime} s, to aid geologists in finding the site locations of possible ore deposits (10). Like MYCIN this system was programmed in LISP and uses a backward-chaining control strategy (many consider it to be a descendant of MYCIN). However, this system differs from MYCIN in many ways, one of which is the ability of the user to volunteer information (usually at the beginning of the session). PROSPECTOR is recognized as the first KBES to achieve a major commercial success. It provided information to geologists that led to the discovery of a previously unknown large ore deposit. PUFF is an instrument driven KBES that diagnoses the type and severity of respiratory disorders. It was developed at Stanford

University in the late 1970's using the EMYCIN building tool. The primary purpose of developing this KBES was to test the practicability of using expert system building tools and inparticular EMYCIN. The success of PUFF and this method of constructing KBES is demonstrated by the daily use of this system in several hospitals.

2.6 APPLICATIONS WITHIN CIVIL ENGINEERING

This section presents the areas of application of KBES technology within the field of Civil Engineering. Presently, several KBES are constructed to address problems in this area. However, most of these systems are confined to research projects and are not very well documented. Table 2-1 contains a list of the related KBES found during this project (10). The following is a list of some KBES designed for micro computers that are currently under development or just being completed (15):

PUMP PRO-diagnosing sewage and power plant pump problems CHINA-designing highway noise barriers

HOWSAFE and SAFEQUAL-safety self diagnosis for contractors DURCON-designing concrete mixes and concrete structures (PROJECT DATA)- managing worldwide construction projects Though these lists are not complete, they do exhibit that KBES are capable of solving complicated problems across the entire spectrum of Civil Engineering. Areas of possible application in the future may include: the evaluation of existing structures for alternate use, tutoring system for design and analysis courses and systems designed to assist in the modeling of complex engineering problems.

KBES	PROBLEM ADDRESSED	DEVELOPER/YEAR	TOOLS

Table 2-1 KNOWLEDGE BASED EXPERT SYSTEMS WITH APPLICATIONS IN CIVIL ENGINEERING

KBES	PROBLEM ADDRESSED	DEVELOPER/YEAR	TOOLS	RESULTS
DESIGNER	Aids in the pre -			
	by Mac Callon ships.	(produced under progress)	-	

Table 2-1 (cont.) KNOWLEDGE BASED EXPERT SYSTEMS WITH APPLICATIONS IN CIVIL ENGINEERING

CHAPTER III

BUILDING TOOLS

This chapter provides a brief discussion of various KBES building tools. The two types of tools to be considered are general purpose programming languages and expert system building tool (also referred to as expert system shells). General purpose programming languages refer to tools such as LISP, PROLOG and PASCAL. These languages are generally used by experienced programmers and can be applied to a wide variety of problems. Expert system building tools on the other hand refer to tools developed using these languages and can be applied to problems within a specific problem domain (i.e., diagnoses, consultation, etc). The latter method of development is usually the faster of the two methods. In this report the expert system building tools discussed shall be confined mostly to those used on micro computers.

3.1 GENERAL PURPOSE PROGRAMMING LANGUAGES

Many programming languages are used for AI programs, among them are: LISP, PROLOG, PASCAL, C, BASIC, FORTRAN and OPS-5. Because the two most suited and most common languages for AI programming are LISP and PROLOG, only these will be discussed. LISP stands for LISt Processing language. This language was created by John McCarthy in the late 1950's, and is based on Lamda Calculus. spite of few vendors promoting it and the lack of software support, this language has remained very popular. LISP has two data structures, atoms and lists (13). An atom is an
element that cannot be divided any further and is either a number or a name. A list is made up of atoms or other lists. The following is a sample of some atoms and a list:
atoms:
5
John
dog
add
sum
list:
(this list contains five atoms)
Some of the attributes of this language include no essential difference between the data and the programs, one LISP program can be used as another LISP program's data. The data and programs are both represented as list, and lists can be nested one within another (9). Some of the criticisms of LISP are its lack of standardization (there is currently a variety of incompatible dialects of LISP available), its inefficiency (LISP programs require high amounts of CPU time and consume a great deal of memory), and its availability (each different dialect is available on only a small number of machines).

PROLOG, which stands for PROgramming language for LOGic, was developed in 1972 by A. Colmerauer and P. Roussel (9). This language is closest to a true logical computer programming language because of the implementation of a simplified version of predicate calculus in it. PROLOG, like LISP is designed for symbolic computation rather than numerical calculations. This language contains features that make it easy to write programs that manipulate logical expressions. In a sense these
programs are controlled logical deductions. To program in PROLOG the following steps are carried out: specify facts about the objects and relationships, and ask questions about the objects and relationships. An example of this is
facts: grandfather (George, Terry)
grandfather (George, Mike)
grandfather (George, Tim)
then ask:
?-grandfather (George, Tim)
PROLOG would reply:
yes
The significant advantage of PROLOG is its availability for both main frame and personal computers and a built in inference mechanism based upon the resolution theorem by Kowakski (14).

3.2 EXPERT SYSTEM BUILDING TOOLS (SHELLS)

An expert system building tool or expert system shell (the former referring to mainframe computer tools and the latter referring to micro computer tools), can be thought of as the framework for building a knowledge base and control structure. These tools include an inference mechanism capable of interconnecting facts supplied by the expert or user of the tool in the form of rules for a specific problem. This frees the expert or user of the tool from the task of programming the knowledge representation and the inference mechanism. This in turn allows more time to be spent on the knowledge acquisition necessary to solve the problem at hand. This is a very attractive feature in the sense that it facilitates a quicker development of KBES by a non-computer specialist.

EMYCIN was the first expert system building tool to be developed. This tool was developed at Stanford University in the mid $1970^{\prime} \mathrm{s}$. It is a domain-independent version of MYCIN and was created by removing the knowledge from MYCIN. Other tools that have been developed in a similar manner are: KAS developed from PROSPECTOR, EXPERT developed from CASNET and AGE developed from HEARSAY II.

The early tools were developed primarily for use on mainframe computers, but in recent years research has expanded their range to personal computers. As mentioned earlier these tools are usually referred to as expert system shells. For a summary of the common shells available for personal computers refer to Table 3-1 (9). Expert system shells used on personal computers are normally confined to about 400 rules. Disadvantages of these tools include: poor portability (that is, tools developed by suppliers usually only run on their machines), and each tool is especially designed to perform a particular type of problem solving (it is a waste of time to try to develop a KBES using an unsuitable toel). Also, expert system building tools have a smaller range of applications than the general purpose programming languages. However these tools are designed to facilitate the rapid development of KBES within a specific class of problems (i.e.,diagnosing, identification, forecasting, selecting, etc).

EXPERT SYSTEM SHELLS	IMPLEMENTATION	$\begin{gathered} \text { USER } \\ \text { INTEREACE } \end{gathered}$	APPLICATIONS	SUPPORT
EXPERT/EASE	IBM PC (128k) DEC Rainbow Victor 9000	Prompted Menu Screen	Small Knowledge Systems	Manual
INSIGHT	PASCAL IBM PC (128k) DEC Rainbow Victor 9000	Prompted Menu Screen (how, why, explain) Knowledge Base created w/word processing software, the compiled	Small Knowledge Systems	Manual
M1	PROLOG IBM PC (192k)	Explanation (how \& why) Trace (and panels) Knowledge Base created w/word processing software	Demonstration Systems	4-day course, Manual, Library of simple systems phone-in-user support
ADVISE Language /X	PASCAL APPLE II	Line oriented Knowledge Base created w/regular word processor software	Used by DEC to develop a small classroom assignment program	---
ES/P	PROLOG IBM PC (128k)	Explanation (how, why, expain) Prompted-menu Screen Knowledge Base created w/word processor the compiled	Small Knowledge System	Manual
EXSYS	IBM PC (256k) or compatible	Explanation (how, why, explain)	Small Know1edge System	Manual (Company Printout)
EXPERT EDGE	IBM PC (256k) or compatible	Prompted Menu Screen Knowledge Base created w/word processing software then compiled	Small Know1edge Systems	Manual phone-in-user support

Table 3-1 (cont.) A PARTIAL LIST OF KNOWLEDGE BASED EXPERT SYSTEM SHELLS

$\begin{aligned} & \text { EXPERT } \\ & \text { SYSTEM } \\ & \text { SHELLS } \end{aligned}$	DISTRIBUTOR (Manufactors)	$\begin{aligned} & \text { INTRODUCED } \\ & \text { (COST) } \end{aligned}$	CONSULTATION PARADIGN	FEATURES
EXPERT/EASE	Expert software Int.	$\begin{gathered} 1983 \\ (\$ 2,000) \end{gathered}$	Example driven	Example (one rule) Decision tree algorithm
INSIGHT	Level 5 Research	$\begin{aligned} & 1984 \\ & (\$ 95) \end{aligned}$	Diagnosis/ Prescription	```If-Then rules (+/- 400) Forward & Backward chaining certainty factors```
M1	Teknowledge Inc.	1984 $(\$ 12,500)$ includes a11 material (entry cost $\$ 2,000$)	Diagnosis/ Prescription	If-Then rules (+/- 200) variable rules certainty factors, Backwards chaining depth first modus ponens
ADVISE LANGUAGE /X	J. Reiter, S. Barth, and A. Paterson	---	Diagnosis/ Prescription	If-Then rules Forward chaining Bayesian probability propagation
ES/P ADVISOR	Expert System International	$\begin{gathered} 1984 \\ (\$ 1,895) \end{gathered}$	Automated text (diagnosis/ prescription	If-Then rules Backward chaining depth first resolution
EXSYS	Exsys Inc.	(\$295)	Diagnosis Indentification	If-Then rules Forward \& Backward chaining probability certainty factors
EXPERT EDGE	Human Edge Software Corporation	$\begin{gathered} 1984 \\ (\$ 495) \end{gathered}$	Diagnosis/ Prescription	If-Then rules Backward chaining probability and certainty factors

