dc.contributor.author |
St. John, Gavin |
en_US |
dc.date.accessioned |
2013-10-24T14:53:07Z |
|
dc.date.accessioned |
2019-09-08T02:47:06Z |
|
dc.date.available |
2013-10-24T14:53:07Z |
|
dc.date.available |
2019-09-08T02:47:06Z |
|
dc.date.issued |
2013 |
|
dc.identifier |
856904195 |
en_US |
dc.identifier.other |
b2132542x |
en_US |
dc.identifier.uri |
http://hdl.handle.net/1989/10483 |
|
dc.description |
vi, 35 leaves : illustrations ; 29 cm. |
en_US |
dc.description.abstract |
We present a demonstration of the Gödel 's incompleteness phenomenon in the formal first-order axiomatization of the Zermelo-Fraenkel axioms of set theory following the methods displayed in Gödel 's famous 1931 paper, Über formal unemtscheidbare Sätze der Principia Mathematica und verwandter Systeme I.[ 1 ] |
en_US |
dc.description.statementofresponsibility |
by Gavin St. John. |
en_US |
dc.language.iso |
en_US |
en_US |
dc.relation.ispartofseries |
Master's Theses no. 1380 |
en_US |
dc.subject.lcsh |
Set theory. |
en_US |
dc.subject.lcsh |
Gödel's theorem. |
en_US |
dc.subject.lcsh |
Incompleteness theorems. |
en_US |
dc.title |
On formally undecidable propositions of Zermelo-Fraenkel set theory |
en_US |
dc.type |
Thesis |
en_US |