Table 3-1 A PARTIAL LIST OF AVAILABLE KNOVLEDGE BASED EXPERT SYSTEM SHELLS

CHAPTER IV

OVERVIEW OF EXPERT EDGE

Expert edge (also known as TESS),is an expert system building tool designed to assist in the development of consulting or diagnostic types of KBES (11). It is distributed by the Human Edge Software Corporation in the United States and by the Helix Expert System Ltd. in the United Kingdom. Expert Edge is written in the C programming language and runs on the IBM Personal Computer, PC XT or PC AT. It requires a dual drive system and 256 K bytes of RAM, however, 512 K is recommended to take full advantage of Expert Edge. The program is supplemented with a very useful manual and a customer support phone service. The Expert Edge program includes three disks, the Expert Edge Runtime Version Disk. Expert Edge offers several features that make the construction and understanding of a KBES much easier. A list of some of the key features includes:
-Rule based representation of knowledge
-Rules are easily entered (Expert Edge prompts the user to enter rules step by step).
-Interfaces with other IBM software (DIF, SYLK, WKS and MEM formats are supported for data entry)
-KBES rules can include equations and comparators (i.e., is less than)
-Passwords can be installed to protect the resulting KBES
-Automatic question generation facility (if not supplied by the knowledge engineer)
-KBES can be automatically demonstrated
-Runtime version of Expert Edge is available for the builder to distribute the KBES
-Special user language (knowledge base may be altered or created using a word processor)
-Knowledge bases can be automatically checked for redundant and conflicting rules
-Lines of reasoning can be traced during an advisor session for easy debugging of the knowledge base
-Bayesian statistics are used to handle probabilities
-Certainty factors or crisp reasoning is available
-Format control (screens, windows, color, probability, data format, and numeric punctuation can be altered easily)

This chapter reviews some of these features in more depth, that is, the ones that are used frequently in constructing the prototype.

4.1 SYSTEM ENVIRONMENT

The user interface is based on the monitor divided into six windows. These windows simultaneously display several pieces of information. This information includes conclusions reached, user progress, questions, answer, main menu, system status data and error messages. A seventh window (displays HELP messages), is only viewed when the user presses the $F 4$ key (on the computer keyboard). The help message can be the information entered by the knowledge engineer or default text. This text is designed to provide instant help to explain any question asked by the system.

The main menu mentioned above contains four commands. These commands and their subsequent subcommands are shown in Figure 4-1 (11). The Advise command runs any KBES that is currently loaded. Learn enters the user into a mode where a system can be constructed, amended, or reviewed. The Change commands allows the user to alter various parameters of the KBES. These include the system parameters (i.e., probability control), windows (i.e., background color), and messages (i.e., restore default messages). The Disk command is used to perform actions such as reading a stored $K B E S$, writing the current $K B E S$ and reviewing the directory. Moving down in Figure $4-1$ is accomplished by positioning the cursor on the first letter (typing the first letter) of the appropriate choice and pressing the enter key. To move up in Figure 4-1 hit the ESC key. This menu provides an easy method of maneuvering the particular comand required, however, it becomes tedious and time consuming.

Though not utilized by this author to its full extent, Expert Edge offers a special user language to build or modify the knowledge base with a word processor. This method of constructing a KBES is reported to be faster than the use of the menu technique and presents the structure of the knowledge base in a much more concise and clearer fashion (12).

4.2 RULES

Knowledge bases created using Expert Edge consist of names, rules and evidence. Names can have values that are non-numeric, numeric, constant, variable and the result of an equation. Rules are used by the resulting KBES to arrive at conclusions. These rules consist of a conclusion and optional evidence (that leads to the conclusion). Conclusions are broken into two or more parts corresponding to a subject, verb, and

Figure 4-1 EXPERT EDGE MENU STRUCTURE (11)
optional objects. The evidence is displayed after IF/AND prompts and is broken down in the same manner as the conclusions. An example of a rule that could be used to select a sissor truss is:

```
sissor truss:selected IF class:is:residential
```

AND use:is:church
AND a high ceiling:is:desired

Rule may also be supplemented with help text, questions and answer, these will be explained in more depth in a later section.

Rules are connected (or linked), to other rules in two ways. One method is by matching parts of the rules. In this method a rule can be used to prove the evidence of another rule. An example of rules that are connected in this manner could be:

$$
\begin{array}{ll}
\text { residential:recommended } & \text { IF span:is less than:50 } \\
& \text { AND use:is:family housing } \\
& \text { AND type:is:advised }
\end{array}
$$

(is linked to)
single fink:advised IF span:is less than:30

Notice that the verb (advise), in the evidence of the first rule and conclusion of the second rule is identical. This is required to link the two rules.

The other method of linking rules is through the use of a name tree. This method consists of grouping specific names under general names. Figure $4-2$ shows how a name tree could be used in developing this prototype:

FIGURE 4-2 SAMPLE NAME TREE FOR TRUSS INFORMATION

Expert Edge offers the feature of specifying three types of rules. These include inquiry rules, answer rules and menu rules. An inquiry rule provides the starting point of the KBES. At least one rule of this type is required in a KBES, and only the top rule of the KBES should be an inquiry rule. The question text of this rule will be displayed at the beginning of the session in a menu form and is selected to start the session. Answer rules are used to display conclusions as they are proved by the KBES. At least one rule of this type is also required in all systems. A menu rule displays its evidence as a list of options. The program only attempts to prove rules that follow from the option selected. This type of rule is particularly useful in branching the knowledge base into separate lines of reasoning.

An example of how part of the name tree shown earlier could be represented using a menu rule is:

configuration:suggested	IF triangular:selected
	ANSWER triangular
	AND bowstring:selected
	ANSWER bowstring
	AND parallel chord:selected
QUESTION What type of truss do you wish to use?	

Rules within the KBES may be any combination of the above types, but if the rule is used only to provide intermediate conclusions then no type need be specified.

Evidence is an optional statement that is used to prove the conclusion of a rule. The evidence is displayed after an IF/AND prompt, and should be broken into two or more parts corresponding to a subject, verb and optional objects. Expert Edge offers many features for the development of evidence. The most useful of these are comparators, numeric name values and identities. An example of evidence containing comparators was shown in the rule linking example (span:is less than:50). The comparators available include:"is less than", "is greater than", "is equal to", "is less than or equal to" and "is greater than or equal to". There are three types of numeric names available. These are constants (value is held permanently in the knowledge base), variables (KBES asks for the value directly), and equations (values calculated from other variables and/or constants). An identity of a name is another name with an identical value or meaning.

4.3 TEXT INFORMATION

Expert Edge offers the knowledge engineer a variety of methods to supplement the KBES with useful messages. These include help, questions and answers. Help text can be entered for conclusions and evidence, and is used to provide the user with additional information about the current rule. This information usually takes the form of definitions of terms. Questions are used by the system to obtain information from the user during the session. Answer text should be entered for the conclusion of a rule, when the rule has been identified as an answer type rule. Answer text is also used to form the list of options for a menu ru1e. Text information can be entered by the knowledge engineer or default text supplied by Expert Edge.

4.4 OTHER SYSTEM FEATURES

Expert Edge contains an explanation facility referred to as the WHY function. This function permits the user to trace backward through the chain of reasoning. When prompted this function displays the conclusion and evidence used to reach the conclusion.

The user of a KBES created with Expert Edge can enter footnote like messages to justify answers. To enter messages such as this the user must enter the BUT function. When the message is completed the user may continue to answer questions.

Expert Edge can also handle probabilities (or certainty factors) when answering questions. This is performed by moving the cursor along a horizontal scale to the appropriate value and hitting the enter key. The values of 100 (yes), 50 (maybe) and 0 (no) may be entered directly. A.
known value may be entered by using the value heading. An example of how 87 can be entered this way is:
press v
then enter 8 and 7

If the user wishes to ignore a question, Expert Edge accommodates this with a don't know answer. Crisp reasoning is also available to the knowledge engineer. This is useful if the answer to the questions will be only in terms of 100/0 (true or false).

TELL is a function that allows the user or knowledge engineer to alter answers, enter known answers in advance, perform a what if examination and ignore remaining questions. This function is particularly useful in checking and debugging prototypes. The process of wading through questions to check a solution path can be avoided using TELL and entering known data. To check other possible solution paths, enter TELL and alter existing answers. This is considerably faster than restarting the system. The TELL function is a valuable asset to this tool and should not be overlooked by the knowledge engineer or the user of a KBES.
4.5 SUMMARY

Expert Edge is an excellent KBES building tool, especially for problems of the following types: categorizing, consulting, diagnosing and forecasting. This system offers many programming aids to assist the knowledge engineer and the user. Among them are the ability to easily alter the screen format, the ability to handle probability of solutions, the ability to perform mathematical calculations and the ability to add several
types of helpful texts.
One drawback that was found with this system was its inability to handle higher mathematical calculations such as square roots and trigonometrical functions. However, this can be overcome by developing a library of special mathematical functions and incorporating them into an empty advisor. Expert Edge is accompanied by a user manual that leads the user through several demonstrations to explain the features of the tool. The manual also includes discussions of these features and several examples are presented to demonstrate the use of these features. In addition to this, Expert Edge offers a customer phone service support, but it was not found to be of much help.

CHAPTER V

PROTOTYPE DEVELOPMENT

The prototype developed in this report addresses the area of wood truss design. The design process of wood trusses involves three major steps (16). First is the gathering of information such as the span, pitch, spacing, material, etc. Following this is the selection of feasible geometrical configurations. This is followed by analysis of the truss (determining all member axial forces). For the development of this prototype it is assumed that information concerning the first step is available. Further research in KBES technology could lead to the linking of a prototype such as the one in this report to an analysis program. This would assist in the third step of the design. The second step is where the prototype becomes useful, the recommendation of a suitab1e geometrical truss configuration. In the following sections the scope of the prototype, the decision tree, the development of some of the rules contained within the KBES and some sample problems are presented.

5.1 SCOPE

This prototype was developed to assist in recommending feasible wood truss geometries. For simplicity, this prototype was confined to:
-allowable stress increase of 15%
-truss spacing of 24 inches on centers
-design loads of 30 psf on the top chord and 10 psf on the bottom chord
-pitches of 3 to 12 and 4 to 12
-lumber species of No. 1 Southern Pine KD, Dense No. 1 Southern Pine KD and Dense No. 2 Southern Pine KD
-top and bottom chord must be of the same species
-top and bottom chord lumber sizes of 2×4 or 2×6
-spans between 10 and about 50 feet (depending on the type of lateral support)
-seven truss geometries refer to Figure 5-1
This figure does not contain all available trusses but does contain the most commonly used. Other factors being equal, economy is the prime consideration and therefore the truss geometry with fewer members or fewer members in compression is recommended (compression members often require more bracing).

5.2 RULE DEVELOPMENT

The rules used in the prototype were developed by organizing the available information into a hierarchial form, then creating rules to maneuver through the branches of the decision tree. The best way to explain the rules in the prototype is to follow one of the lines of reasoning. Figure 5-2 shows the rules required to recommend a Fink type truss. The first rule the user encounters is an inquiry rule. This rule is used to start the KBES and to select the preferred design loads (for now 30 psf top chord and 10 psf bottom chord). It is linked to rule "pi", which is used to determine the desired pitch (3 to 12 or 4 to 12). This rule is a menu type rule (recall from Chapter III that if the 3 to 12 pitch is selected, all knowledge concerning 4 to 12 pitch will be ignored). This rule is linked to the rule used to determine the species (or type) of

DOUBLE HOWE

Figure 5-1 TRUSS GEOMETRIES CONTAINED IN KNOWLEDGE BASE


```
ANSWER EVD t
USE-:ON What value of piten woule vou like?
FRE :F OON IOO
FULE
#ULETVFE M2
CONCLUSION Dit#Eh i selected
PRS NO EVD 100
ANSWEP IF thremto twelve: desired
ANSWER IN EO 12
PRE IF CON 100
FRE IFN AND four to twelve: desired
ANSWEF: AND four to
PRS IF CON 100
RULE
RULETYYE ty
RULETYPE MONGNG
QUESTION What specimem of
PRS NC EVD 100 IF No 2 SP KD ; adviged
ANSWEF: IF No 2 SP KD ; advised (
ANSWEF: #N #2 
AROND No 2 DEN SP KD ; acvised
ANSWEF: CON 100 dense southern pIne (ka)
PRE IF CON 100
ANSWER AND NO 1 SF KD ! advised
ANSWER CON :100 Southern Dint. (kd)
PRE IF CON 100
PRE IFN CON NO : DEN SP KD : advised
ANSWER AND NO I DEN SP KD ; I dense southern Ding (kd)
PRE IF CDN 100
RULEE
RULETYPE MENH,
CDNCLUSION lateral sumport i advised
PRE NO EVD 100
ANSWER continuous lateral bracing
ANSWER CON CON
PRE IFN CON O
ANSWER AND wab material : recommended
ANSWER mNO more web material
PRE IF CON 100
PRE IFN CON O
QuESTION AND reduced pannel langth i recommended edueg pannel length of the bottom ehar
PRE IF CON 100
PRE IEN EON:
RULE w13a
RULETYPE ANSWER
CONCLUSION &inkI ; rmcammended
MNE NO EVD A FOO
A FINK trusw is recommended.
F saan ; is greater than or equal to : 16
PRE IF CON 100
PRE IFN CON O
PRB IF CON 100 ( is lose than or equal to : 27
PRE IF CON 100
PRB IFN CDN O
PRE IF COND bettam enord lize i is equal to : 4
MRE IF COND bett
PRE IF COND toD chord size: is maual to ; 4
PRE IF CON 100
```

lumber desired. It is also a menu type rule. The species the user may select from are: No. 1 Southern Pine KD, Dense No. 1 Southern Pine KD, No. 2 Southern Pine KD and Dense No. 2 Southern Pine KD (For this explanation No. 2 Southern Pine KD will be followed). This rule is linked to the rule used to determine the type of lateral support preferred. The three choices are continuous lateral bracing, more web material and reduced panel length of the bottom chord. Continuous lateral bracing refers to bracing provided at the midpoints of the compression members and perpendicular to the plane of the truss. More web material refers to truss geometries that have shorter compression members. However, as the name indicates, these usually require more web material. The third choice is to reduce the panel length of the bottom chords. Table 5-1 shows the trusses that are grouped below these three categories. For this explanation the more web material branch will followed. The next rule is an answer rule. As mentioned earlier, the answer is only produced if all the evidence is true. In this case the span would have to be greater than or equal to 15 feet, less than or equal to 27 feet, bottom chord lumber of 2×4. If these conditions are met the answer is displayed (A FINK truss is recommended), in the dialogue window. It is important to note that there are several other lines of reasoning that would produce the same recommendations.
$\left.\begin{array}{cccc}\hline & \begin{array}{c}\text { CONTINUOUS } \\ \text { LATERAL } \\ \text { BRACING }\end{array} & \begin{array}{c}\text { MORE } \\ \text { WEB } \\ \text { MATERIAL }\end{array} & \begin{array}{c}\text { REDUCED } \\ \text { OF }\end{array} \\ \hline \text { KROTTOM CHORD }\end{array}\right]$

Table 5-1 TYPES OF LATERAL SUPPORT AND RESPECTIVE TRUSSES.

5.3 SAMPLE RUNS

This section contains some sample runs of the prototype. These samples are run by selecting the Advisor option from the main menu, then answering the questions the prototype presents. The first example is a consultation that recommends a Modified Queenpost geometry. The second consultation recommends a Fink geometry and also demonstrates the use of the WHY function. The third sample run recommends a Double Howe geometry. However, at first no recommendation could be obtained with the information provided. Following this, the TELL function was entered and the information was modified such that a conclusion could be reached.

5.3.1 SAMPLE 1

The dialogue of the first consultation is presented below. Figure 5-3 shows the freebody diagram used for the input data. Given this data, very little time was required for the prototype to reach the conclusion that a Modified Queenpost geometry is recommended. The text that is underlined is the questions the prototype presents to the user. The text following the dash marks are the input data. The information contained in the brackets shows the conclusion the prototype has recommended.

Spacing $=24^{\prime \prime} \mathrm{c} / \mathrm{c}$
$\mathrm{ASI}=1.15$

Try: No. 2 Southern Pine KD Iumber
2×6 top chord
2×6 bottom chord (lateral bracing preferred)

Figure 5-3 INPUT DATA FOR SAMPLE 1

```
    LOADIMG: \O DSf tep umore and ic pmf bettom =nory..
    The *acestames {evel a = =urentlv 7o
```



```
        WADINE I (TO DEf toe chord and
    10 psf bot+om mRor-).
    The aceeptance level is currently 70
    Whet value of aitch wolid vou like?-
    What gpgcies of lumber would vou like?
    Which would vou rather provide? -
    Bontinuous Iateral bracing
    What ig the length of the EOTTOM
    CHOFD in +eet?- T4.00
    EOTTOM CHORD size 2%? - 5.00
OOF CHOFD Si2E is 2,T-}5.0
-It is i00 percent =ertain that A
MODIFIED GUEENFOST truss is
recommended.
```


5.3.2 SAMPLE 2

This session demonstrates the WHY function and its use. Figure 5-4 shows the freebody diagram of the input data. With this data the prototype recommends a Fink geometry. The information following the recommendation is what appears in the dialogue window when the WHY function is activated (pressing F6 on the computer keyboard). As mentioned earlier, this function backtracks through the inference to justify its recommendations. The messages presented are default messages contained within the Expert Edge building tool.

$$
\begin{aligned}
& \text { Spacing }=24^{\prime \prime} \mathrm{c} / \mathrm{c} \\
& \mathrm{ASI}=1.15
\end{aligned}
$$

Try: No. 1 Southern Pine KD lumber
2×4 top chord
2×6 bottom chord
(more web material preferred)

Figure 5-4 INPUT DATA FOR SAMPLE 2

```
        LQADIMG 1 (BO pSf t=0 ghord End io -sf bottzm vecry).
    The arceptance l=vel is Eurmentiv 70
    - It is 100 mercmnt =ertain that A FING truss is ramemmeneg=,
    LDADING : SO Esf tow chore and
10 5sf bottom chor=)
The acceptance level is curmently 70
- It is 100 percent =ertain that A
EINt truss is recommended.
    LDADING 1 (20 DSf top cmomd and
1G 2sf bottom chord).
The acceptance level is currently 70
What value of pitah would vou like?
ztg 12
What species of lumber would you litge?
    - #1 southern pine (kd)
WhiEn would vou rather provide? -
more wet material
What is the length of the EOTTOM
CHCFD in feet?- 26.00
ECTTOM SHDRD size 2%? - 6.00
TGF GHOFD size is 2x?- 4.00
- It is igo per=ent =artain that A
rIN+ trus\equivis recommended.
    LDADINE 1 {OO psf top chore and 10 osf bottom Ghord).
The acreptance level is currently 70
- It is loऐ pereent certain that A FINk truss is recommences.
I founc that
. A FINE t-uss is rerommended. (100 %)
    sv check:ng whether
        * Spar is greater than or equal to 17. (100%
        *San is less than J0 . {100 %)
        -bottom chord size i= Equal to e (100%)
        tof chord size is eaual to 4. (100%)
I tound that
.1ateral support. advised. (100%)
    by checking whether
        -more web material(100%)
I found that
.tvee Gesired. {100 %)
    bv checking whether
                                    .#1 southern pine (ke) (100 %
Z foung trat
-pitar selertac. (100%)
    by Eherting whether
        . . #0 12(100%)
```

The message shown above the dashed line is presented when the F6 (WHY) key is pressed. This message is the conc1usion and evidence of the answer rule the session proved. The next message is obtained by pressing the F6 key again. This is the rule that preceded the answer rule. The next two messages are obtained in the same manner and represents other rules used to prove the conclusion.

5.3.3 SAMPLE 3

This session recommends a truss geometry for the information shown in Figure 5-5. Based on that information the prototype at first could not make a recommendation (no conclusion could be reached). To obtain a recommendation the TELL function was entered and then the "modify an answer", branch (boxed text in printout). The top chord lumber was then changed from 2×4 to 2×6. After this change was completed and the Advise Mode was entered the prototype recommended a Double Howe geometry. Other changes may have been tried such as the species of lumber or the type of lateral support.

```
Spacing = 24" c/c
ASI =1.15
```


Try: No. 1 Dense Southern Pine KD lumber
2×4 top chord
2×6 bottom chord
(reduced panel length of the bottom chord preferred)

Figure 5-5 INPUT DATA FOR SAMPLE 3.


```
    \cdots"
```



```
        \because - - - - - 
```



```
#-%"
```


CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 SUMMARY

The main objectives of this report were to review the current technology of KBES and their applications in the domain of Civil Engineering. An additional objective was to review and test the applicability of the expert system building tool Expert Edge in developing a prototype KBES using a micro computer. The prototype developed in this report can recommend the geometry for a wooden truss. The word geometry here refers to the configuration of the web material. It took approximately four weeks to develop this prototype. This was accomplished through a sequence of adding more rules at different levels in the decision tree of the preliminary KBES. This process of development gradually increased the complexity of the prototype and made it more versatile. The end product is a prototype that contains approximately three hundred rules and in its present stage can assist in the preliminary selection of a wooden truss type.
-allowable stress increase of 15%
-truss spacing of 24 inches or centers
-design loads of 30 psf on the top chord and 10 psf on the bottom chord
-pitches of 3 to 12 and 4 to 12
-lumber species of No. 1 Southern Pine KD, Dense No. 1 Southern Pine KD, No. 2 Southern Pine KD and Dense No. 2 Southern Pine KD
> -top and bottom chord must be of the same species
> -top and bottom chord lumber sizes of 2×4 or 2×6
> -scans between 10 and about 50 feet (depending on the type of lateral support)
> -seven truss geometries (see Figure 5-1)

These limitations were based on information provided by Inter-Lock Steel Company and (17). However, if needed any of these areas could be expanded easily and with little time involved.

Further work on this prototype should include a default that would produce a recommended lateral support type and possibly the species and size of the top and bottom chord lumber. This improvement could be accomplished by the use of certainty factors.

6.2 CONCLUSION

KBES have a place in the domain of Civil Engineering, especially in the area of structural design. One such problem involves selecting a suitable geometry of a truss prior to analysis. The building tool used for the development of this prototype was Expert Edge. This building tool is very useful, but like most of the KBES building tools for micro computers on the market today it seemed to be oriented towards business applications rather than engineering. There are building tools available that are oriented towards engineering applications, two such tools are INSIGHT II (an updated version of INSIGHT I) and EXSYS (13). However, because a building tool such as this was used in the development, a suitable prototype was constructed without any significant programming and was completed in a relatively short period of time. This conclusion in itself shows that micro computer applications of KBES technology
offer an inexpensive alternative for small consulting systems.

APPENDIX A

PROGRAMMING CONSIDERATIONS

A-1 RULES
Rules used in the Expert Edge building tool are statements that consist of a conclusion and optional evidence that is used to prove the the conclusion (11). The following is an example of a rule contained within the prototype.

A rule such as this is entered using the "Learn" command from the main menu. The following steps are required to add a rule such as this one to the knowledge base.

1. Select the "Learn" command from the main menu.
2. Select the "add a rule" option from the nest menu (navigate, add a rule, delete a rule, rationalize knowledge).
3. Enter the conclusion (the program prompts for the subject to
be entered first). For this example the conclusion is Belgian (type Belgian and press the return key).
4. Next enter the verb (Expert Edge also prompts for this). The verb used in this rule is recommended.
5. Following this Expert Edge prompts for the first objective to be entered. The conclusion of this rule does not have an objective, therefore just press the return key.
6. The program now prompts the user to enter the evidence if there is any. The example rule contains four pieces of evidence. These are entered one at a time in a manner similar to entering the conclusion (steps 3, 4 and 5). The following entries provide the evidence for this rule:
-span
-is greater than
-27
-span
-is less than
-32
-bottom chord size
-is equal to
-4
-top chord size
-is equal to
-4
7. The program continues to prompt the user for evidence until the return key is pressed twice. When this is done the program displays the message $\% * \%$ END OF RULE* $\% * \%$ in the output window.
8. Probabilities associated with the conclusion and evidence would be entered following this. However, the prototype was developed using the crisp reasoning feature and truss. These steps were omitted.
9. Expert Edge now displays a menu for editing or entering associated text for the evidence (questions, answers and help). To enter this text select the option desired and press the return key. The program then prompts for the text to be entered. To leave this menu press the ESC key. Since no text is associated with any of the evidence in this example the ESC key was hit four times.
10. The program now asks the user for the name of the rule. The name of the example rule is bl3a.
11. Expert Edge then displays a menu of rule types. To enter the type select the appropriate type from the menu and press the return key. To escape from this menu press the ESC key. The rule in the example was an answer type rule.
12. The last information the program seeks from the user is the text associated with the conclusion. This is entered similar to text for the evidence (step 9). In this example the text "A BELGIAN truss is recommended" is the answer to be displayed if the rule is proved to be true.

Following this step press F1 to return to the main menu or ESC to return to the Learn menu.

A-2 DECISION TREE

The decision tree is a method of organizing names, so that specific names are grouped under general names. Figure A-1 shows the decision tree used to develop the prototype. This figure shows the paths an inference may follow to produce a conclusion. The formation of this tree is based on information provided by the Inter Lock Steel Company and (17). The placement of the nodes (or names), is accomplished using the "Learn" command from the main menu. The following is an example of the commands to enter and place the name "pitch".

Commands Form Main Menu To Enter A Name

```
-Learn (menu selection)
-Navigate (menu selection)
```

```
-Specify The Rule or Name Directly (menu selection)
-Pitch (typed input)
-Look More Closely (menu selection)
-Position In The Tree (menu selection)
-Sideways (menu selection)
-Noun (menu selection)
-Downward (menu selection)
-Loading 1 (menu selection)
-**ADD** (menu selection)
```

This example assumes that the name "pitch" has not been placed previously in the tree.

Figure A-1 DECISION TREE USED TO DEVELOP THE PROTOTYPE

APPENDIX B

USER LANGUAGE FILE LISTING

NAME: SUFEFGET	double nowe? reduced pannel Lengthe
HAME:	43
SUFEFSET	constant
HAME SUFEFSET	kingposto4
WAME	lateral bracing 3 a
SUFERSET	lateral suppor734
HAME	53
SUFERSET	constant
VALIJE	53.00
NAME	24
SUFEFSET	constant
VAL.UE:	24.00
WAME	lateral support44
SUFEFSET	No 1. DE゙N SFMK゙DA
WAME	kingposto4b
SUFEFSET	reduced panel length24
WAME SUFERGET	three to twelve pitch
NAME	dateral bracing44
SUFERSET	lateral support:44
NAME	34
SUFERSET	constant
VALUE	34.00
NAME	kimgpost.44
SUFEFSET	web Material44
NAME	3
SUFERSET	constant
VALUE	3.00
NAME	kingpost w diag
SUFERSET	lateral bracing 2
WAME	kjogpost w diagd
SUFEFSET	lateral bracing
HAME	kingpost w diag4
SUFERSET	lateral bracinga
NAME	kjingpost w diag3
SUFEFSET	lateral bracing
WAME	4.4
SUFERSET	constant
VALUE	44.00
VAME	4
SUFEFSET	constant
VAL.UE	4.00
NAME	web material24
SUF'EF'SET	lateral support24
NAME	mod queenposta
SUFERSET	Lateral bracing2
NAME SUFEFSET	mod queenpostl lateral bracing

NAME SUFEFSET MTHIMIM MAXIMUM QUFGTTON	bottom chord sixe constamt: 4.00 600 FOTTOM CHOFD sj\%e
$\begin{aligned} & \text { HAME } \\ & \text { SUFEFEST } \\ & \text { VALUE } \end{aligned}$	$\begin{aligned} & 36 \\ & 60 n s t a n t \\ & 36.00 \end{aligned}$
$\begin{aligned} & \text { WAME } \\ & \text { SUFERSET } \\ & \text { VALUE } \end{aligned}$	46 constant 46. 00
NAME SUFERSET VALI.UE	$\begin{aligned} & 17 \\ & \operatorname{constant} \\ & 17.00 \end{aligned}$
$\begin{aligned} & \text { NAME } \\ & \text { SUFERSET } \\ & \text { VALUE } \end{aligned}$	$\begin{aligned} & 56 \\ & 50 n s t a n t: \\ & 56.00 \end{aligned}$
$\begin{aligned} & \text { HAME } \\ & \text { SUFEFGET } \end{aligned}$	$\begin{aligned} & 27 \\ & 80 n=t a n t \\ & 27.00 \end{aligned}$
NAME SUFERSET	belgiand web material
NAME SUFEFSET	belgian? web mater iala
NAME SUFERSET	belgiamz web material3
NAME SUFERSET	web lumber lateral support
$\begin{aligned} & \text { NAME } \\ & \text { SUFERGET } \end{aligned}$	$\begin{aligned} & 37 \\ & \frac{c}{3} \sin t a n t \end{aligned}$
NAME SUFEFGET	$\begin{aligned} & \text { betgiand } \\ & \text { web Mater i.al. } 4 \end{aligned}$
HAME SUFEFGET	NO 1 DEN SF K゙DA spec:
NAME SUFEFEET	HO 1 DEN SF K゙D type
NAME GUFEFSET	web Material 44 Lateral support44
NAME SUFERSET	No 2 DEN SF KKD 4 spec
HAME: SUFERSET	Ho 2 DEN SF KD
$\begin{aligned} & \text { WAME } \\ & \text { SLFERESTET } \\ & \text { VAL..IE } \end{aligned}$	$\begin{aligned} & 18 \\ & \text { constant } \\ & 18.00 \end{aligned}$
HAME SUFEFSET	web material 1ateray support
NAME SUFERSET	spec: four to twelve

```
    HAME
    SUFEFRSET
    NAME 57
    SUFERSET
    VALIJE
    NAME
    SUFEFRSET
    MAME
    SUFEFSET
    VALUNE
    NAME
    SUFEERSET
    NAME
    SUFERSET
    VAL.UE:
    NAME
    SUFEFSET
    NAME
    SUFEFFSET
    NAME
    SUFEFSET
    NAME
SUFEFSET
MAME:
SUFEFSET
NAME
NAMF
    HAME
SUFEFSET
MIHTMUM
MAXJMLM
QUESTION
MAME
SUFEFSSET
NAME
NAME
NAME
SUFEFGGET
VAL..UE
NAME
SUFERSET
NAME
SUFERGET
VALUE
MAME
GUFEFGET
VAl.UE
constant
NAME
SUFERSET
    web material?
constant:
    #7.00
web materiagz
web materiag3
28
constant
    Comsta
    kingpost1
    web materimal
    40
    constamt
    40.00
    kingpost?
    web materyi.all
Laterad bracing2
lateral supporto?
lateral bracing
Iateral Eupporf
ueb material4
loteral support4
kingpostz
web Materjal.3
1ateral bracing4
top chord length
comstant
10.00
What is the lemgth of the TOF CHOFD in f
kingpost4
web materrial.4
laterad bracingz
30
GUFEFGET Constant
lateraj bracing1A
lateraj bracingdA
38
Comstant
5 0
    lateral supports
    HAME
lateraj. Support:4
80:00
later al supporta
30.00
38.00
50.00
NO 1 GF'K゙DA
spec
```


$\begin{aligned} & \text { MAME } \\ & \text { SUFEFSET } \end{aligned}$	kingpost24a laterad bracing24
MAME SUFEFSET	kjingpost14 web materialla
$\begin{aligned} & \text { WAME } \\ & \text { SUFERSET } \\ & \text { VALUE } \end{aligned}$	$\begin{aligned} & 32 \\ & 50 n 5 t a n t \\ & 32.00 \end{aligned}$
NAME SUFERSET	```reduced pammel length2 lateral support?```
NAME SUFEFSET	$\begin{aligned} & \text { laterad support14 } \\ & \text { ho } 2 \mathrm{Ba} 4 \end{aligned}$
HAMI： SUFERSET	$\begin{aligned} & \text { daterad support } \\ & \text { No } \end{aligned}$
NAMI： GUFERSET	laterad supporta NO 2 DEM SF K゙D
MAME SUFEFSET	1ateral supporta No 1．SF N゙D
NAME SUFEFSET	k ingpostib redúced pammel lemgth
NAMI： SUFEFSET	kingpostia lateral bracing
HAME： SUFEFSET	$\begin{aligned} & \text { kimgogstáa } \\ & \text { laterat bracinga } \end{aligned}$
HAME： SUFEFSET	lateral support4 No 1 DEM SF ドD
HAME： SUFERGET	```kingpost2b reduced pammel I.ength2```
NAME SUFEFSET	$\begin{aligned} & \text { kingpost } 3 a \\ & \text { Jateraj bracing3 } \end{aligned}$
NAME SUFEFSET VALUE	$\begin{aligned} & 42 \\ & c o n s t a n t \\ & 42.00 \end{aligned}$
NAME SUFERSET	```kjngpost3b reduced panmel lengthz```
NAME SUFEFGET	kingpost4a lateral bracing 4
NAME SUFERSET	kj．ngpost4b reduced pannel length4
MAME： SUFEFSET	ki．ngpost34 web Material 34
NAME SUF＇ERSET	nowel reduced panmed length
NAME SUFERSET VAl．．．UE	$\begin{aligned} & 23 \\ & 23.00 \end{aligned}$
NAME SUFEFSET	kimgpost44a 1．ateral bracing44
NAME SUFERSET	reduced panel length24 lateral support24

FUIE RUIETYFE	$\begin{aligned} & \text { brid } \\ & \text { MENU } \end{aligned}$
CONCLUSION	1ateral supporti4 ; advised
QUESTION	Whin rit would you rather provide?
FFE HO EVD	100 (10)
IF	Laterad bracingla l recommended
ANSWEF	contimuous 1 ateral bracing
FREM TF CON	100 ()
FRE TFM CON	0
AND	web materialla i recommencled
ANSWEF	more web materjal.
FHETF COW	100
FFES IFN COM	0
AMOWF AMD	reduced panel lengthia i recommended
ANSWEF	reduced panel Imigth of the bottom chord
FRE IV: CON	100 pata -
FFE TFN CON	0
EULE	bre 2
FUUETYFFE	MEMU
COHCLUSTON	lateral support24 advised
QUESTICM	Which would you rather provide?
FREA NO EVD	100 (10)
IF	lateral bracjng24 : recommanded
AMSWER	contimuous ${ }_{\text {ateral }}$
FFB IF COM	100 (bat
F-FCE TFM COH	0
AHD	web materialz4 - recommended
FRE IF COM	100
FREE IFM COM	0
IF AMD	reduced pamel length24 : recommended
FPrE IF COM	1.00 fanel dengthat fecomendod
FRES IFN COM	0
FULIE	b1-4.4
RUIETYFE	MEMU
COMCLUSTON	lateral support44 a advised
QUESTION	Which would you rather provide?
FFH NO EVD	100 (10)
TF	lateral bracing44 i recommended
ANSWER	contimuous lateral bracimg
FRH IF CON	100 (1)
FFIE IFN CON	0
AND	web materiat 44 , recommended
ANSWEF	more web material.
FRE IF COM	100
FFE IFM CON	0
AND	reduced panel length44 : recommended
ANSWER	reduced panel lemgth of the bottom thord
FRE IF CON	100
FRES IFW CON	0

RULE
RUYFE
CONCLUSO AMSWER

FHE NO EVD
FRE IF CON
FFEF JFM CON
AND
FFE IF CON
FRE TFN CON AMD

FRE IF CON AND
FRE IF COH
FRE TFN COM

FUJLE
FULETYFE
CONCLUSIOM
ANSUEER
FRE NO EVD
FFE IF CON
FRE IFM COM 0
FRE TF COM J.OO
FFE [FM CON
FRE TF CON
FFEB IFH CON
AND 0
FFR IF CON Job
FFE IFM COMO
FULE
RULETYFE
CONCLUSION
AKSUEF

FFR NO EVVD
FRE TF CON
FFE IFN CON
FRE IF CON
FFE IFN CON O
FRE IF CON 100
FFEE IFN CON
FFB IF CON
FFE IFM COM

TF 100

AKD span ; is greater than : 33

AND bottom chord size i is equal to: 6
m23
AMSWEF:
mod queempost? i recommended
A MODTFEFD QUEENFOST truSs is recommende 100
$\underset{100}{3 p a n}$ is greater than : 2a
100
Span : is less than or equai to 35
100
)
100 om chord size i is equal. to it 6 10
top chord size $\quad i s$ equal to i 4 0
masc
AMSWER
mod queemposte recommended
A MODIFIED QUEENFOST trues is recommende
100
span i is less than or equal to i 45

0
bottom chord size i iss equal to : 4
100
op chord size is equal to 6 0
m23d
AMSWER
mod queenposte ; recommended
A MODIFTED QUEEHFOST truss is recommende
d.

100
span i is less than or equal to : 45
100
-
top chord size i is equal to 6 10

FULE

FULETYFFE CONCLUSION AMSWEK FFF NO EVD
dh23a
ANSWEFF
double howes ' recommended
A DOUSLE HOWE truss is recommended. 1.00

IF apan : is greater than or equat to : 29
FFG IF CON 180
FFE IFN COM 0
FRE IFM COM 0
FFRE IF COH 100
FFE TFH CON O
AMD bottom whord size i is equal to ; A
FFA TF COH 100
FFE IFN CON O
FRE IF CON 100
FFFE IFN COH O

FULIE:
FULETYEE
CONCLUSTOM
ANSWEF
FFE NO FVD
FRE TF COH
FFE TFN COH
FFE IF CON
FFEE IFH COM
FFE IF CON
FFEF IFM COM
AND
FFE IF COM 1.08
FRE IFH CONO

FULE:
FULETYFE CONCLUSION AMSWEF:
PFE NO EVD IF
FFE TF CON
FRE CFN CON
FFE IF CON
FFB IFH CON
AND
FFES IF CON
FRE TFN COH FFE IF CON FFFE IFW CON
dh 23 d
AMSWEF
doubte nowe ; recommended
A DOUBL HOWE truss js recommended.
100
mpan i is greater than ; 42
100
$\stackrel{0}{0}$
span ; is less than or equad to : 50 1.60

0
bottom whord sixe i is equal to i 6 100
top chord size i is equal to i 6 0
dh13c
AHSWER
double howed : recommended
A DOURLE HOWF truss is recommended. 100

```
588%
```

100
span i js less than ; 4 A
100
bottom chord size ; is equal to ; A
100
0
top chord sjae i js equal. to i 6
0

FULE:
RULETYFE
COMCLUSIOM
AHSWEF
FRE NO EVD
FRE NO EVD
ITF
FFRE IF CON
FFEA IFN CON 0
AMD GRan : is less tham; 44
FFB IF COM
FRE TFN CON O
AND bottom chord sjaxe i is equal to : 6
FRE IF CON 100
FFEE TFH CON 0
AhD top chord size i is equal to : 6
FFB IFCON 10
FRE IFN CON O
ANSWEF:
double howel ; recommended
A DOUBI..E HOWE truss is recommended. 100
span ; is greater than : 40
100
G0an : is less tham i 44
0

dh 13 a
FULE
FULEYYE
CONCLSOR
ANSWER EVD
FFE MO EV

RULETYFEOM
COWCLISIOM
ANSWE
FFE HO EVD

AND
FFR IFM CON
AND bottom chord size ; is equal to ; 4 FFER IF CON
FFH IFN CON
AND
FFE IF CON 108
FFE TFN CON O

FULE FULEFE CONCLUSION AHSWEF:
 FRE NO EVD

FFFE IF CON
FGE IFN CON
FRE IFN CON
b33a
ANSWEF
belgianz ; recommended
A BELGIAN truss is recommended.
100
span i is greater than or equal to : 30

FFE IF COM 100
FFE IFNCONO
AND bottom chord size $; \quad i s$ equal to ; 4
FFE IF COH 1.00
FRET IFN CON O
FFif iF COH top chord size i js equal to : 4

| FFKG |
| :---: | :---: |
| FFF |
| IFH COH |

RULEETYFE CONCLUSTOM AMSWEF
FFKB NO EVD
FRE IF CON FRE TFN COH FRE IF COH FRE TFN CON AND FRE IF COH FREE TFN CON

FFB IF CON FRE IFN CON
b 33 c
ANSWにR:
belgiamo : recommended
A bFlGial truss $j 仓$ recommended.
100
span i is greater than or equal. to : 44
100
span i is less than : 53
100
bottom chord size : is equal to : 4 100
top chord size $:$ is equal to 6
${ }^{\circ}$

FULE	1933 b
FULETYEE	AMSWER
CONCLUSTOM	belgian3 i recommended
ANSWEF	A BELGTAM truss js recommended.
FRB HO EVD	100 , is greater tham or equa to
FRE IF COH	$\mathrm{Span}^{\text {fon }}$ (is greater than or equal to 30
FFE IFN COH	
FRE IF COMD	Span i is less than : 36
FRE IFN COM	0
Per if AhD	bottom chord size : is equal to : 6
FRE IF CON	
AMD	top chord size ; is equal to
FRES IF COH	100 chord size its equal
FRE IFFN COM	

RULEE
FULETYFE CONCLUSION
AMSWEF:
FFE NO EVD
IF
FFE IF CON
FRE IFN COM
AND
FFB IF CON
FEG TFN CON
FRE TF CON
FREG IFM COH
AND
FFEB IF CON
FREG TFN CON
m 43 c
ANGWER
mod gueenpost 4 ; recommended
A MODVFTED QUEENFOST truss is recommende d. 100
span i is less than or equal to i 66 100
span i is greater than : 40
100
0
bottom chord size i is equal. to ; a 100
top chordsize i is equaltopo 1.00

FUULE	dh43b
FULETYFE	ANSWEF
CONCLUSION	double nowed ; recommended
AMSWER	A DOUBLE HOWE truss is recommended.
FFFE NO EVD	1.00
TF TF	span i is greater than ; 31
FFG JF COH	1.00 ds greater that
FRES IVN COH	\bigcirc
AMD	Span : is less than : 38
FFEE IF CON	100
FFEH IFN CON	0
AMD	bottom chord size i is equal to i 6
FFR IF CON	1.00
FRE TFM CON	0
A AND	top chord size ; is equal to i 4
FFE IF COM	100
FRE IFN CON	0

FULE	dn43a
FULETYFE	ANSWEF
COHCLUSTON	double howe 4 - recommended
AMSWEF:	A DOUELE HOWE truss js recommended.
FFB MO EVD	100
IF IF	Span ; is greater than ; 3 J .
FREIF CON	100
FFiB IFM COM	O
FRE IF COHD	${ }_{5}^{50} 000$ is less than i 30
FRE IFH COM	0
FREAND	bottom chord sjaze ; i.s equal to i 4
F'KB IF CON	100
FFEE IFN CON	0
FHE TF AND	top chord size i is equal to i 4
FREGIFM COM	100

FULEETYFE CONCI USTON AMSWEKi

FFE NO EVD
IF
d23c
AMSWEE
kingpost: w diag2 i recommended A K゙INGFOST WITF DTACOWALS twuss is tecom mended. 100
5pan i is greater than : ad
100
span i is less than or equal to : 33 100
bottom chord size $;$ is equal to i 4 FKF IF CON AN 100
FFE TFH CON
FFB JF CON 100
FKE IFH COM 0

FULE	k23aa
FULETYFE	ANSWEF:
COMCLUSION	kingposto i recommended
ANSWEFE	A K゙Thrrost truss is recommended.
FFF NO EVD	100
FFIF	span i $i s$ less tham i 17
FFEB IF COM	1.00
FFiE IFM CON	O
AND	bottom chord size i is equal to i 4
FFE IF CON	100
FFB IFW CON	(ton chord size i is equel to i 4
FRE IF COH	1.00
FRE TFN COM	0
FiJLE	k23ba
RUEETYFE	ANSWER
CONCLUSION	kingpostz : recommended
ANSWEF'	A \times ThGFost truss is recommended.
FRE NO EVD	100 span i is less than a a
FRF IF CON	j. 80
FFIE IFN CON	O
AHD FFG TF CON	bottom chord size : is equal to 6 100
FFir IFN COM	$\frac{100}{0}$
AMD	top chord sixe i is equeit to i 4
FRE TF COH	1.00
FFiCS IFM COH	0

FULE	
FULE	TYFE
CONC	LUSION
ANSW	EK'
FFE	NO EVD
	IF
FFE	IF COM
FFEF	TFH COH
	AMD
FFE	IF COH
$F \cdot F \cdot E$	IFH COH
	AND
FFE	IF COM
Frie	IFH COH

k23db
AMSWEF
kingpostob i recommended
A KIHGFOST truss is recommended.
100
span i is less than or equal to : 24 180
0
bottom chord size i is equal to i 6
FFB IF COH 100
top chord size i is equal to : 6 100 0

FUJE
FULETYFF CONCLUSION ANSWEF FFEF NO EVD
w13a
ANGWER:
fink ; recommended
A FTWK truss is recommended. 1.00
span i js greater than or equal to 1 1s 1.00
span : is less than or equal to 127
FFE IF COW
FFIE IFH CON
AMD
FFE IF COH
FRE IFN CON
FFE IF COND to
FRE TFM CONO

FULE
RULETYFE
CONCLUSTON
ANSWEF:
FHE NO EVD
IF CON
FFR IF CON
FFB IFM
IFON
FREB IFH CON
FFE IF COW
FRE TFN CON
AND
FRE IF CON
FFE IFN CON
AHD top
FFRE JF COM 1.00
FRE IFN CON
$\omega 130$

100
100

100
0 100 0

ANSWEF
finki ; recommended
AFINK truss is recommended.
span i is greater than or equal. to : 23
span : is less than : 38
bottom chord size $;$ is equal to ; 4
chord sixe ; is equal to : o
bottom rhord size i is equal to i 4 100
op chord size 1 as equal to i 4

FUll
RULEEYFE
COMCLUSION ANSWEF
FRE NO EVD
FRE HO EVD
 AND
FFR JF COM
FRE IFN CON
AHD bottom chord size i is equal to: 6
FRE CF CON 100
FFE IFN CON AND to
FFG IF CON 100
FRE TFN CON O
FUULE
RULETYFE
CONGLUSION
FFE NO EVD
FFE IF CON
FRE IFM CON
AMD span : js less than : 40
FTE IF CON 100
FREE IFN CON
AMD bottom chord size \quad is equad to i a
FFE IF CON 1.00
FRE IFN COM O
FRE CF COND top chord sise i is equal to : 6
FRE IFN CON O

1731
AMSWIEF
howel ; recommended
A SJNGLE HOWE trus is recommended.
100 (s)
span i is greater than or equal to it 16
100
0
span : is less than or equad to i
1.00
bottom chord size \mid is equal to : 6
100
108

FULE	k33d
FULETYFE	ANSWEF:
CONCLUSJCN	kingpostha ${ }^{\text {a }}$ recommended
ANSLER	AKJNGFOST trust is recommended
FFES HO EVD	100
FFE TF COH	span ; is less than : 2E
FFE IF COH	100 0 -
FFE TFN COM	0
FFic AFM AND	botom chord sjze i is aqual. to
FFER IF CON	100
FFE IFM COM	0
TF AND	top chord size ; is equad to : 6
FFB IF CON	100 (tord
FFFCHFMCOM	0


```
FFB NO EVD 100 IF Span i is greater than or equal to : 1.7
FFE IF COM 500
FFEH TFW COH O
FFK IF CON 100
FFEH IFN CONO
FFiB TF AND bottom Ghord size is equad to i \(A\)
FRE FFNCON CO
FFB [F CON top chord sixe i is equal to i 4
FFEE IFN COM O
```

FULEE
FULETYE
COMCU UST CONCLUSTOM AMSWEF
FFE NO EVD
FRB IF CON
FES IFN CON O
AMD span : is less than: 30
FFE IF COH J. FO
FRE IFN CON O
AND bottom chordsjze: is equal to: 6
FFG IF CON 100
FRE IFN CON
AHD top chord size i is equall to : A
FFB IF COH 100
FFEB EFNCONO

```
FUlLE W3
FULETYFE
COMCLUSTON
\(A N S W E R\)
\(F F E\) NO EVD
IF span ; \(\mathfrak{i s}\) greater than or equal to \(: 2\)
FFE TF CON 100
FRE TFH CON O
    AND span ; js less than : 44
FFE IF COH 100
FFE IFM COM O
AND bottom chord size \(\quad\) is equal to i 4
FFB IF COH 100
FFE TFN CON O
FFB IF AHD top chord size i is equal to 6
FFEE IFW COM 0
```


FULE
RULEYFE
CONGLUSOM
ANSWER
FKH NO EUD

FFE TF MOH
FRE IFM CON AND
AN FFR IF COH
FFEE IFN CON
AhD top chord size ; is equal to ; 4

| FRB |
| :---: | :--- |
| FRE |
| IF CON |
| |

k33aa
AHSWFF
kingpostz ; recommended
A KingFogT truss is recommended.
100
span : is less than : 17
1.00
bottom chord size i is equal. to ; 4 100

RULE
RUETYFE
CONCLUSSON
ANSWEF

FRE HO EVD
FFR IF CON
FFE IFN COH
FFE IF CON
FRE IFN CON

FFG IF COM
FEE IFN CON
FFB IF COH
FRE IFN CON O
m33d
AHSWEF:
mod queenpostz ; recommended
A MODIFTED QUEENFOST truss is recommemde d.

100
span i is Jess than or equal to : 5\%
100

bottom chord size ; is aqual to : 6 100
0
top chord size i is equal to i 6 10

,	
RULE	TYFE
CONC	lusion
ANS	WEF
F'Fis	NO EVD
	IF
FFE	IF COH
FFE:	IF゙N COM
	AMD
FFE	TF CON
FFE	IFN CON
	AND
FRE	TF COM
FRE	IFM COM

k43a
ANSWEF
kingposta a recommended
A KINGFOST truss is recommended. 100
span : is less than : 18
1.00
bottom chord size i is equal to : 4 100
top chord siae i its equad to i A
FRE TFM CON

RULE	
FULL	TYFE
COMCLUSION	
ANSWER	
FFEE	NO EVD
	IF
$F \cdot \mathrm{FB}$	IF COM
FFFB	IFH COH
$F \mathrm{~F}$ F	TF COM
F'Fir	TFM COM
	TF AND
REB	IF COM

k43b
ANSWER
kingpost 4 a recommended
A K゙INGFOST truss is recommended.
1.00
span is less than : 18
1.60
bottom chordsize 1 is equal. to i 6 100
top chord size \quad is equad to i 4
FRE IF COH 10

FULE FULETYFE COMCLUSION
 ANSWEF
 FFE HO EVD

IF
FRE IF COW
FRE IFMCOM
FFE IF COHD bottom chord size i is equal. to ; 4 FRE IFN CON O
FFB JF CON 100
FRE IFMCOMO

FULE	
RULETYFE CONCLUSIDM	
AVSWEF	
FFiE	NO EVD
	F
FFE	IF COH
FREF	IFN COH
FFRE	IF CON
Fra	TFH COH
F	IF CO

```
k43aa
ANSWER
kingpost4 ; recommended
A KINGFOST truss is rerommended.
100
span ; is less than : 18
100
bottom chord size i j.s equal. to i 4
100
\begin{tabular}{|c|c|}
\hline FUULE & k 43ba \\
\hline RULETYFE & ANSWER \\
\hline CONCLUSJOM & ki.noposta ; recommended \\
\hline AHSWER & A KThGFOST truss is recommended. \\
\hline FFE NO EVD & 1. 00 \\
\hline CF & span i is less than : 10 \\
\hline FFE JF CON & 100) \\
\hline FFEE IFN COM & 0 \\
\hline FHE TFAND & bottom chord sjze i is equal to \\
\hline FFE IFCOH & 100 \\
\hline FFtB IFM CON & 0 \\
\hline AND & top chord size : \(i s e q u a l\) to : 4 \\
\hline
\end{tabular}
```

FRE IF CON 100
FFE TF CON 100
FRE IFN CON O

FULE
FUGEYFE
CONCLUSION
AVSWEF

1430
ANSWEF:
kingpost w diag ; recommended
A $火$ NHGFOST WITH DIAGONAL. S truss is recom mended.
span i is greater than or equal to i lo
FFE IF CON 100
FFER IFN COH O
AND Sp

FFG TF AHD bottom chord size i is equal to i 6 FFG IF COH 100
FFEE IFM COM
FFE IF CON 100
FFFK IFN CON O

RULE FULETYFE CONCLUSION AMSWER

FRE NO EVD
d 43 c
AMSWER
 mended.

JF span i is greater than $: 26$
FEE IF CON 100
FRE TFW COH
span : is less than or equal to 40
FRE IF CON 100
FRE TFN COM O
FRE IF CON 100
FFEB IFN CON 0
FFE IF COH COD
FHE IFN CON O

RULEE RYFE
 COHCLUSIOH
 ANSWEF:

FRE IF CON 100
FRE IFN COH O
FFE TF CON 100
FFE IFH CON O

AMSWE:
kingpost w diag4 i recommended A KIHGFOST WITH DIAGONALG tiuss is recom nended.
100
Span ; is greater than : ab
100
span : is less than or equal to i 40
00
ottom chord size ; is equaj. to ; 6 00

另 chord size i is equal to i 6 o

RULE
RULYEE
COMCLUSION
ARGWER
FRE NO EVD IF
FRE
FFE
IFN
COH AND FFE JF CON 1.60 FFEE IFN COM AMD bo FRB IF CON 100
FRE TFN CON O
FRE IF COND top FRE IFN CONO

RUL RULETYFE COHCLUSTOM AMSWER:
FRE NO EVD
FRE IF CON FRE IFN COM

AMD
FRE IF CON IOO
FFE IFN CON O
AHD bottom chord size : is equal to : a
FRE IF COH
FRE IFN COM
FFE IF COND TOD chord size i is equal to : 4
FFE IFN CON O

FULE	b23b
FULETYEE	ALSWEF
COHCL USTOH	belaiand i recommended
AnSUEF	A EELGAM truss is recommended.
FRE NO EVD	100
FRE IF COM	Span ; is greater than ${ }^{\text {P }} 29$
FREE IFM COM	0
F\%e if COHD	span i is less than : 36
FRE TFM COH	
FRE TF AND	bottom chord sjze i is equal to :
FFEB IFN COM	-
FFER IF COMD	tog chord size i is equal to : 4 100
FFEB IFM COH	

RULETYEE COHCLUSTON ANSWER EVD

IF
span
100
span : is less than : 35
bottom chord sjze i is equal to : 6 FRE IF CON 100

FFEE IF CON 106
FFE IFN CONO
h43d
h43d
AMSWIER
AMSWIER
howe4 : recommended
howe4 : recommended
A SINGLE HOWE truss is recommended.
A SINGLE HOWE truss is recommended.
100
100
span ; is greater than ; 26
span ; is greater than ; 26
100
100
O
O
span i is less than ; 4o
span i is less than ; 4o
ottom chord size : is equal to ; b
ottom chord size : is equal to ; b

0
0
b23a
ANSWER
belaian2 : recommended
A BELGIAN truss is recommended.
100
span ; is greater than : 29
1.00
0
pan : is jess than : 35
otton chord size 1 is equal to : 4
0
o

FULE
FULETYFF CONCLUSIDN AHSWER FFE NO EVD FRE IF CON FFFE IFN COH

AND 50 a
CON 1
AMD
FFER IFN CON

FFB IF COH 100
FFE EFM CON
FFR IF COH 100
FFEE IFN COM O

FULETYEF COMCLUSIOH AHSWEF FRE HO EVD

FRE IF CON
FFEE IFN CON

AND

FFG IF COM
FRE IFM COH
FRE IF CON
FFB TFN COM
AMD
FFRE JF COM
FRE IFN COM
623 c

100

1.00

0

0

0
b23d 100

100
1.00 100 0

AHSWEK
belajame ; recommended
A BELGIAM truss is recommended.
span : is greater than : 42
span ; is lese than or equal to ;
48
bottom chord size ; is equad to ; A
top chord sjae i is equal to i 6

ANSWEF
belgians ; recommended
A EELLIAN truss is recommended.
span i is greater than i 42
span i is less than or equal to : 40
bottom chord size i i.s equal. to i o
top chordsize $:$ is equad to : 6


```
\begin{tabular}{|c|c|}
\hline FULE & k23a \\
\hline FULETYFE & AMSWER \\
\hline COMCLUSIOM & kingpostza - recommended \\
\hline AHSWER & A KINGFOST truss is recommended. \\
\hline FFER NO EVD & \[
100
\] \\
\hline FRE IF COH & Span i 25 less than 1.7 \\
\hline FRES IFN CON & 0 \\
\hline FRE TF AND & bottom chord size i is equal to \\
\hline FRE IF COM & 100 \\
\hline FREE IFN CON & O \\
\hline FREE IF COND & top chord size i is equal to i 4 \\
\hline FRE IFN COM & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline EULE & k23b \\
\hline FULETYFE & ANSWEF \\
\hline & kimgpostat : recommend \\
\hline FREW NO EVD & A Kithrast truss is recommended \\
\hline FRE NO EVDIF & span; is less than : 17 \\
\hline FREE IF CON & j00 0 ds less than \\
\hline FRE IFN COM & \\
\hline FRE TF COH & bottom chord size i is equal to \\
\hline FRE IFM COH & \% \\
\hline - AND & top chord sixe i is equall to : 4 \\
\hline AF CON & 1.00 \\
\hline RES IFW CON & \\
\hline
\end{tabular}
FULE
```



``` CONCLUSTOM ANSLER
```



```
FRE IF COH
FRE IFN CON
FRE IF COH FRG IFM COH
```

FULE
RULETYFE coniclusian AHSWEF FFE WO EVD

${ }^{\text {IF }}$
FFEE IF COH
FRE IFH CON
FRE IF CON
FREB IFN CON
AMD to
FRE IF CON 108
FRE TFN COH
$k 23 \mathrm{~d}$ 100 100
0
100 0
k 23 c
ANSWER
 100
span : is less than or equal to : 24 100
0
bottom chord size : is equal to : 4 100
top chord size i is equal to $\quad 6$ ${ }_{0}^{108}$

AMSWEF
kingpost2a ; recommended
A kThGFost truss is recommended.
span : is less than or equal to : 24
bottom chord size ; is equal to : s
top chord size i is equal to : 6

RULE	k 13a
FULETYFE	AMSWEF
COMCLUSION	kingpost a i recommended
AHSWEF	
FFER NO EVD	100
TF IF	span i as less than 16
FFE IF CON	100
FFEE IFW COM	0
FRE TF AMD	bottom chord size : is equal to 4 100
Fret IFin CON	0
Alld	top chordsize ; is equal to : 4
FRE IF COM	100 (ta
FREE IFM COM	0
RULE	k13b
RULETYFE	ANSWE\%
CONCLUSIOM	kingpostta i recommended
ANSWEF	A K゙ThGFOST truss is rerommended
FFFE NO EVD	1.00
FFE IF COIF	span i is less tham i 16
FFFE IF COM	1.00
FRE IFN CON	0
FFE IF COND	bottom chord size i jas equal. to i 6
FRE IFN CON	$\frac{100}{0}$
FFP - AMD	top chord size i is equal to : 4
FFE IF COM	1.00 lor
F'FE IFN COM	\bigcirc
FULEE	$k 13 \mathrm{c}$
RULETYFE	AMSWER゙
COMCLUSITM	kingpostla : recommended
AHSWER	A KTMGFOST truss is rerommended
FFE NO EVD	100 - 10 -
IF	span \| i 5 Less than : 23
FFE JF CON	1.00
FRE IFN CON	0
FFE TF AMD	bottom chord size i is equal to : 4
FREB IF CON	100
FFFE JIFN CON	0
FRE IF COND	top chord size i is equal to i o 1.08
FRE IFNCOM	6

FUlE	k13ab
FULETYFE	ANSWEF
COMCLUSION	kingpostab ; recommended
ANSWEF:	A K゙THKFOST truss is reoommemded.
FKG NO EVD	100
IF	span : is less than : 16
FFE IF COM	1. 00
FREE IFN COM	0
AND	bottom chord size i js equal to : 4
FRE IF MOM	100
FFES JFN CON	0
AND	top chord size i is equat to i A
FFE IF CON	1.00
FWB IFH COM	


```
FULE
RLLETYFE CONCLUSJOM ANSWEF FRE NO EVD TF 100
If span : is less than : 3
FFE IF CON
FTR IFN COM AHD bottom whord size i is equal. to i 6
```



```
FFEE JFN CON AND +
FRE IF CON 1.00
FHE IFN CON 0
```

FUlE
RULETYFE COMClUSEON AMSWER
FFE MO EVD
FRE IF CON
FRE TFM CON
0
AND bottom chord size 1 is equal. to : 6 FRE IF COM 100
FEE IFN CON
AMD top chord wize $\quad i s$ equad to : 4
FEE IF COH 100
FFB TFM CONO

FULE
FULETYFE CONCLUSION AMSWER
FFE NO EVD
IF span : is less than or equal to
FFE IF COH
FFEF IFN COM
AND bottom whord size ; js equal to i A FFE IF CON 100
FFE JFN CON O
FFE IF CON 1.00
FRE IFWCOM

FULE
FULETYFE COMCLUSTOM ANSWEK FFEE NO EVD IF FRG IF COM FRE IFH CON

AMD bottom ehord wize : is equal to: 6 FFE IF CON 100
FFBE IFWCONO
AND top chord size i is equal to : o
FFE IF CON 100
FRE IFN CON 0

REFERENCES

(1) Barr, A. and Freigenbaum, E. A. (editors). The Handbook of Artificial Intelligence. California: William Kaufmann Inc., 1985.
(2) Forsyth, R. (editor). Expert System Principles and Case Studies. New York: Chapman and Hall Computing, 1984.
(3) Cross, S. Notes on Artificial Intelligence. Air Force Institute of Technology, 1985.
(4) Michaelsen, R., Michie, D. and Boulanger, A. "The Technology of Expert Systems", BYTE. Apri1, 1985, pp. 303-312.
(5) Mullarkey, P. "CONE: An Expert System for Interpretation of Geotechnical Characterization Data from Cone Penetrometeres", Ph D thesis. Department of Civil Engineering, Carnegie-Mellon University, 1985.
(6) Hayes-Roth, F., Waterman, D. and Lenat, D. Building Expert Systems. London: Addison-Wes1ey, 1983.
(7) Maher, M. "HIRISE: A Knowledge-Based Expert System for the Preliminary Structural Design of High Rise Buildings", Ph D thesis. Department of Civil Engineering, Carnegie-Mellon University, 1985.
(8) Bennett, J., Creary, L., Englemore, R. and Melosh, R. "SACON A Knowledge-Based Consultant for Structural Analysis", Technical Report STAN-CS-78-699, Stanford University, September, 1978.
(9) Harmon, P. and King, D. Expert Systems, Artificial Intelligence In Business. New York: Wiley and Sons, Inc., 1985.
(10) Sriram, D., Maher, M., Bielak, J. and Fenras, S. "Expert Systems for Civil Engineering-A Survey", Technical Report R-82-137,
(11) "Expert Edge User Manual", Human Edge Software Corporation, 2445 Faber Place, Palo A1to, California 94303.
(12) Pountain, D. "Computers As Consultants", BYTE. October, 1985, pp. 367-376.
(13) Williamson, M. Artificial Intelligence for Micro-Computers: The Guide for Business Decisionmakers. New York: Brady Communications Company, Inc., 1985
(14) Enna1s, J. Beginning Micro-PROLOG. New York: Haper and Row, Publishers, 19 .
(15) Godfrey, K. "Expert System-Enter the Marketplace", Civil Engineering. May, 1986, pp. 70-73.

REFERENCES (CONT.)

(16) Melaragno, M. Simp1ified Truss Design. New York: Van Nostrand Reinhold Company, 1981.
(17) Private communication with Professor J.F. Ritter. Department of Civil Engineering, Youngstown State University.

